|
[1]
|
Guo, H., Zhang, Z., Chen, Y., Yang, H., Deng, L., Dai, J., et al. (2025) All-In-One Photoacid Generators with Green/Red‐light Responsiveness and Cooperative Functionality. Angewandte Chemie International Edition, 64, e202425313. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Alabiso, W., Sölle, B., Reisinger, D., Guedes de la Cruz, G., Schmallegger, M., Griesser, T., et al. (2023) On‐Demand Activation of Transesterification by Chemical Amplification in Dynamic Thiol‐Ene Photopolymers. Angewandte Chemie International Edition, 62, e202311341. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Alfaraidi, A.M., Kudisch, B., Ni, N., Thomas, J., George, T.Y., Rajabimoghadam, K., et al. (2023) Reversible CO2 Capture and On-Demand Release by an Acidity-Matched Organic Photoswitch. Journal of the American Chemical Society, 145, 26720-26727. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Wimberger, L., Rizzuto, F.J. and Beves, J.E. (2023) Modulating the Lifetime of DNA Motifs Using Visible Light and Small Molecules. Journal of the American Chemical Society, 145, 2088-2092. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Pines, D. and Pines, E. (2006) Solvent Assisted Photoacidity. In: Hynes, J.T., Klinman, J.P., Limbach, H.H. and Schowen, R.L., Eds., Hydrogen-Transfer Reactions, Wiley, 377-415. [Google Scholar] [CrossRef]
|
|
[6]
|
Agmon, N. (2004) Elementary Steps in Excited-State Proton Transfer. The Journal of Physical Chemistry A, 109, 13-35. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Pines, E. (2003) UV-Visible Spectra and Photoacidity of Phenols, Naphthols and Pyrenols. In: Rappoport, Z., Ed., The Chemistry of Phenols, Wiley, 491-527. [Google Scholar] [CrossRef]
|
|
[8]
|
Elsaesser, T. and Becker, H.J. (2002) Ultrafast Hydrogen Bonding Dynamics and Proton Transfer Processes in the Condensed Phase. Springer, 155-184.
|
|
[9]
|
Joung, J.F., Jeong, M. and Park, S. (2022) Reliable Experimental Method for Determination of Photoacidity Revealed by Quantum Chemical Calculations. Physical Chemistry Chemical Physics, 24, 21714-21721. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Gould, E., Popov, A.V., Tolbert, L.M., Presiado, I., Erez, Y., Huppert, D., et al. (2012) Excited-State Proton Transfer in N-Methyl-6-Hydroxyquinolinium Salts: Solvent and Temperature Effects. Physical Chemistry Chemical Physics, 14, 8964-8973. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Simkovitch, R., Karton-Lifshin, N., Shomer, S., Shabat, D. and Huppert, D. (2013) Ultrafast Excited-State Proton Transfer to the Solvent Occurs on a Hundred-Femtosecond Time-Scale. The Journal of Physical Chemistry A, 117, 3405-3413. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Simkovitch, R., Akulov, K., Shomer, S., Roth, M.E., Shabat, D., Schwartz, T., et al. (2014) Comprehensive Study of Ultrafast Excited-State Proton Transfer in Water and D2O Providing the Missing Ro–···H+ Ion-Pair Fingerprint. The Journal of Physical Chemistry A, 118, 4425-4443. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Kim, T.G. and Topp, M.R. (2004) Ultrafast Excited-State Deprotonation and Electron Transfer in Hydroxyquinoline Derivatives. The Journal of Physical Chemistry A, 108, 10060-10065. [Google Scholar] [CrossRef]
|
|
[14]
|
Presiado, I., Karton-Lifshin, N., Erez, Y., Gepshtein, R., Shabat, D. and Huppert, D. (2012) Ultrafast Proton Transfer of Three Novel Quinone Cyanine Photoacids. The Journal of Physical Chemistry A, 116, 7353-7363. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Simkovitch, R., Shomer, S., Gepshtein, R. and Huppert, D. (2014) How Fast Can a Proton-Transfer Reaction Be Beyond the Solvent-Control Limit? The Journal of Physical Chemistry B, 119, 2253-2262. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Tolbert, L.M. and Haubrich, J.E. (1994) Photoexcited Proton Transfer from Enhanced Photoacids. Journal of the American Chemical Society, 116, 10593-10600. [Google Scholar] [CrossRef]
