|
[1]
|
Teng, X., Luo, Q., Chen, Y. and Peng, T. (2025) From Texture Analysis to Artificial Intelligence: Global Research Landscape and Evolutionary Trajectory of Radiomics in Hepatocellular Carcinoma. Discover Oncology, 16, Article No. 1694. [Google Scholar] [CrossRef]
|
|
[2]
|
Afyouni, S., Zandieh, G., Nia, I.Y., Pawlik, T.M. and Kamel, I.R. (2024) State-of-the-Art Imaging of Hepatocellular Carcinoma. Journal of Gastrointestinal Surgery, 28, 1717-1725. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Jiang, H., Wei, H., Liang, L., Wang, Y., Kuang, M., Ronot, M., et al. (2025) The Evolving Role of Imaging in Hepatocellular Carcinoma: From Pathomolecular Profiling to Prognostic Decision-Making. Liver Cancer, 1-26. [Google Scholar] [CrossRef]
|
|
[4]
|
Ren, L., Chen, D.B., Yan, X., She, S., Yang, Y., Zhang, X., et al. (2024) Bridging the Gap between Imaging and Molecular Characterization: Current Understanding of Radiomics and Radiogenomics in Hepatocellular Carcinoma. Journal of Hepatocellular Carcinoma, 11, 2359-2372. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Fu, J., Cao, S., Song, L., Tong, X., Wang, J., Yang, M., et al. (2022) Radiomics/Radiogenomics in Hepatocellular Carcinoma: Applications and Challenges in Interventional Management. iLIVER, 1, 96-100. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Amin, N., Anwar, J., Sulaiman, A., Naumova, N.N. and Anwar, N. (2025) Hepatocellular Carcinoma: A Comprehensive Review. Diseases, 13, Article 207. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Ma, Y., Gong, Y., Qiu, Q., Ma, C. and Yu, S. (2024) Research on Multi-Model Imaging Machine Learning for Distinguishing Early Hepatocellular Carcinoma. BMC Cancer, 24, Article No. 363. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Kazi, I.A., Jahagirdar, V., Kabir, B.W., Syed, A.K., Kabir, A.W. and Perisetti, A. (2024) Role of Imaging in Screening for Hepatocellular Carcinoma. Cancers, 16, Article 3400. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Okada, M., Aoki, R., Nakazawa, Y., Tago, K. and Numata, K. (2024) CT and MR Imaging of Hepatocellular Carcinoma and Liver Cirrhosis. Gastroenterology Insights, 15, 976-997. [Google Scholar] [CrossRef]
|
|
[10]
|
Alshomrani, F. (2025) Recent Advances in Magnetic Resonance Imaging for the Diagnosis of Liver Cancer: A Comprehensive Review. Diagnostics, 15, Article 2016. [Google Scholar] [CrossRef]
|
|
[11]
|
Wang, Q., Sheng, Y., Jiang, Z., Liu, H., Lu, H. and Xing, W. (2023) What Imaging Modality Is More Effective in Predicting Early Recurrence of Hepatocellular Carcinoma after Hepatectomy Using Radiomics Analysis: CT or MRI or Both? Diagnostics, 13, Article 2012. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Granata, V., Fusco, R., Setola, S.V., Simonetti, I., Cozzi, D., Grazzini, G., et al. (2022) An Update on Radiomics Techniques in Primary Liver Cancers. Infectious Agents and Cancer, 17, Article No. 6. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Jiang, C., Zhao, L., Xin, B., Ma, G., Wang, X. and Song, S. (2022) 18F-FDG PET/CT Radiomic Analysis for Classifying and Predicting Microvascular Invasion in Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma. Quantitative Imaging in Medicine and Surgery, 12, 4135-4150. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Liu, Q., Zhu, W., Song, F., Lou, T., He, L., Zhou, W., et al. (2024) Radio-Immunomics in Hepatocellular Carcinoma: Unraveling the Tumor Immune Microenvironment. Meta-Radiology, 2, Article 100098. [Google Scholar] [CrossRef]
|
|
[15]
|
Wu, C., Chen, Q., Wang, H., Guan, Y., Mian, Z., Huang, C., et al. (2024) A Review of Deep Learning Approaches for Multimodal Image Segmentation of Liver Cancer. Journal of Applied Clinical Medical Physics, 25, e14540. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Siam, A., Alsaify, A.R., Mohammad, B., Biswas, M.R., Ali, H. and Shah, Z. (2023) Multimodal Deep Learning for Liver Cancer Applications: A Scoping Review. Frontiers in Artificial Intelligence, 6, Article ID: 1247195. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Sun, Z., Li, X., Liang, H., Shi, Z. and Ren, H. (2024) A Deep Learning Model Combining Multimodal Factors to Predict the Overall Survival of Transarterial Chemoembolization. Journal of Hepatocellular Carcinoma, 11, 385-397. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Wang, F., Chen, Q., Chen, Y., Zhu, Y., Zhang, Y., Cao, D., et al. (2023) A Novel Multimodal Deep Learning Model for Preoperative Prediction of Microvascular Invasion and Outcome in Hepatocellular Carcinoma. European Journal of Surgical Oncology, 49, 156-164. