视网膜静脉阻塞相关危险因素的研究进展
Research Advances in Risk Factors Associated with Retinal Vein Occlusion
DOI: 10.12677/acm.2025.15123693, PDF, HTML, XML,   
作者: 罗雯伊:吉首大学医学院,湖南 吉首;于 兰*:吉首大学第四临床学院,湖南 怀化
关键词: 视网膜静脉阻塞危险因素凝血异常综述Retinal Vein Occlusion Risk Factors Thrombophilia Review
摘要: 视网膜静脉阻塞是导致视力下降的常见视网膜血管性疾病,其发病机制复杂,多种因素共同作用导致。本综述系统梳理了视网膜静脉阻塞相关的关键危险因素,研究表明在全身性血管因素中,高血压是最为确切的独立危险因素,糖尿病与高脂血症则通过加速动脉粥样硬化与内皮损伤参与致病;凝血异常因素中,以抗磷脂抗体综合征为代表的血栓前状态,通过诱发高凝状态显著增加视网膜静脉阻塞风险;在局部眼部因素中,短眼轴所致的筛板区拥挤及青光眼相关的视网膜微循环改变,共同构成静脉受压的解剖学基础。本文通过整合现有证据,旨在为视网膜静脉阻塞的个体化风险评估与一级预防策略提供理论依据,并指出未来研究应聚焦于多因素交互作用机制并为临床开展个体化防治制定了重要参考。
Abstract: Retinal vein occlusion (RVO) represents a common retinal vascular disorder that frequently leads to visual impairment, with its pathogenesis being multifactorial and complex. This review systematically delineates the key risk factors associated with RVO. Evidence demonstrates that among systemic vascular factors, hypertension stands as the most well-established independent risk factor, while diabetes mellitus and hyperlipidemia contribute to the pathogenesis through accelerated atherosclerosis and endothelial dysfunction. In the category of coagulation abnormalities, thrombophilic states, particularly antiphospholipid syndrome, significantly increase RVO risk by inducing hypercoagulability. Regarding local ocular factors, crowding at the lamina cribrosa resulting from short axial length, combined with glaucoma-associated alterations in retinal microcirculation, collectively constitute the anatomical basis for venous compression. By synthesizing current evidence, this review aims to provide a theoretical foundation for individualized risk assessment and primary prevention strategies for RVO, while proposing that future research should focus on elucidating the mechanisms underlying multifactorial interactions, thereby establishing critical references for developing personalized clinical management approaches.
文章引用:罗雯伊, 于兰. 视网膜静脉阻塞相关危险因素的研究进展[J]. 临床医学进展, 2025, 15(12): 2594-2600. https://doi.org/10.12677/acm.2025.15123693

1. 引言

视网膜静脉阻塞(retinal vein occlusion, RVO)是全球第二大常见视网膜血管性疾病,仅次于糖尿病视网膜病变,全球30~89岁人群患病率为0.77%,相当于2806万患者[1]。视网膜静脉阻塞是由于视网膜静脉内血栓形成,导致血液回流受阻、静脉迂曲扩张,从而出现视网膜出血、水肿、缺陷等一系列病理改变。根据血管阻塞的部位,可分为视网膜中央静脉阻塞(Central Retinal vein occlusion, CRVO)和视网膜分支静脉阻塞(Branch Retinal vein occlusion, BRVO) [2]。黄斑水肿(macular edema, ME)、玻璃体积血和新生血管性青光眼等这些RVO的并发症是导致视力下降及失明的主要原因。一项全国性注册研究结果表明,视网膜静脉阻塞(RVO)导致视力障碍和失明的比例分别为3.4%和1.9% [3]。由RVO引发的视力损害,不仅严重影响患者的独立生活能力、心理健康与生活质量,还因其长期的治疗、康复与管理需求,给患者及其家庭带来显著的经济负担,并构成一项重要的公共卫生问题。因此,深入探究并厘清其发病的危险因素,是实施有效一级预防与早期干预的关键。本文旨在对近年来RVO发病的相关危险因素的研究证据进行阐述。

