|
[1]
|
Thomas, M.C., Brownlee, M., Susztak, K., Sharma, K., Jandeleit-Dahm, K.A.M., Zoungas, S., et al. (2015) Correction: Diabetic Kidney Disease. Nature Reviews Disease Primers, 1, Article No. 15018. [Google Scholar] [CrossRef]
|
|
[2]
|
Calle, P. and Hotter, G. (2020) Macrophage Phenotype and Fibrosis in Diabetic Nephropathy. International Journal of Molecular Sciences, 21, Article 2806. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Kato, M. and Natarajan, R. (2019) Epigenetics and Epigenomics in Diabetic Kidney Disease and Metabolic Memory. Nature Reviews Nephrology, 15, 327-345. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
李佳佳, 黄皓, 陶立坚, 等. 糖尿病肾病主要发病机制的研究进展[J]. 生命科学, 2023, 35(3): 396-404.
|
|
[5]
|
van Raalte, D.H., Bjornstad, P., Cherney, D.Z.I., de Boer, I.H., Fioretto, P., Gordin, D., et al. (2024) Combination Therapy for Kidney Disease in People with Diabetes Mellitus. Nature Reviews Nephrology, 20, 433-446. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Zhao, M., Wang, S., Zuo, A., Zhang, J., Wen, W., Jiang, W., et al. (2021) HIF-1α/JMJD1A Signaling Regulates Inflammation and Oxidative Stress Following Hyperglycemia and Hypoxia-Induced Vascular Cell Injury. Cellular & Molecular Biology Letters, 26, Article No. 40. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Cai, T., Ke, Q., Fang, Y., Wen, P., Chen, H., Yuan, Q., et al. (2020) Sodium-Glucose Cotransporter 2 Inhibition Suppresses HIF-1α-Mediated Metabolic Switch from Lipid Oxidation to Glycolysis in Kidney Tubule Cells of Diabetic Mice. Cell Death & Disease, 11, Article No. 390. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
闫桐, 贾新燕, 郭明好. 低氧诱导因子与肾纤维化关系的研究进展[J]. 中国血液净化, 2024, 23(2): 130-133.
|
|
[9]
|
Dunn, L.L., Kong, S.M.Y., Tumanov, S., Chen, W., Cantley, J., Ayer, A., et al. (2021) Hmox1 (Heme Oxygenase-1) Protects against Ischemia-Mediated Injury via Stabilization of HIF-1α (Hypoxia-Inducible Factor-1α). Arteriosclerosis, Thrombosis, and Vascular Biology, 41, 317-330. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Chaudhary, K., Chilakala, A., Ananth, S., Mandala, A., Veeranan-Karmegam, R., Powell, F.L., et al. (2019) Renal Iron Accelerates the Progression of Diabetic Nephropathy in the HFE Gene Knockout Mouse Model of Iron Overload. American Journal of Physiology-Renal Physiology, 317, F512-F517. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Feng, X., Wang, S., Sun, Z., Dong, H., Yu, H., Huang, M., et al. (2021) Ferroptosis Enhanced Diabetic Renal Tubular Injury via HIF-1α/HO-1 Pathway in Db/Db Mice. Frontiers in Endocrinology, 12, Article ID: 626390. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Chade, A.R. (2016) Vascular Endothelial Growth Factor Therapy for the Kidney. Journal of the American Society of Nephrology, 27, 1-3. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Tanabe, K., Maeshima, Y., Sato, Y. and Wada, J. (2017) Antiangiogenic Therapy for Diabetic Nephropathy. BioMed Research International, 2017, Article ID: 5724069. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Takiyama, Y., Harumi, T., Watanabe, J., Fujita, Y., Honjo, J., Shimizu, N., et al. (2011) Tubular Injury in a Rat Model of Type 2 Diabetes Is Prevented by Metformin: A Possible Role of HIF-1α Expression and Oxygen Metabolism. Diabetes, 60, 981-992. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
袁明霞, 唐荣, 周巧玲, 等. 冬虫夏草对糖尿病肾病大鼠肾组织HIF-1α及VEGF表达的影响[J]. 中南大学学报(医学版), 2013, 38(5): 448-457.