|
|
[17]
|
Solntsev, K.M., Huppert, D., Agmon, N. and Tolbert, L.M. (2000) Photochemistry of “Super” Photoacids. 2. Excited-State Proton Transfer in Methanol/Water Mixtures. The Journal of Physical Chemistry A, 104, 4658-4669. [Google Scholar] [CrossRef]
|
|
[18]
|
Solntsev, K.M., Huppert, D. and Agmon, N. (1999) Photochemistry of “Super”-Photoacids. Solvent Effects. The Journal of Physical Chemistry A, 103, 6984-6997. [Google Scholar] [CrossRef]
|
|
[19]
|
Agmon, N., Rettig, W. and Groth, C. (2002) Electronic Determinants of Photoacidity in Cyanonaphthols. Journal of the American Chemical Society, 124, 1089-1096. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Choi, Y., Kim, H. and Kwon, O. (2022) Acid-Base Reaction of a Super-Photoacid with a Cooperative Amide Hydrogen‐Bonded Chain. Bulletin of the Korean Chemical Society, 43, 501-507. [Google Scholar] [CrossRef]
|
|
[21]
|
Nho, H., Adhikari, A. and Kwon, O. (2022) Ultrafast Excited-State Proton Transfer of a Cationic Superphotoacid in a Nanoscopic Water Pool. The Journal of Physical Chemistry B, 126, 1275-1283. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Raucci, U., Chiariello, M.G. and Rega, N. (2020) Modeling Excited-State Proton Transfer to Solvent: A Dynamics Study of a Super Photoacid with a Hybrid Implicit/Explicit Solvent Model. Journal of Chemical Theory and Computation, 16, 7033-7043. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Simkovitch, R., Shomer, S., Gepshtein, R., Roth, M.E., Shabat, D. and Huppert, D. (2014) Comparison of the Rate of Excited-State Proton Transfer from Photoacids to Alcohols and Water. Journal of Photochemistry and Photobiology A: Chemistry, 277, 90-101. [Google Scholar] [CrossRef]
|
|
[24]
|
Finkler, B., Spies, C., Vester, M., Walte, F., Omlor, K., Riemann, I., et al. (2014) Highly Photostable “Super”-Photoacids for Ultrasensitive Fluorescence Spectroscopy. Photochemical & Photobiological Sciences, 13, 548-562. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Nandi, R. and Amdursky, N. (2022) The Dual Use of the Pyranine (HPTS) Fluorescent Probe: A Ground-State pH Indicator and an Excited-State Proton Transfer Probe. Accounts of Chemical Research, 55, 2728-2739. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Yucknovsky, A., Rich, B.B., Westfried, A., Pokroy, B. and Amdursky, N. (2021) Self‐Propulsion of Droplets via Light‐stimuli Rapid Control of Their Surface Tension. Advanced Materials Interfaces, 8, Article ID: 2100751. [Google Scholar] [CrossRef]
|
|
[27]
|
Szczepanik, B. (2015) Protolytic Dissociation of Cyano Derivatives of Naphthol, Biphenyl and Phenol in the Excited State: A Review. Journal of Molecular Structure, 1099, 209-214. [Google Scholar] [CrossRef]
|
|
[28]
|
Karton-Lifshin, N., Presiado, I., Erez, Y., Gepshtein, R., Shabat, D. and Huppert, D. (2011) Ultrafast Excited-State Intermolecular Proton Transfer of Cyanine Fluorochrome Dyes. The Journal of Physical Chemistry A, 116, 85-92. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Ireland, J.F. and Wyatt, P.A.H. (1976) Acid-Base Properties of Electronically Excited States of Organic Molecules. Advances in Physical Organic Chemistry, 12, 131-221. [Google Scholar] [CrossRef]
|
|
[30]
|
Beens, H., Grellmann, K.H., Gurr, M. and Weller, A.H. (1965) Effect of Solvent and Temperature on Proton Transfer Reactions of Excited Molecules. Discussions of the Faraday Society, 39, 183. [Google Scholar] [CrossRef]
|
|
[31]
|
Weller, A. (1959) Outer and Inner Mechanism of Reactions of Excited Molecules. Discussions of the Faraday Society, 27, 28-33. [Google Scholar] [CrossRef]
|
|
[32]
|
Weller, A. (1958) Zeitschrift für Phys. Chemie, Protolytische Reaktionenangeregter Oxyverbindungen, 17, 224-245.