2. 血管壁改变与动脉粥样硬化相关因素

2.1. 高血压

系统性高血压是视网膜静脉阻塞的最常见的危险因素[4]。长期高血压使血管壁损伤,引起动脉硬化及静脉压迫,血流瘀滞,形成血栓,最终导致视网膜静脉阻塞[5]-[7]。Kim等人[8]表示与正常血压相比,血压升高、1级高血压和2级高血压均与较高的视网膜血管阻塞风险相关。控制高血压似乎可降低后续发生视网膜血管阻塞的风险,然而其发病率仍显著高于血压持续正常者。

2.2. 糖尿病

糖尿病是视网膜静脉阻塞发病的独立危险因素[9]。长期高血糖导致视网膜微血管血流异常[10],血管内皮功能严重障碍,血小板高度活化及纤溶系统功能抑制,促进血栓形成,导致视网膜血管大片缺血,这也可以解释糖尿病患者缺血性RVO较为常见[11]。多个研究表明糖尿病与视网膜静脉阻塞有密切相关[12]

2.3. 高脂血症

高脂血症是视网膜静脉阻塞的危险因素之一[13]。高脂血症通过过量的脂质,尤其是低密度脂蛋白,侵入并损害视网膜动脉血管内皮,促进动脉硬化,以及增加血液黏稠度,增强血小板聚集性,营造高凝状态,导致视网膜静脉阻塞的发生。Tatjana Stojakovic [14]等指出血高密度脂蛋白–胆固醇(High-Density Lipoprotein Cholesterol, HDL-C)的升高是引起RVO的危险因素。Kim [15]等人的研究表示RVO和HDL-C之间的关联更高,此外,低HDL-C水平与肥胖和高血压有显着的协同作用。

2.4. 动脉硬化及心脑血管疾病

就解剖学方面而言,动脉粥样硬化与视网膜静脉阻塞有一定的相关性,视网膜血管壁及鞘膜的硬化,通过对交叉静脉的压迫引发血流淤滞或中断,是继发视网膜静脉阻塞的关键机制[16]。心脑血管疾病与视网膜静脉阻塞同样有相关性,研究表明视网膜静脉阻塞与高血压、收缩压、舒张压、颈动脉斑块、体重指数、血浆纤维蛋白原、动静脉交叉压迫征以及局灶性小动脉狭窄有显著相关[17]。脑卒中与RVO有关联,尤其是在小于50岁的人群中更为显著[18]。中枢系统对缺血缺氧与内皮屏障损伤具有高度易感性。缺血缺氧作为始动因素,激活caspase-9等关键信号,进而血视网膜屏障功能障碍,caspase-9与脑卒中、视网膜静脉阻塞及阿尔茨海默病有关[19]

2.5. 脂蛋白(a)

脂蛋白(a) (Lipoprotein(a), Lp(a))是一种与载脂蛋白(a)结合的低密度脂蛋白(Low-Density Lipoprotein, LDL)胆固醇样颗粒。由于载脂蛋白(a)与纤溶酶原结构高度相似,它能竞争性地抑制纤溶系统的活性,削弱机体溶解血栓的能力,又能将胆固醇输送至血管壁,直接参与并加速视网膜动脉的粥样硬化进程。因此升高的脂蛋白(a)水平是动脉粥样硬化的独立、可遗传的致病性危险因素[20]。C. Kuhli-Hattenbach等[21]通过比较106例60岁以下RVO患者与70例健康对照的血浆指标,发现患者组的脂蛋白(a)水平显著升高。这一关联在排除其他变量干扰后依然成立,证明脂蛋白(a)升高是RVO的独立危险因素。