|
|
[16]
|
Schödel, J. and Ratcliffe, P.J. (2019) Mechanisms of Hypoxia Signalling: New Implications for Nephrology. Nature Reviews Nephrology, 15, 641-659. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Ben-Shoshan, M., Amir, S., Dang, D.T., Dang, L.H., Weisman, Y. and Mabjeesh, N.J. (2007) 1α,25-Dihydroxyvitamin D3 (calcitriol) Inhibits Hypoxia-Inducible Factor-1/Vascular Endothelial Growth Factor Pathway in Human Cancer Cells. Molecular Cancer Therapeutics, 6, 1433-1439. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Stanigut, A.M., Pana, C., Enciu, M., Deacu, M., Cimpineanu, B. and Tuta, L.A. (2022) Hypoxia-Inducible Factors and Diabetic Kidney Disease—How Deep Can We Go? International Journal of Molecular Sciences, 23, Article 10413. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Yu, J., Liu, Y., Li, H. and Zhang, P. (2023) Pathophysiology of Diabetic Kidney Disease and Autophagy: A Review. Medicine, 102, e33965. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Zhang, X., Feng, J., Li, X., Wu, D., Wang, Q., Li, S., et al. (2021) Mitophagy in Diabetic Kidney Disease. Frontiers in Cell and Developmental Biology, 9, Article ID: 778011. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
李冀, 王田, 付强, 等. 黄芪甲苷对肾脏的保护作用研究进展[J]. 吉林中医药, 2022, 42(10): 1214-1218.
|
|
[22]
|
Liu, J., Ren, J., Zhou, L., Tan, K., Du, D., Xu, L., et al. (2024) Proteomic and Lipidomic Analysis of the Mechanism Underlying Astragaloside IV in Mitigating Ferroptosis through Hypoxia-Inducible Factor 1α/Heme Oxygenase 1 Pathway in Renal Tubular Epithelial Cells in Diabetic Kidney Disease. Journal of Ethnopharmacology, 334, Article 118517. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Zhang, M., Liu, W., Liu, Y., Zhang, Z., Hu, Y., Sun, D., et al. (2023) Astragaloside IV Inhibited Podocyte Pyroptosis in Diabetic Kidney Disease by Regulating SIRT6/HIF-1α Axis. DNA and Cell Biology, 42, 594-607. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Szulc, M., Kujawski, R., Baraniak, J., Kania-Dobrowolska, M., Kamińska, E., Gryszczyńska, A., et al. (2021) Differential Influence of Pueraria Lobata Root Extract and Its Main Isoflavones on Ghrelin Levels in Alcohol-Treated Rats. Pharmaceuticals, 15, Article 25. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Shukla, R., Pandey, N., Banerjee, S. and Tripathi, Y.B. (2017) Effect of Extract of Pueraria Tuberosa on Expression of Hypoxia Inducible Factor-1α and Vascular Endothelial Growth Factor in Kidney of Diabetic Rats. Biomedicine & Pharmacotherapy, 93, 276-285. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
王屹菲, 周敏, 喻嵘. 雷公藤多苷治疗糖尿病肾病的系统评价再评价[J]. 中国药房, 2023, 34(23): 2915-2921.
|
|
[27]
|
陈卫东, 常保超, 张燕, 等. 雷公藤多苷对糖尿病大鼠肾组织缺氧诱导因子-1α及内皮素-1表达的影响[J]. 南方医科大学学报, 2015, 35(4): 499-505.
|
|
[28]
|
吴若霞, 田莎, 熊家青, 等. 甘草酮A通过调节mTOR/HIF-1α途径对顺铂诱导的肾小管上皮细胞的保护作用机制[J]. 中国免疫学杂志, 2023, 39(7): 1420-1424.
|
|
[29]
|
Luo, Z., Li, T., Gao, Q., Chen, Y., Su, G. and Zhao, Y. (2021) Impact of Licochalcone a on the Progression of Diabetic Nephropathy in Type 2 Diabetes Mellitus of C57BL/6 Mice. Food & Function, 12, 10676-10689. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
王忠萍, 张静, 陈运中. 苦瓜总皂苷的响应面法提取条件及降血糖活性的研究[J]. 时珍国医国药, 2019, 30(12): 2845-2848.
|
|
[31]
|
陈伟, 田鲁, 李易, 王港, 等. 苦瓜总皂苷对2型糖尿病肾病大鼠肾脏组织中HIF-1α和VEGF表达的作用研究[J]. 环球中医药, 2016, 9(6): 659-663.