|
|
[33]
|
Loken, M.R., Hayes, J.W., Gohlke, J.R. and Brand, L. (1972) Excited-State Proton Transfer as a Biological Probe. Determination of Rate Constants by Means of Nanosecond Fluorometry. Biochemistry, 11, 4779-4786. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Agmon, N., Pines, E. and Huppert, D. (1988) Geminate Recombination in Proton-Transfer Reactions. II. Comparison of Diffusional and Kinetic Schemes. The Journal of Chemical Physics, 88, 5631-5638. [Google Scholar] [CrossRef]
|
|
[35]
|
Tolbert, L.M. and Haubrich, J.E. (1990) Enhanced Photoacidities of Cyanonaphthols. Journal of the American Chemical Society, 112, 8163-8165. [Google Scholar] [CrossRef]
|
|
[36]
|
Guardado-Alvarez, T.M., Russell, M.M. and Zink, J.I. (2014) Nanovalve Activation by Surface-Attached Photoacids. Chemical Communications, 50, 8388-8390. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Hattori H. and Ono, Y. (2018) Metal Oxides in Heterogeneous Catalysis. Elsevier, 133-209. [Google Scholar] [CrossRef]
|
|
[38]
|
Genosar, L., Cohen, B. and Huppert, D. (2000) Ultrafast Direct Photoacid-Base Reaction. The Journal of Physical Chemistry A, 104, 6689-6698. [Google Scholar] [CrossRef]
|
|
[39]
|
Arnaut, L.G. and Formosinho, S.J. (1993) Excited-State Proton Transfer Reactions I. Fundamentals and Intermolecular Reactions. Journal of Photochemistry and Photobiology A: Chemistry, 75, 1-20. [Google Scholar] [CrossRef]
|
|
[40]
|
Klajn, R., Wesson, P.J., Bishop, K.J.M. and Grzybowski, B.A. (2009) Writing Self‐Erasing Images Using Metastable Nanoparticle “Inks”. Angewandte Chemie International Edition, 48, 7035-7039. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Samanta, D. and Klajn, R. (2016) Aqueous Light‐Controlled Self‐Assembly of Nanoparticles. Advanced Optical Materials, 4, 1373-1377. [Google Scholar] [CrossRef]
|
|
[42]
|
Zhang, X., Chen, L., Lim, K.H., Gonuguntla, S., Lim, K.W., Pranantyo, D., et al. (2019) The Pathway to Intelligence: Using Stimuli‐Responsive Materials as Building Blocks for Constructing Smart and Functional Systems. Advanced Materials, 31, Article ID: 1804540. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Lagzi, I., Soh, S., Wesson, P.J., Browne, K.P. and Grzybowski, B.A. (2010) Maze Solving by Chemotactic Droplets. Journal of the American Chemical Society, 132, 1198-1199. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Merindol, R. and Walther, A. (2017) Materials Learning from Life: Concepts for Active, Adaptive and Autonomous Molecular Systems. Chemical Society Reviews, 46, 5588-5619. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Keyvan Rad, J., Balzade, Z. and Mahdavian, A.R. (2022) Spiropyran-Based Advanced Photoswitchable Materials: A Fascinating Pathway to the Future Stimuli-Responsive Devices. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 51, Article ID: 100487. [Google Scholar] [CrossRef]
|
|
[46]
|