2.6. 慢性肾脏疾病

眼睛和肾脏有许多共同的结构、生理和致病途径,这表明肾脏和眼部疾病可能相互关联[22]。慢性肾脏疾病(chronic kidney disease, CKD)在于尿毒症毒素蓄积和慢性微炎症状态共同诱导视网膜血管内皮细胞发生内质网应激与功能障碍,C反应蛋白、肿瘤坏死因子-α和白细胞介素-6的持续升高,同时通过上调组织因子、抑制天然抗凝系统形成“免疫血栓”网络;加上代谢异常及血液流变学改变等因素触发下,完成Virchow三角的全部要素,导致视网膜静脉血栓形成。Yuh-Shin Chang [23]等人通过一项全国性队列研究发现终末期肾病(end stage renal disease, ESRD)组RVO发生率为0.97%,显著高于对照组。这表明ESRD是RVO的独立危险因素。也有研究指出在肾功能正常人群中,显著蛋白尿(≥30 mg/dl)是视网膜静脉阻塞的独立危险因素,使其发病风险增加46% [24]

2.7. 高同型半胱氨酸血症

高同型半胱氨酸血症(hyperhomocysteinaemia, Hhcy)是动脉粥样硬化[25]、心血管疾病[26]、脑卒中[27]的独立危险因素。同型半胱氨酸是蛋氨酸代谢过程中产生的一种含硫氨基酸,当血同型半胱氨酸浓度升高,诱导氧化应激和内质网应激[28]损伤血管内皮,促进血栓形成,引起RVO。同型半胱氨酸一般通过叶酸和维生素B12再甲基化重新转化为蛋氨酸。当叶酸和维生素B12缺乏时会导致同型半胱氨酸升高,从而导致动脉硬化,增加RVO的发病风险[29]。亚甲基四氢叶酸还原酶(Methylenetetrahydrofolate Reductase, MTHFR)参与同型半胱氨酸的再甲基化,5,1-亚甲基四氢叶酸还原酶(MTHFR677T)基因突变导致Hhcy。MTHFR突变是RVO的另一个独立危险因素[30]。关于MTHFRC677T基因型与BRVO的关联性,部分病例对照研究支持MTHFRC677T基因型与BRVO两者有一定的相关性,但其他研究及荟萃分析并未证实这一关联[31]

3. 血液流变学与高凝状态因素

3.1. 抗磷脂综合症

抗磷脂综合征(Antiphospholipid Syndrome, APS)是一种以产生抗磷脂抗体为特征的自身免疫性疾病。有确诊价值的抗磷脂抗体(Antiphospholipid antibody, APL)有狼疮抗凝物、抗心磷脂抗体和抗β2-糖蛋白I抗体。抗磷脂抗体与血管内皮表面的β2-糖蛋白I结合后,诱导组织因子表达并激活血小板;同时通过抑制蛋白C/血栓调节蛋白系统及抗凝血酶活性破坏生理抗凝机制,并干扰纤溶系统功能;补体激活进一步加剧内皮损伤,共同促进血栓形成。有研究表明APL阳性是RVO的高危因素[32]

3.2. 凝血因子异常

蛋白质C或S缺乏、凝血酶原基因突变、因子V莱顿突变(FV Leiden)是RVO发生的风险因素。FV Leiden使因子V对活化蛋白C的降解产生抵抗,从而导致高凝状态;凝血酶原G20210A突变导致凝血酶原水平升高,增加血栓形成底物;蛋白质C或S缺乏通过灭活关键的辅因子活化的凝血因子V和VIII,促进凝血酶过度生成,增加血栓风险。Claudia Kuhli-Hattenbach [33]等人的研究指出FV Leiden突变、凝血酶原多态性A19911G是RVO的独立危险因素,与CRVO显著相关,同时也指出与视网膜静脉阻塞相关的遗传性易栓倾向更可能源于多基因协同作用,而非由单一危险因素独立导致。蛋白质C抵抗是≤45岁患者发生RVO的独立危险因素[34]。蛋白质S活性缺乏是RVO发病的风险因素[35]

