|
[1]
|
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Seymour, M.T., Maughan, T.S., Ledermann, J.A., Topham, C., James, R., Gwyther, S.J., et al. (2007) Different Strategies of Sequential and Combination Chemotherapy for Patients with Poor Prognosis Advanced Colorectal Cancer (MRC FOCUS): A Randomised Controlled Trial. The Lancet, 370, 143-152. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Koopman, M., Antonini, N.F., Douma, J., Wals, J., Honkoop, A.H., Erdkamp, F.L., et al. (2007) Sequential versus Combination Chemotherapy with Capecitabine, Irinotecan, and Oxaliplatin in Advanced Colorectal Cancer (CAIRO): A Phase III Randomised Controlled Trial. The Lancet, 370, 135-142. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
安富荣, 崔岚, 戈升荣. 治疗转移性结直肠癌新药——西妥昔单抗[J]. 中国新药杂志, 2005, 14(7): 927-930.
|
|
[5]
|
Bertotti, A., Papp, E., Jones, S., Adleff, V., Anagnostou, V., Lupo, B., et al. (2015) The Genomic Landscape of Response to EGFR Blockade in Colorectal Cancer. Nature, 526, 263-267. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Benson, A.B., Venook, A.P., Al-Hawary, M.M., Cederquist, L., Chen, Y., Ciombor, K.K., et al. (2018) NCCN Guidelines Insights: Colon Cancer, Version 2.2018. Journal of the National Comprehensive Cancer Network, 16, 359-369. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
张智勇, 裘丰. 长链非编码RNA Linc00658在结直肠癌中的表达及其与西妥昔单抗抵抗的关系[J]. 温州医科大学学报, 2020, 50(11): 890-895.
|
|
[8]
|
Bardelli, A. and Siena, S. (2010) Molecular Mechanisms of Resistance to Cetuximab and Panitumumab in Colorectal Cancer. Journal of Clinical Oncology, 28, 1254-1261. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Matos, A.I., Carreira, B., Peres, C., Moura, L.I.F., Conniot, J., Fourniols, T., et al. (2019) Nanotechnology Is an Important Strategy for Combinational Innovative Chemo-Immunotherapies against Colorectal Cancer. Journal of Controlled Release, 307, 108-138. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Bussard, K.M., Mutkus, L., Stumpf, K., Gomez-Manzano, C. and Marini, F.C. (2016) Tumor-Associated Stromal Cells as Key Contributors to the Tumor Microenvironment. Breast Cancer Research, 18, Article No. 84. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Dunn, G.P., Old, L.J. and Schreiber, R.D. (2004) The Three Es of Cancer Immunoediting. Annual Review of Immunology, 22, 329-360. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Gajewski, T.F., Schreiber, H. and Fu, Y. (2013) Innate and Adaptive Immune Cells in the Tumor Microenvironment. Nature Immunology, 14, 1014-1022. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Bibeau, F., Lopez-Crapez, E., Di Fiore, F., Thezenas, S., Ychou, M., Blanchard, F., et al. (2009) Impact of FcγRIIa-FcγRIIIa Polymorphisms and kras Mutations on the Clinical Outcome of Patients with Metastatic Colorectal Cancer Treated with Cetuximab Plus Irinotecan. Journal of Clinical Oncology, 27, 1122-1129. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Calemma, R., Ottaiano, A., Trotta, A.M., Nasti, G., Romano, C., Napolitano, M., et al. (2012) Fc Gamma Receptor IIIa Polymorphisms in Advanced Colorectal Cancer Patients Correlated with Response to Anti-EGFR Antibodies and Clinical Outcome. Journal of Translational Medicine, 10, Article No. 232. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Kohrt, H.E., Colevas, A.D., Houot, R., Weiskopf, K., Goldstein, M.J., Lund, P., et al. (2014) Targeting CD137 Enhances the Efficacy of Cetuximab. Journal of Clinical Investigation, 124, 2668-2682. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Houot, R. and Kohrt, H. (2014) CD137 Stimulation Enhances the Vaccinal Effect of Anti-Tumor Antibodies. OncoImmunology, 3, e941740. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Rocca, Y.S., Roberti, M.P., Juliá, E.P., Pampena, M.B., Bruno, L., Rivero, S., et al. (2016) Phenotypic and Functional Dysregulated Blood NK Cells in Colorectal Cancer Patients Can Be Activated by Cetuximab Plus IL-2 or Il-15. Frontiers in Immunology, 7, Article No. 413. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Lutterbuese, R., Raum, T., Kischel, R., Hoffmann, P., Mangold, S., Rattel, B., et al. (2010) T Cell-Engaging BiTE Antibodies Specific for EGFR Potently Eliminate KRAS-and BRAF-Mutated Colorectal Cancer Cells. Proceedings of the National Academy of Sciences, 107, 12605-12610. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Akkaya, M., Akkaya, B., Kim, A.S., Miozzo, P., Sohn, H., Pena, M., et al. (2018) Toll-Like Receptor 9 Antagonizes Antibody Affinity Maturation. Nature Immunology, 19, 255-266. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Ishiguro, N., Moriyama, M., Furusho, K., Furukawa, S., Shibata, T., Murakami, Y., et al. (2019) Activated M2 Macrophages Contribute to the Pathogenesis of IgG4‐Related Disease via Toll‐Like Receptor 7/Interleukin‐33 Signaling. Arthritis & Rheumatology, 72, 166-178. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Damiano, V., Caputo, R., Garofalo, S., Bianco, R., Rosa, R., Merola, G., et al. (2007) TLR9 Agonist Acts by Different Mechanisms Synergizing with Bevacizumab in Sensitive and Cetuximab-Resistant Colon Cancer Xenografts. Proceedings of the National Academy of Sciences, 104, 12468-12473. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Damiano, V., Caputo, R., Bianco, R., D'Armiento, F.P., Leonardi, A., De Placido, S., et al. (2006) Novel Toll-Like Receptor 9 Agonist Induces Epidermal Growth Factor Receptor (EGFR) Inhibition and Synergistic Antitumor Activity with EGFR Inhibitors. Clinical Cancer Research, 12, 577-583. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Rosa, R., Melisi, D., Damiano, V., et al. (2011) Toll-Like Receptor 9 Agonist IMO Cooperates with Cetuximab in K-Ras Mutant Colorectal and Pancreatic Cancers. Clinical Cancer Research, 17, 6531-6541.
