|
[1]
|
Luo, J., Zhang, S., Sun, M., Yang, L., Luo, S. and Crittenden, J.C. (2019) A Critical Review on Energy Conversion and Environmental Remediation of Photocatalysts with Remodeling Crystal Lattice, Surface, and Interface. ACS Nano, 13, 9811-9840. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Wu, H., Li, L., Wang, S., Zhu, N., Li, Z., Zhao, L., et al. (2023) Recent Advances of Semiconductor Photocatalysis for Water Pollutant Treatment: Mechanisms, Materials and Applications. Physical Chemistry Chemical Physics, 25, 25899-25924. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Tian, N., Hu, C., Wang, J., Zhang, Y., Ma, T. and Huang, H. (2022) Layered Bismuth-Based Photocatalysts. Coordination Chemistry Reviews, 463, Article ID: 214515. [Google Scholar] [CrossRef]
|
|
[4]
|
Liu, Y., Yang, B., He, H., Yang, S., Duan, X. and Wang, S. (2022) Bismuth-Based Complex Oxides for Photocatalytic Applications in Environmental Remediation and Water Splitting: A Review. Science of the Total Environment, 804, Article ID: 150215. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Thakur, V., Singh, S., Kumar, P., Rawat, S., Chandra Srivastava, V., Lo, S., et al. (2023) Photocatalytic Behaviors of Bismuth-Based Mixed Oxides: Types, Fabrication Techniques and Mineralization Mechanism of Antibiotics. Chemical Engineering Journal, 475, Article ID: 146100. [Google Scholar] [CrossRef]
|
|
[6]
|
Liu, X., Gu, S., Zhao, Y., Zhou, G. and Li, W. (2020) BiVO4, Bi2WO6 and Bi2MoO6 Photocatalysis: A Brief Review. Journal of Materials Science & Technology, 56, 45-68. [Google Scholar] [CrossRef]
|
|
[7]
|
Malathi, A., Madhavan, J., Ashokkumar, M. and Arunachalam, P. (2018) A Review on BiVO4 Photocatalyst: Activity Enhancement Methods for Solar Photocatalytic Applications. Applied Catalysis A: General, 555, 47-74. [Google Scholar] [CrossRef]
|
|
[8]
|
Cooper, J.K., Zhang, Z., Roychoudhury, S., Jiang, C., Gul, S., Liu, Y., et al. (2021) CuBi2O4: Electronic Structure, Optical Properties, and Photoelectrochemical Performance Limitations of the Photocathode. Chemistry of Materials, 33, 934-945. [Google Scholar] [CrossRef]
|
|
[9]
|
Patil, R., Kelkar, S., Naphade, R. and Ogale, S. (2014) Low Temperature Grown CuBi2O4 with Flower Morphology and Its Composite with CuO Nanosheets for Photoelectrochemical Water Splitting. Journal of Materials Chemistry A, 2, 3661-3668. [Google Scholar] [CrossRef]
|
|
[10]
|
Zhu, Z., Wan, S., Zhao, Y., Gu, Y., Wang, Y., Qin, Y., et al. (2021) Recent Advances in Bismuth-Based Multimetal Oxide Photocatalysts for Hydrogen Production from Water Splitting: Competitiveness, Challenges, and Future Perspectives. Materials Reports: Energy, 1, Article ID: 100019. [Google Scholar] [CrossRef]
|
|
[11]
|
Liu, J., Li, B., Kong, L., Xiao, Q. and Huang, S. (2023) Surfactants-Assisted Morphological Regulation of BiVO4 Nanostructures for Photocatalytic Degradation of Organic Pollutants in Wastewater. Journal of Physics and Chemistry of Solids, 172, Article ID: 111079. [Google Scholar] [CrossRef]
|
|
[12]
|
Orimolade, B.O. and Arotiba, O.A. (2020) Bismuth Vanadate in Photoelectrocatalytic Water Treatment Systems for the Degradation of Organics: A Review on Recent Trends. Journal of Electroanalytical Chemistry, 878, Article ID: 114724. [Google Scholar] [CrossRef]
|
|
[13]
|
Lyu, M., Wang, C., Rong, Y., Wei, J., Yang, Y., Liu, Y., et al. (2024) Advances in Modification of Bi2MoO6 and Its Photocatalysis: A Review. Journal of Alloys and Compounds, 982, Article ID: 173759. [Google Scholar] [CrossRef]