3.3. 血细胞指标异常

炎症在RVO的发生与发展中起着核心推动作用。炎症反应可导致血管内皮细胞损伤,破坏血–视网膜屏障,进而促进血小板活化、血栓形成及血管通透性增加,最终引发视网膜静脉阻塞及其常见并发症——黄斑水肿。有研究表明血小板计数、中性粒细胞计数、淋巴细胞计数、中性粒细胞与淋巴细胞比值( Neutrophil-to-Lymphocyte Ratio, NLR)、血小板与淋巴细胞比值(Platelet-to-Lymphocyte Ratio, PLR)、全身免疫炎症指数(Systemic Immune-Inflammation Index, SII)水平与视网膜静脉阻塞黄斑水肿风险有关[36]。平均血小板体积(mean platelet volume, MPV)、血小板体积分布宽度(platelet distribution width, PDW)、大血小板比率(platelet-large cell ratio, P-LCR)、NLR和PLR与RVO预测及预后有相关性[37]

3.4. 激素避孕药

避孕药中的雌激素通过增加凝血因子II、VII、VIII、IX、X的浓度,抑制抗凝血酶III和蛋白S的活性,使血液处于“高凝状态”,与此同时,损伤血管内皮及升高血压,促进血栓形成。Siar Niazi [38]等人的研究表明现代复方口服激素避孕药的使用与育龄女性视网膜静脉阻塞风险增加存在显著关联,含30~40 μg剂量的雌激素的复方制剂风险最高,且与第三代孕激素联用时尤为显著,使用仅含孕激素的宫内节育器与视网膜血管阻塞风险增加无关。对于需要避孕但存在风险因素的女性,纯孕激素宫内节育器可以被视为一个更安全的选择。

4. 局部解剖与血流动力学因素

4.1. 短眼轴

短眼轴导致眼球内容物拥挤,视网膜动静脉在穿行巩膜筛板时空间拥挤,增加视网膜动静脉交叉处的解剖接触,导致血管内皮损伤以及血流速度减慢,形成血栓,增加RVO风险。有研究表明RVO患者中短眼轴比例更高,说明短眼轴是RVO的风险因素[39]。短眼轴与中央型RVO的关联可能更为显著,或与其共通的闭角型青光眼解剖风险因素有关。

4.2. 青光眼

青光眼是视网膜静脉阻塞重要的独立危险因素。一方面与持续高眼压或压迫视神,导致筛板层进行性后凸、压缩及结缔组织架构重塑有关;另一方面视网膜静脉受压,血管内皮功能受损,血流减慢、炎症因子释放,促进血栓形成。Kim等[40]研究发现青光眼是中央视网膜静脉阻塞(CRVO)视力预后不良的重要独立危险因素,其潜在机制可能源于青光眼相关的视网膜微循环障碍及神经节细胞层萎缩,与CRVO缺血损伤产生了协同效应。在一项全国性研究[41]中发现开角型青光眼(open-angle glaucoma, OAG)患者的RVO年发病率是0.53%,是健康人组的3.27倍。

综上所述,RVO的发病机制复杂,是眼部及全身系统性风险因素共同作用的结果。除已知的青光眼、短眼轴等眼部异常,以及高血压、糖尿病和血脂异常等代谢性疾病外,肥胖[42]、睡眠呼吸暂停综合征、系统性红斑狼疮[43]等亦被证实与本病的发生发展密切相关。当前,我国代谢性与心血管疾病负担持续加重。据统计,全球38%的人口超重或肥胖[44],高脂血症及高血压患病率亦呈显著上升趋势,这些危险因素的聚集为RVO的广泛发生创造了条件。因此,对这些危险因素进行早期识别和系统性干预,成为RVO预防的关键环节。

然而,RVO的具体致病机制仍未完全明确,诸多潜在风险因素(如遗传倾向、氧化应激水平、慢性炎症状态等)的作用尚待阐明。这要求我们开展更多的多中心、大样本研究及数据分析,以进一步完善RVO相关危险因素。在临床上,应建立以循证医学为基础的综合防治体系,对已确诊患者实施个体化干预,在控制原发病的同时靶向治疗RVO,从而延缓疾病进展,最大程度保全患者视功能。对年轻RVO患者,应着重筛查血栓、炎症、系统性疾病等隐匿性全身因素;对复发性患者,则需加强全身风险控制并多学科联合治疗方案。