|
|
[24]
|
Pace, J.L., Russell, S.W., Schreiber, R.D., Altman, A. and Katz, D.H. (1983) Macrophage Activation: Priming Activity from a T-Cell Hybridoma Is Attributable to Interferon-Gamma. Proceedings of the National Academy of Sciences, 80, 3782-3786. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Celada, A., Gray, P.W., Rinderknecht, E. and Schreiber, R.D. (1984) Evidence for a Gamma-Interferon Receptor That Regulates Macrophage Tumoricidal Activity. The Journal of experimental medicine, 160, 55-74. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Mills, C.D., Kincaid, K., Alt, J.M., Heilman, M.J. and Hill, A.M. (2000) M-1/M-2 Macrophages and the Th1/Th2 Paradigm. The Journal of Immunology, 164, 6166-6173. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Tariq, M., Zhang, J., Liang, G., Ding, L., He, Q. and Yang, B. (2017) Macrophage Polarization: Anti-Cancer Strategies to Target Tumor-Associated Macrophage in Breast Cancer. Journal of Cellular Biochemistry, 118, 2484-2501. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Mantovani, A., Sozzani, S., Locati, M., Allavena, P. and Sica, A. (2002) Macrophage Polarization: Tumor-Associated Macrophages as a Paradigm for Polarized M2 Mononuclear Phagocytes. Trends in Immunology, 23, 549-555. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Molgora, M. and Colonna, M. (2021) Turning Enemies into Allies—Reprogramming Tumor-Associated Macrophages for Cancer Therapy. Med, 2, 666-681. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Boutilier, A.J. and Elsawa, S.F. (2021) Macrophage Polarization States in the Tumor Microenvironment. International Journal of Molecular Sciences, 22, Article No. 6995. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Yamaguchi, H., Lorenz, M., Kempiak, S., Sarmiento, C., Coniglio, S., Symons, M., et al. (2005) Molecular Mechanisms of Invadopodium Formation: The Role of the N-WASP-Arp2/3 Complex Pathway and Cofilin. The Journal of Cell Biology, 168, 441-452. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Xu, J., Ding, L., Mei, J., Hu, Y., Kong, X., Dai, S., et al. (2025) Dual Roles and Therapeutic Targeting of Tumor-Associated Macrophages in Tumor Microenvironments. Signal Transduction and Targeted Therapy, 10, Article No. 268. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Jie, H., Schuler, P.J., Lee, S.C., Srivastava, R.M., Argiris, A., Ferrone, S., et al. (2015) CTLA-4+ Regulatory T Cells Increased in Cetuximab-Treated Head and Neck Cancer Patients Suppress NK Cell Cytotoxicity and Correlate with Poor Prognosis. Cancer Research, 75, 2200-2210. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Ben-Shmuel, A., Biber, G. and Barda-Saad, M. (2020) Unleashing Natural Killer Cells in the Tumor Microenvironment—The Next Generation of Immunotherapy? Frontiers in Immunology, 11, Article No. 275. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Kalim, K.W., Yang, J., Wunderlich, M., Modur, V., Nguyen, P., Li, Y., et al. (2022) Targeting of Cdc42 Gtpase in Regulatory T Cells Unleashes Antitumor T-Cell Immunity. Journal for ImmunoTherapy of Cancer, 10, e004806. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
De Simone, V., Franzè, E., Ronchetti, G., Colantoni, A., Fantini, M.C., Di Fusco, D., et al. (2014) Th17-Type Cytokines, IL-6 and TNF-α Synergistically Activate STAT3 and NF-κB to Promote Colorectal Cancer Cell Growth. Oncogene, 34, 3493-3503. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Shen, E., Zhao, K., Wu, C. and Yang, B. (2011) The Suppressive Effect of Cd25+ Treg Cells on Th1 Differentiation Requires Cell-Cell Contact Partially via TGF‐β Production. Cell Biology International, 35, 705-712. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Chaudhary, B. and Elkord, E. (2014) Novel Expression of Neuropilin 1 on Human Tumor-Infiltrating Lymphocytes in Colorectal Cancer Liver Metastases. Expert Opinion on Therapeutic Targets, 19, 147-161. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