|
|
[14]
|
Guo, Q., Jing, L., Lan, Y., He, M., Xu, Y., Xu, H., et al. (2021) Construction 3D Rod-Like Bi3.64Mo0.36O6.55/CuBi2O4 Photocatalyst for Enhanced Photocatalytic Activity via a Photo-Fenton-Like Cu2+/Cu+ Redox Cycle. Separation and Purification Technology, 254, Article ID: 117546. [Google Scholar] [CrossRef]
|
|
[15]
|
Wang, F., Septina, W., Chemseddine, A., Abdi, F.F., Friedrich, D., Bogdanoff, P., et al. (2017) Gradient Self-Doped CuBi2O4 with Highly Improved Charge Separation Efficiency. Journal of the American Chemical Society, 139, 15094-15103. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Li, C., Zhang, X., Cui, Y., Xu, Y., Zhang, X., Sun, X., et al. (2024) Ultrahigh‐Ni Cathode with Superior Structure Stability Enabled by a Covalent Bonding Strategy. Batteries & Supercaps, 7, e202400066. [Google Scholar] [CrossRef]
|
|
[17]
|
Zhang, B., Fang, C., Ning, J., Dai, R., Liu, Y., Wu, Q., et al. (2023) Unusual Aliovalent Cd Doped γ‐Bi2MoO6 Nanomaterial for Efficient Photocatalytic Degradation of Sulfamethoxazole and Rhodamine B under Visible Light Irradiation. Carbon Neutralization, 2, 646-660. [Google Scholar] [CrossRef]
|
|
[18]
|
Mondal, S., Patra, L., Ilanchezhiyan, P., Neppolian, B., Pandey, R. and Ganesh, V. (2024) In Situ Growth of CuBi2O4/Bi2O3 Z-Scheme Heterostructures for Bifunctional Photocatalytic Applications. Langmuir, 40, 12954-12966. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Dieu Cam, N.T., Pham, H., Pham, T., Thu Phuong, T.T., Van Hoang, C., Thanh Tung, M.H., et al. (2021) Novel Photocatalytic Performance of Magnetically Recoverable MnFe2O4/BiVO4 for Polluted Antibiotics Degradation. Ceramics International, 47, 1686-1692. [Google Scholar] [CrossRef]
|
|
[20]
|
Li, P., Su, L., Chen, J., Li, S. and Su, F. (2024) Preparation of a Co3O4/Bi2MoO6 p‐n‐Type Heterojunction with Enhanced Photocatalytic Activity and Synergistic PMS Enrofloxacin Degradation. ChemistrySelect, 9, e202302680. [Google Scholar] [CrossRef]
|
|
[21]
|
Wang, Q., Ge, J., Liu, W., Zhang, H. and Li, R. (2025) Influence of Preparation Method on Structure and Photocatalytic Performance of Bi2MoO6. Catalysts, 15, Article No. 198. [Google Scholar] [CrossRef]
|
|
[22]
|
Qin, K., Zhao, Q., Yu, H., Xia, X., Li, J., He, S., et al. (2021) A Review of Bismuth-Based Photocatalysts for Antibiotic Degradation: Insight into the Photocatalytic Degradation Performance, Pathways and Relevant Mechanisms. Environmental Research, 199, Article ID: 111360. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Xing, X., Zhang, L., Ren, Y., Li, Y., Yu, H. and Shi, W. (2024) Double Bismuth-Based Bi2S3/Bi2MoO6 S-Scheme Heterojunction for Ultrafast Photocatalytic Removal of Cr(vi). Journal of Environmental Chemical Engineering, 12, Article ID: 112122. [Google Scholar] [CrossRef]
|
|
[24]
|
Kamble, G.S., Natarajan, T.S., Patil, S.S., Thomas, M., Chougale, R.K., Sanadi, P.D., et al. (2023) BiVO4 as a Sustainable and Emerging Photocatalyst: Synthesis Methodologies, Engineering Properties, and Its Volatile Organic Compounds Degradation Efficiency. Nanomaterials, 13, Article No. 1528. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Pan, Q., Wu, Y., Su, X., Yin, Y., Shi, S., Oderinde, O., et al. (2023) A Review on the Recent Development of Bismuth-Based Catalysts for CO2 Photoreduction. Journal of Molecular Structure, 1294, Article ID: 136404. [Google Scholar] [CrossRef]
|