NOTES

*通讯作者。

参考文献

[1] Song, P., Xu, Y., Zha, M., Zhang, Y. and Rudan, I. (2019) Global Epidemiology of Retinal Vein Occlusion: A Systematic Review and Meta-Analysis of Prevalence, Incidence, and Risk Factors. Journal of Global Health, 9, Article ID: 010427. [Google Scholar] [CrossRef] [PubMed]
[2] Flaxel, C.J., Adelman, R.A., Bailey, S.T., Fawzi, A., Lim, J.I., Vemulakonda, G.A., et al. (2020) Retinal Vein Occlusions Preferred Practice Pattern®. Ophthalmology, 127, P288-P320. [Google Scholar] [CrossRef] [PubMed]
[3] Schmidt-Erfurth, U., Garcia-Arumi, J., Gerendas, B.S., Midena, E., Sivaprasad, S., Tadayoni, R., et al. (2019) Guidelines for the Management of Retinal Vein Occlusion by the European Society of Retina Specialists (Euretina). Ophthalmologica, 242, 123-162. [Google Scholar] [CrossRef] [PubMed]
[4] Trovato Battagliola, E., Pacella, F., Malvasi, M., Scalinci, S.Z., Turchetti, P., Pacella, E., et al. (2021) Risk Factors in Central Retinal Vein Occlusion: A Multi-Center Case-Control Study Conducted on the Italian Population: Demographic, Environmental, Systemic, and Ocular Factors That Increase the Risk for Major Thrombotic Events in the Retinal Venous System. European Journal of Ophthalmology, 32, 2801-2809. [Google Scholar] [CrossRef] [PubMed]
[5] Jefferies, P., Clemett, R. and Day, T. (1993) An Anatomical Study of Retinal Arteriovenous Crossings and Their Role in the Pathogenesis of Retinal Branch Vein Occlusions. Australian and New Zealand Journal of Ophthalmology, 21, 213-217. [Google Scholar] [CrossRef] [PubMed]
[6] Zhao, J., Sastry, S.M., Sperduto, R.D., Chew, E.Y., Remaley, N.A., Yannuzzi, L.A., et al. (1993) Arteriovenous Crossing Patterns in Branch Retinal Vein Occlusion: The Eye Disease Case-Control Study Group. Ophthalmology, 100, 423-428. [Google Scholar] [CrossRef] [PubMed]
[7] Klein, R., Klein, B.E., Moss, S.E., et al. (2000) The Epidemiology of Retinal Vein Occlusion: The Beaver Dam Eye Study. Transactions of the American Ophthalmological Society, 98, 133-141.
[8] Kim, H.R., Lee, N.K., Lee, C.S., Byeon, S.H., Kim, S.S., Lee, S.W., et al. (2023) Retinal Vascular Occlusion Risks in High Blood Pressure and the Benefits of Blood Pressure Control. American Journal of Ophthalmology, 250, 111-119. [Google Scholar] [CrossRef] [PubMed]
[9] Huang, J. (2023) Mendelian Randomization Indicates a Causal Contribution of Type 2 Diabetes to Retinal Vein Occlusion. Frontiers in Endocrinology, 14, Article ID: 1146185. [Google Scholar] [CrossRef] [PubMed]
[10] Mrugacz, M., Bryl, A. and Zorena, K. (2021) Retinal Vascular Endothelial Cell Dysfunction and Neuroretinal Degeneration in Diabetic Patients. Journal of Clinical Medicine, 10, Article No. 458. [Google Scholar] [CrossRef] [PubMed]
[11] Chang, Y., Ho, C., Chu, C., Wang, J. and Jan, R. (2021) Risk of Retinal Vein Occlusion in Patients with Diabetes Mellitus: A Retrospective Cohort Study. Diabetes Research and Clinical Practice, 171, Article ID: 108607. [Google Scholar] [CrossRef] [PubMed]