Fedele, C., Ruoko, T., Kuntze, K., Virkki, M. and Priimagi, A. (2022) New Tricks and Emerging Applications from Contemporary Azobenzene Research. Photochemical & Photobiological Sciences, 21, 1719-1734. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Borberg, E., Zverzhinetsky, M., Krivitsky, A., Kosloff, A., Heifler, O., Degabli, G., et al. (2019) Light-Controlled Selective Collection-And-Release of Biomolecules by an On-Chip Nanostructured Device. Nano Letters, 19, 5868-5878. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Cardenas-Daw, C. and Gröhn, F. (2015) Photo-Induced Assembly of Nanostructures Triggered by Short-Lived Proton Transfers in the Excited-state. Journal of the American Chemical Society, 137, 8660-8663. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Zika, A. and Gröhn, F. (2021) Multiswitchable Photoacid-Hydroxyflavylium-Polyelectrolyte Nano-Assemblies. Beilstein Journal of Organic Chemistry, 17, 166-185. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Zika, A., Bernhardt, S. and Gröhn, F. (2020) Photoresponsive Photoacid-Macroion Nano-assemblies. Polymers, 12, Article 1746. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Zika, A., Agarwal, M., Schweins, R. and Gröhn, F. (2022) Joining Two Switches in One Nano‐Object: Photoacidity and Photoisomerization in Electrostatic Self‐Assembly. Chemistry—A European Journal, 29, e202203373. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Gilad Barzilay, Y., Yucknovsky, A. and Amdursky, N. (2024) Light-Triggered Reversible Change in the Electronic Structure of Moo3 Nanosheets via an Excited-State Proton Transfer Mechanism. Nano Letters, 24, 1936-1943. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Yucknovsky, A., Rich, B.B., Gutkin, S., Ramanthrikkovil Variyam, A., Shabat, D., Pokroy, B., et al. (2022) Application of Super Photoacids in Controlling Dynamic Processes: Light-Triggering the Self-Propulsion of Oil Droplets. The Journal of Physical Chemistry B, 126, 6331-6337. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Peretz-Soroka, H., Pevzner, A., Davidi, G., Naddaka, V., Kwiat, M., Huppert, D., et al. (2015) Manipulating and Monitoring On-Surface Biological Reactions by Light-Triggered Local pH Alterations. Nano Letters, 15, 4758-4768. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Borberg, E., Pashko, S., Koren, V., Burstein, L. and Patolsky, F. (2021) Depletion of Highly Abundant Protein Species from Biosamples by the Use of a Branched Silicon Nanopillar On-Chip Platform. Analytical Chemistry, 93, 14527-14536. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Borberg, E., Meir, R., Burstein, L., Krivitsky, V. and Patolsky, F. (2021) Ultrafast High-Capacity Capture and Release of Uranium by a Light-Switchable Nanotextured Surface. Nanoscale Advances, 3, 3615-3626. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Zhao, G. and Wang, T. (2018) Stereoselective Synthesis of 2‐Deoxyglycosides from Glycals by Visible‐Light‐Induced Photoacid Catalysis. Angewandte Chemie International Edition, 57, 6120-6124. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Das, A., Banerjee, T. and Hanson, K. (2016) Protonation of Silylenol Ether via Excited State Proton Transfer Catalysis. Chemical Communications, 52, 1350-1353. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Seo, H., Schretter, J., Massen-Hane, M. and Hatton, T.A. (2024) Visible Light-Driven CO2 Capture and Release Using Photoactive Pyranine in Water in Continuous Flow. Journal of the American Chemical Society, 146, 26777-26785. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Lancaster, L.S., Krueger, T.D., Chen, C., Musa, E.N., Lessard, J.M., Chiu, N., et al. (2024) Ultrafast Planarization of Photoexcited Ligands in Metal-Organic Frameworks Gates Charge Transfer to Promote Photocatalysis. Chemical Physics Reviews, 5, Article ID: 021401. [Google Scholar] [CrossRef]
|