|
|
[32]
|
Chen, J., Xie, X., Zhang, H., Li, G., Yin, Y., Cao, X., et al. (2021) Pharmacological Activities and Mechanisms of Hirudin and Its Derivatives—A Review. Frontiers in Pharmacology, 12, Article ID: 660757. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Pang, X., Zhang, Y., Shi, X., Peng, Z., Xing, Y. and Jiarui, H. (2020) Hirudin Reduces the Expression of Markers of the Extracellular Matrix in Renal Tubular Epithelial Cells in a Rat Model of Diabetic Kidney Disease through the Hypoxia-Inducible Factor-1α (HIF-1α)/vascular Endothelial Growth Factor (VEGF) Signaling Pathway. Medical Science Monitor, 26, e921894. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
沈金峰, 胡芳, 王福珍, 等. 大蒜素抗糖尿病肾病的实验研究[J]. 中医药学报, 2024, 52(2): 24-29.
|
|
[35]
|
Arellano-Buendía, A.S., Castañeda-Lara, L.G., Loredo-Mendoza, M.L., García-Arroyo, F.E., Rojas-Morales, P., Argüello-García, R., et al. (2020) Effects of Allicin on Pathophysiological Mechanisms during the Progression of Nephropathy Associated to Diabetes. Antioxidants, 9, Article 1134. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
刘猛, 章政, 高炳宏, 等. 橘皮素生物活性及其对运动性哮喘的潜在功效[J]. 天然产物研究与开发, 2023, 35(6): 1088-1099.
|
|
[37]
|
Kang, M., Kim, S., Oh, S.Y., Na, W. and Kang, Y. (2020) Tangeretin Ameliorates Glucose-Induced Podocyte Injury through Blocking Epithelial to Mesenchymal Transition Caused by Oxidative Stress and Hypoxia. International Journal of Molecular Sciences, 21, Article 8577. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Kang, M., Lim, S.S., Lee, J., Yeo, K.M. and Kang, Y. (2013) Anthocyanin-Rich Purple Corn Extract Inhibit Diabetes-Associated Glomerular Angiogenesis. PLOS ONE, 8, e79823. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
王薇, 王怀清, 杨建明, 等. 复方丹参滴丸对2型糖尿病大鼠代谢、生化指标及缺氧诱导因子-1α/血管内皮生长因子通路的影响[J]. 中国老年学杂志, 2018, 38(4): 935-937.
|
|
[40]
|
陈频, 郑全林, 陈文钰, 等. 复方丹参滴丸对2型糖尿病大鼠肾组织HIF-1α及VEGF表达的影响[J]. 中华保健医学杂志, 2011, 13(3): 200-203.
|
|
[41]
|
Yan, Y., Yuan, N., Chen, Y., Ma, Y., Chen, A., Wang, F., et al. (2024) SKP Alleviates the Ferroptosis in Diabetic Kidney Disease through Suppression of HIF-1α/HO-1 Pathway Based on Network Pharmacology Analysis and Experimental Validation. Chinese Medicine, 19, Article No. 31. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
黄贤珍, 杨亦彬. 参芪降糖颗粒对糖尿病肾病大鼠肾组织缺氧诱导因子-1α表达的影响[J]. 中国中西医结合肾病杂志, 2011, 12(1): 61-62+96.
|
|
[43]
|
李玉平, 刘佰洁, 陈洪学. 益阴降糖1号方治疗气阴两虚、瘀血内阻型糖尿病肾病临床研究[J]. 中医学报, 2017, 32(9): 1625-1629.
|
|
[44]
|
仁增加, 李啟恩, 切羊让忠, 等. 基于“味性化味-网络药理-分子对接”的藏药四味姜黄汤防治糖尿病肾病的作用机制预测[J]. 中成药, 2022, 44(2): 640-646.
|
|
[45]
|
童东. 藏药四味姜黄汤散对糖尿病肾病作用机制及配伍研究[D]: [硕士学位论文]. 成都: 成都中医药大学, 2018.
|
|
[46]
|
王秋苑, 刘又文, 岳辰, 等. 中药对自身免疫性疾病细胞焦亡影响的研究进展[J]. 中国实验方剂学杂志, 2023, 29(2): 260-269.
|