[12] Wang, Y., Wu, S., Wen, F. and Cao, Q. (2020) Diabetes Mellitus as a Risk Factor for Retinal Vein Occlusion: A Meta-Analysis. Medicine, 99, e19319. [Google Scholar] [CrossRef] [PubMed]
[13] Ponto, K.A., Scharrer, I., Binder, H., Korb, C., Rosner, A.K., Ehlers, T.O., et al. (2019) Hypertension and Multiple Cardiovascular Risk Factors Increase the Risk for Retinal Vein Occlusions: results from the Gutenberg Retinal Vein Occlusion Study. Journal of Hypertension, 37, 1372-1383. [Google Scholar] [CrossRef] [PubMed]
[14] Stojakovic, T., Scharnagl, H., März, W., Winkelmann, B.R., Boehm, B.O. and Schmut, O. (2007) Low Density Lipoprotein Triglycerides and Lipoprotein(a) Are Risk Factors for Retinal Vascular Occlusion. Clinica Chimica Acta, 382, 77-81. [Google Scholar] [CrossRef] [PubMed]
[15] Kim, J., Lim, D.H., Han, K., Kang, S.W., Ham, D., Kim, S.J., et al. (2019) Retinal Vein Occlusion Is Associated with Low Blood High-Density Lipoprotein Cholesterol: A Nationwide Cohort Study. American Journal of Ophthalmology, 205, 35-42. [Google Scholar] [CrossRef] [PubMed]
[16] 刘明月, 陈佳玉, 常晨, 等. 炎症及动脉硬化相关因子与视网膜静脉阻塞的相关性[J]. 国际眼科杂志, 2020, 20(7): 1264-1268.
[17] Wong, T., Larsen, E., Klein, R., Mitchell, P., Couper, D., Klein, B., et al. (2005) Cardiovascular Risk Factors for Retinal Vein Occlusion and Arteriolar Embolithe Atherosclerosis Risk in Communities & Cardiovascular Health Studies. Ophthalmology, 112, 540-547. [Google Scholar] [CrossRef] [PubMed]
[18] Bakhoum, C.Y., Madala, S., Long, C.K., Adabifirouzjaei, F., Freeman, W.R., Goldbaum, M.H., et al. (2022) Retinal Vein Occlusion Is Associated with Stroke Independent of Underlying Cardiovascular Disease. Eye, 37, 764-767. [Google Scholar] [CrossRef] [PubMed]
[19] Avrutsky, M.I., Ortiz, C.C., Johnson, K.V., Potenski, A.M., Chen, C.W., Lawson, J.M., et al. (2020) Endothelial Activation of Caspase-9 Promotes Neurovascular Injury in Retinal Vein Occlusion. Nature Communications, 11, Article No. 3173. [Google Scholar] [CrossRef] [PubMed]
[20] Lampsas, S., Xenou, M., Oikonomou, E., Pantelidis, P., Lysandrou, A., Sarantos, S., et al. (2023) Lipoprotein(a) in Atherosclerotic Diseases: From Pathophysiology to Diagnosis and Treatment. Molecules, 28, Article No. 969. [Google Scholar] [CrossRef] [PubMed]
[21] Kuhli‐Hattenbach, C., Miesbach, W., Lüchtenberg, M., Kohnen, T. and Hattenbach, L. (2016) Elevated Lipoprotein (a) Levels Are an Independent Risk Factor for Retinal Vein Occlusion. Acta Ophthalmologica, 95, 140-145. [Google Scholar] [CrossRef] [PubMed]
[22] Nusinovici, S., Sabanayagam, C., Teo, B.W., Tan, G.S.W. and Wong, T.Y. (2019) Vision Impairment in CKD Patients: Epidemiology, Mechanisms, Differential Diagnoses, and Prevention. American Journal of Kidney Diseases, 73, 846-857. [Google Scholar] [CrossRef] [PubMed]