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Xia, Y., Zhou, J., Xun, X., Zhang, J., Wei, T., Gao, R., et al. (2024) CT-Based Multimodal Deep Learning for Non-Invasive Overall Survival Prediction in Advanced Hepatocellular Carcinoma Patients Treated with Immunotherapy. Insights into Imaging, 15, Article No. 214. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Gu, Y., Huang, H., Tong, Q., Cao, M., Ming, W., Zhang, R., et al. (2023) Multi-view Radiomics Feature Fusion Reveals Distinct Immuno-Oncological Characteristics and Clinical Prognoses in Hepatocellular Carcinoma. Cancers, 15, Article 2338. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Hu, G., Qu, J., Gao, J., Chen, Y., Wang, F., Zhang, H., et al. (2024) Radiogenomics Nomogram Based on MRI and Micrornas to Predict Microvascular Invasion of Hepatocellular Carcinoma. Frontiers in Oncology, 14, Article ID: 1371432. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Wei, H., Zheng, T., Zhang, X., Wu, Y., Chen, Y., Zheng, C., et al. (2024) MRI Radiomics Based on Deep Learning Automated Segmentation to Predict Early Recurrence of Hepatocellular Carcinoma. Insights into Imaging, 15, Article No. 120. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
He, Y., Hu, B., Zhu, C., Xu, W., Ge, Y., Hao, X., et al. (2022) A Novel Multimodal Radiomics Model for Predicting Prognosis of Resected Hepatocellular Carcinoma. Frontiers in Oncology, 12, Article ID: 745258. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Masokano, I.B., Liu, W., Xie, S., Marcellin, D.F.H., Pei, Y. and Li, W. (2020) The Application of Texture Quantification in Hepatocellular Carcinoma Using CT and MRI: A Review of Perspectives and Challenges. Cancer Imaging, 20, Article No. 67. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Bartnik, K., Krzyziński, M., Bartczak, T., Korzeniowski, K., Lamparski, K., Wróblewski, T., et al. (2024) A Novel Radiomics Approach for Predicting TACE Outcomes in Hepatocellular Carcinoma Patients Using Deep Learning for Multi-Organ Segmentation. Scientific Reports, 14, Article No. 14779. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Qi, L., Zhu, Y., Li, J., Zhou, M., Liu, B., Chen, J., et al. (2024) CT Radiomics-Based Biomarkers Can Predict Response to Immunotherapy in Hepatocellular Carcinoma. Scientific Reports, 14, Article No. 20027. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Deng, K., Chen, T., Leng, Z., Yang, F., Lu, T., Cao, J., et al. (2024) Radiomics as a Tool for Prognostic Prediction in Transarterial Chemoembolization for Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. La Radiologia Medica, 129, 1099-1117. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Chen, M., Kong, C., Qiao, E., Chen, Y., Chen, W., Jiang, X., et al. (2023) Multi-Algorithms Analysis for Pre-Treatment Prediction of Response to Transarterial Chemoembolization in Hepatocellular Carcinoma on Multiphase MRI. Insights into Imaging, 14, Article No. 38. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Wang, L., Fatemi, M. and Alizad, A. (2024) Artificial Intelligence Techniques in Liver Cancer. Frontiers in Oncology, 14, Article ID: 1415859. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Kwak, L. and Bai, H. (2023) The Role of Federated Learning Models in Medical Imaging. Radiology: Artificial Intelligence, 5, e230136. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Yao, S., Ye, Z., Wei, Y., Jiang, H. and Song, B. (2021) Radiomics in Hepatocellular Carcinoma: A State-of-the-Art Review. World Journal of Gastrointestinal Oncology, 13, 1599-1615. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Li, C., Feng, X., Li, D. and Dong, J. (2025) A Retrospective Validation of a Federated Machine Learning Framework (Hepa-Fedboost) for Improving Liver Cancer CT Diagnosis across Heterogeneous Hospital Networks. Intelligent Medicine. [Google Scholar] [CrossRef]
|
|
[33]
|
Lévi-Strauss, T., Tortorici, B., Lopez, O., Viau, P., Ouizeman, D.J., Schall, B., et al. (2023) Radiomics, a Promising New Discipline: Example of Hepatocellular Carcinoma. Diagnostics, 13, Article1303. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Xie, X. and Chen, R. (2025) Research Progress of MRI-Based Radiomics in Hepatocellular Carcinoma. Frontiers in Oncology, 15, Article ID: 1420599. [Google Scholar] [CrossRef] [PubMed]
|