He, S., Zheng, L. and Qi, C. (2025) Myeloid-Derived Suppressor Cells (MDSCs) in the Tumor Microenvironment and Their Targeting in Cancer Therapy. Molecular Cancer, 24, Article No. 5. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Umansky, V., Blattner, C., Gebhardt, C. and Utikal, J. (2016) The Role of Myeloid-Derived Suppressor Cells (MDSC) in Cancer Progression. Vaccines, 4, Article No. 36. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Arshad, J., Rao, A., Repp, M.L., Rao, R., Wu, C. and Merchant, J.L. (2024) Myeloid-Derived Suppressor Cells: Therapeutic Target for Gastrointestinal Cancers. International Journal of Molecular Sciences, 25, Article No. 2985. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Wu, Y., Yi, M., Niu, M., Mei, Q. and Wu, K. (2022) Myeloid-Derived Suppressor Cells: An Emerging Target for Anticancer Immunotherapy. Molecular Cancer, 21, Article No. 184. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Sieminska, I. and Baran, J. (2020) Myeloid-Derived Suppressor Cells in Colorectal Cancer. Frontiers in Immunology, 11, Article No. 1526. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Al-Mterin, M.A. and Elkord, E. (2022) Myeloid-Derived Suppressor Cells in Colorectal Cancer: Prognostic Biomarkers and Therapeutic Targets. Exploration of Targeted Anti-tumor Therapy, 3, 497-510. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Pachmann, K., Clement, J.H., Schneider, C., Willen, B., Camara, O., Pachmann, U., et al. (2005) Standardized Quantification of Circulating Peripheral Tumor Cells from Lung and Breast Cancer. Clinical Chemistry and Laboratory Medicine (CCLM), 43, 617-627. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Gilbey, A.M., Burnett, D., Coleman, R.E. and Holen, I. (2004) The Detection of Circulating Breast Cancer Cells in Blood. Journal of Clinical Pathology, 57, 903-911. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Pantel, K. and Speicher, M.R. (2015) The Biology of Circulating Tumor Cells. Oncogene, 35, 1216-1224. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Liu, H., Liu, Z., Li, K., Li, S., Song, L., Gong, Z., et al. (2017) TBL1XR1 Predicts Isolated Tumor Cells and Micrometastasis in Patients with TNM Stage I/II Colorectal Cancer. Journal of Gastroenterology and Hepatology, 32, 1570-1580. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Heitzer, E., Haque, I.S., Roberts, C.E.S. and Speicher, M.R. (2018) Current and Future Perspectives of Liquid Biopsies in Genomics-Driven Oncology. Nature Reviews Genetics, 20, 71-88. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Vlachou, M.S., Mauri, D., Zarkavelis, G., Ntellas, P., Tagkas, C., Gkoura, S., et al. (2023) Plasma ctDNA RAS Status Selects Patients for Anti-EGFR Treatment Rechallenge in Metastatic Colorectal Cancer: A Meta-Analysis. Experimental Oncology, 43, 252-256. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Vitiello, P.P., De Falco, V., Giunta, E.F., Ciardiello, D., Cardone, C., Vitale, P., et al. (2019) Clinical Practice Use of Liquid Biopsy to Identify RAS/BRAF Mutations in Patients with Metastatic Colorectal Cancer (mCRC): A Single Institution Experience. Cancers, 11, Article No. 1504. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Chen, K., Li, X., Dong, S., Guo, Y., Luo, Z., Zhuang, S., et al. (2025) Modulating Tumor-Associated Macrophages through CSF1R Inhibition: A Potential Therapeutic Strategy for HNSCC. Journal of Translational Medicine, 23, Article No. 27. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Lazennec, G., Rajarathnam, K. and Richmond, A. (2024) CXCR2 Chemokine Receptor—A Master Regulator in Cancer and Physiology. Trends in Molecular Medicine, 30, 37-55. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Fasano, M., Della Corte, C.M., Di Liello, R., Barra, G., Sparano, F., Viscardi, G., et al. (2020) Induction of Natural Killer Antibody-Dependent Cell Cytotoxicity and of Clinical Activity of Cetuximab plus Avelumab in Non-Small Cell Lung Cancer. ESMO Open, 5, e000753. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Napolitano, S., Martini, G., Ciardiello, D., Di Maio, M., Normanno, N., Avallone, A., et al. (2022) CAVE-2 (Cetuximab-AVElumab) mCRC: A Phase II Randomized Clinical Study of the Combination of Avelumab plus Cetuximab as a Rechallenge Strategy in Pre-Treated RAS/BRAF Wild-Type mCRC Patients. Frontiers in Oncology, 12, Article ID: 940523. [Google Scholar] [CrossRef] [PubMed]
|