[23] Chang, Y., Weng, S., Chang, C., Wang, J., Tseng, S., Wang, J., et al. (2016) Risk of Retinal Vein Occlusion Following End-Stage Renal Disease. Medicine, 95, e3474. [Google Scholar] [CrossRef] [PubMed]
[24] Fujita, A., Hashimoto, Y., Okada, A., Obata, R., Aihara, M., Matsui, H., et al. (2022) Association between Proteinuria and Retinal Vein Occlusion in Individuals with Preserved Renal Function: A Retrospective Cohort Study. Acta Ophthalmologica, 100, e1510-e7. [Google Scholar] [CrossRef] [PubMed]
[25] Tian, W., Ju, J., Guan, B., Wang, T., Zhang, J., Song, L., et al. (2025) Role of Hyperhomocysteinemia in Atherosclerosis: From Bench to Bedside. Annals of Medicine, 57, 2457527. [Google Scholar] [CrossRef] [PubMed]
[26] Bogoni, F., Brunner, M.S., Almer, G., Hörl, G., Tehlivets, Y.G., Sommer, G., et al. (2025) Homocysteine Leads to Aortic Stiffening in a Rabbit Model of Atherosclerosis. Acta Biomaterialia, 201, 412-428. [Google Scholar] [CrossRef] [PubMed]
[27] Shi, M., Zheng, J., Liu, Y., Mao, X., Wu, X., Chu, M., et al. (2024) Folate, Homocysteine, and Adverse Outcomes after Ischemic Stroke. Journal of the American Heart Association, 13, e036527. [Google Scholar] [CrossRef] [PubMed]
[28] Zhang, S., Lv, Y., Luo, X., Weng, X., Qi, J., Bai, X., et al. (2023) Homocysteine Promotes Atherosclerosis through Macrophage Pyroptosis via Endoplasmic Reticulum Stress and Calcium Disorder. Molecular Medicine, 29, Article No. 73. [Google Scholar] [CrossRef] [PubMed]
[29] Paciullo, F., Menduno, P.S., Tucci, D., Caricato, A., Cagini, C. and Gresele, P. (2022) Vitamin B12 Levels in Patients with Retinal Vein Occlusion and Their Relation with Clinical Outcome: A Retrospective Study. Internal and Emergency Medicine, 17, 1065-1071. [Google Scholar] [CrossRef] [PubMed]
[30] Garnavou-Xirou, C., Bontzos, G., Smoustopoulos, G., Velissaris, S., Papadopoulos, A., Georgopoulos, E., et al. (2024) Ocular and Genetic Risk Factors in Branch Retinal Vein Occlusion: A Comprehensive Review. MaedicaA Journal of Clinical Medicine, 19, 780-788. [Google Scholar] [CrossRef] [PubMed]
[31] McGimpsey, S.J., Woodside, J.V., Cardwell, C., Cahill, M. and Chakravarthy, U. (2009) Homocysteine, Methylenetetrahydrofolate Reductase C677T Polymorphism, and Risk of Retinal Vein Occlusion: A Meta-Analysis. Ophthalmology, 116, 1778-1787.e1. [Google Scholar] [CrossRef] [PubMed]
[32] Hernández, J.L., Sanlés, I., Pérez-Montes, R., Martínez-Taboada, V.M., Olmos, J.M., Salmón, Z., et al. (2020) Antiphospholipid Syndrome and Antiphospholipid Antibody Profile in Patients with Retinal Vein Occlusion. Thrombosis Research, 190, 63-68. [Google Scholar] [CrossRef] [PubMed]
[33] Kuhli-Hattenbach, C., Hellstern, P., Nägler, D.K., Kohnen, T. and Hattenbach, L. (2017) Prothrombin Polymorphism A19911G, Factor V HR2 Haplotype A4070G, and Plasminogen Activator-Inhibitor-1 Polymorphism 4G/5G and the Risk of Retinal Vein Occlusion. Ophthalmic Genetics, 38, 413-417. [Google Scholar] [CrossRef] [PubMed]
[34] Scharrer, I., Lüchtenberg, M., Hattenbach, L. and Kuhli-Hattenbach, C. (2010) Coagulation Disorders and the Risk of Retinal Vein Occlusion. Thrombosis and Haemostasis, 103, 299-305. [Google Scholar] [CrossRef] [PubMed]
[35] Romiti, G.F., Corica, B., Borgi, M., Visioli, G., Pacella, E., Cangemi, R., et al. (2020) Inherited and Acquired Thrombophilia in Adults with Retinal Vascular Occlusion: A Systematic Review and Meta‐Analysis. Journal of Thrombosis and Haemostasis, 18, 3249-3266. [Google Scholar] [CrossRef] [PubMed]
[36] 黄娇, 修巍威, 宋先德, 等. 系统性免疫炎症指数与视网膜分支静脉阻塞黄斑水肿风险的相关性研究[J]. 中外医药研究, 2025, 4(2): 64-66.
[37] Kazantzis, D., Machairoudia, G., Kroupis, C., Theodossiadis, G., Theodossiadis, P. and Chatziralli, I. (2022) Complete Blood Count-Derived Inflammation Indices and Retinal Vein Occlusion: A Case-Control Study. Ophthalmology and Therapy, 11, 1241-1249. [Google Scholar] [CrossRef] [PubMed]
[38] Niazi, S., Gnesin, F., Jawad, B.N., Niazi, Z., Løkkegaard, E., Mørch, L., et al. (2025) Hormonal Contraception and Retinal Vascular Occlusion Risk. American Journal of Ophthalmology, 277, 286-294. [Google Scholar] [CrossRef] [PubMed]
[39] Szigeti, A., Schneider, M., Ecsedy, M., Nagy, Z.Z. and Récsán, Z. (2015) Association between Retinal Vein Occlusion, Axial Length and Vitreous Chamber Depth Measured by Optical Low Coherence Reflectometry. BMC Ophthalmology, 15, Article No. 45. [Google Scholar] [CrossRef] [PubMed]
[40] Kim, Y.N., Shin, J.W., Park, Y.J., Lee, J.Y., Kim, J.G., Yoon, Y.H., et al. (2020) Glaucoma as a Prognostic Factor of Central Retinal Vein Occlusion: Visual and Anatomical Outcomes and Occurrence of Ischaemic Central Retinal Vein Occlusion. Acta Ophthalmologica, 99, e523-e530. [Google Scholar] [CrossRef] [PubMed]
[41] Na, K.I., Jeoung, J.W., Kim, Y.K., Lee, W.J. and Park, K.H. (2018) Incidence of Retinal Vein Occlusion in Open-Angle Glaucoma: A Nationwide, Population‐Based Study Using the Korean Health Insurance Review and Assessment Database. Clinical & Experimental Ophthalmology, 46, 637-644. [Google Scholar] [CrossRef] [PubMed]
[42] Paik, D.W., Han, K., Kang, S.W., Ham, D., Kim, S.J., Chung, T., et al. (2020) Differential Effect of Obesity on the Incidence of Retinal Vein Occlusion with and without Diabetes: A Korean Nationwide Cohort Study. Scientific Reports, 10, Article No. 10512. [Google Scholar] [CrossRef] [PubMed]
[43] Narang, S., Giran, M., Lehl, S.S., D’Cruz, S. and Sharma, A. (2021) Bilateral Combined Retinal Vascular Occlusion as a Presenting Feature in a Case of Systemic Lupus Erythematosus. Rheumatology, 60, 4949-4950. [Google Scholar] [CrossRef] [PubMed]
[44] Koliaki, C., Dalamaga, M. and Liatis, S. (2023) Update on the Obesity Epidemic: After the Sudden Rise, Is the Upward Trajectory Beginning to Flatten? Current Obesity Reports, 12, 514-527. [Google Scholar] [CrossRef] [PubMed]