|
[1]
|
Lin, Y., Shi, X., Mu, J., Ren, H., Jiang, X., Zhu, L., et al. (2025) Uncovering Stage‐Specific Neural and Molecular Progression in Alzheimer’s Disease: Implications for Early Screening. Alzheimer’s & Dementia, 21, e70182. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Jack, C.R., Bennett, D.A., Blennow, K., Carrillo, M.C., Dunn, B., Haeberlein, S.B., et al. (2018) NIA‐AA Research Framework: Toward a Biological Definition of Alzheimer’s Disease. Alzheimer’s & Dementia, 14, 535-562. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Wu, G., Chen, Y., Wang, Y., Yu, J., Lv, X., Ju, X., et al. (2018) Sparse Representation-Based Radiomics for the Diagnosis of Brain Tumors. IEEE Transactions on Medical Imaging, 37, 893-905. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Chen, Y., Al-Nusaif, M., Li, S., Tan, X., Yang, H., Cai, H., et al. (2024) Progress on Early Diagnosing Alzheimer’s Disease. Frontiers of Medicine, 18, 446-464. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Mmadumbu, A.C., Saeed, F., Ghaleb, F. and Qasem, S.N. (2025) Early Detection of Alzheimer’s Disease Using Deep Learning Methods. Alzheimer’s & Dementia, 21, e70175. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Dubois, B., Feldman, H.H., Jacova, C., DeKosky, S.T., Barberger-Gateau, P., Cummings, J., et al. (2007) Research Criteria for the Diagnosis of Alzheimer’s Disease: Revising the NINCDS-ADRDA Criteria. The Lancet Neurology, 6, 734-746. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
McKhann, G.M., Knopman, D.S., Chertkow, H., Hyman, B.T., Jack, C.R., Kawas, C.H., et al. (2011) The Diagnosis of Dementia Due to Alzheimer’s Disease: Recommendations from the National Institute on Aging‐Alzheimer’s Association Workgroups on Diagnostic Guidelines for Alzheimer’s Disease. Alzheimer’s & Dementia, 7, 263-269. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Lambin, P., Rios-Velazquez, E., Leijenaar, R., Carvalho, S., van Stiphout, R.G.P.M., Granton, P., et al. (2012) Radiomics: Extracting More Information from Medical Images Using Advanced Feature Analysis. European Journal of Cancer, 48, 441-446. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Gillies, R.J., Kinahan, P.E. and Hricak, H. (2016) Radiomics: Images Are More than Pictures, They Are Data. Radiology, 278, 563-577. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Guo, Y., Zhang, Z., Zhou, B., Wang, P., Yao, H., Yuan, M., et al. (2014) Grey-Matter Volume as a Potential Feature for the Classification of Alzheimer’s Disease and Mild Cognitive Impairment: An Exploratory Study. Neuroscience Bulletin, 30, 477-489. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Luk, C.C., Ishaque, A., Khan, M., Ta, D., Chenji, S., Yang, Y., et al. (2018) Alzheimer’s Disease: 3‐Dimensional MRI Texture for Prediction of Conversion from Mild Cognitive Impairment. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, 10, 755-763. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Lee, S., Lee, H. and Kim, K.W. (2020) Magnetic Resonance Imaging Texture Predicts Progression to Dementia Due to Alzheimer Disease Earlier than Hippocampal Volume. Journal of Psychiatry and Neuroscience, 45, 7-14. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Leandrou, S., Lamnisos, D., Mamais, I., Kyriacou, P.A. and Pattichis, C.S. (2020) Corrigendum: Assessment of Alzheimer’s Disease Based on Texture Analysis of the Entorhinal Cortex. Frontiers in Aging Neuroscience, 12, Article No. 176. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Zhao, K., Ding, Y., Han, Y., Fan, Y., Alexander-Bloch, A.F., Han, T., et al. (2020) Independent and Reproducible Hippocampal Radiomic Biomarkers for Multisite Alzheimer’s Disease: Diagnosis, Longitudinal Progress and Biological Basis. Science Bulletin, 65, 1103-1113. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Yin, T.T., Cao, M.H., Yu, J.C., Shi, T.Y., Mao, X.H., Wei, X.Y., et al. (2024) T1-Weighted Imaging-Based Hippocampal Radiomics in the Diagnosis of Alzheimer’s Disease. Academic Radiology, 31, 5183-5192. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Zhao, K., Zheng, Q., Dyrba, M., Rittman, T., Li, A., Che, T., et al. (2022) Regional Radiomics Similarity Networks Reveal Distinct Subtypes and Abnormality Patterns in Mild Cognitive Impairment. Advanced Science, 9, Article ID: 2104538. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Toshkhujaev, S., Lee, K.H., Choi, K.Y., Lee, J.J., Kwon, G., Gupta, Y., et al. (2020) Classification of Alzheimer’s Disease and Mild Cognitive Impairment Based on Cortical and Subcortical Features from MRI T1 Brain Images Utilizing Four Different Types of Datasets. Journal of Healthcare Engineering, 2020, Article ID: 3743171. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Zamani, J., Sadr, A. and Javadi, A. (2022) Diagnosis of Early Mild Cognitive Impairment Using a Multiobjective Optimization Algorithm Based on T1-MRI Data. Scientific Reports, 12, Article No. 1020. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Zheng, W., Mu, R., Liu, F., Qin, X., Li, X., Yang, P., et al. (2023) Textural Features of the Frontal White Matter Could Be Used to Discriminate Amnestic Mild Cognitive Impairment Patients from the Normal Population. Brain and Behavior, 13, e3222. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Whitfield-Gabrieli, S. and Nieto-Castanon, A. (2012) Conn: A Functional Connectivity Toolbox for Correlated and Anticorrelated Brain Networks. Brain Connectivity, 2, 125-141. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Li, Z., Li, K., Luo, X., Zeng, Q., Zhao, S., Zhang, B., et al. (2020) Distinct Brain Functional Impairment Patterns between Suspected Non-Alzheimer Disease Pathophysiology and Alzheimer’s Disease: A Study Combining Static and Dynamic Functional Magnetic Resonance Imaging. Frontiers in Aging Neuroscience, 12, Article ID: 550664. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Wang, L., Feng, Q., Ge, X., Chen, F., Yu, B., Chen, B., et al. (2022) Textural Features Reflecting Local Activity of the Hippocampus Improve the Diagnosis of Alzheimer’s Disease and Amnestic Mild Cognitive Impairment: A Radiomics Study Based on Functional Magnetic Resonance Imaging. Frontiers in Neuroscience, 16, Article ID: 970245. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Wu, Y., Li, T., Han, Y. and Jiang, J. (2020) Use of Radiomic Features and Support Vector Machine to Discriminate Subjective Cognitive Decline and Healthy Controls. 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, 20-24 July 2020, 1762-1765. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Chen, Z., Bi, S., Shan, Y., Cui, B., Yang, H., Qi, Z., et al. (2023) Multiparametric Hippocampal Signatures for Early Diagnosis of Alzheimer’s Disease Using (18)F-FDG PET/MRI Radiomics. CNS Neuroscience & Therapeutics, 30, e14539. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Shu, Z., Mao, D., Xu, Y., Shao, Y., Pang, P. and Gong, X. (2021) Prediction of the Progression from Mild Cognitive Impairment to Alzheimer’s Disease Using a Radiomics-Integrated Model. Therapeutic Advances in Neurological Disorders, 14. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Song, R., Wu, X., Liu, H., Guo, D., Tang, L., Zhang, W., et al. (2022) Prediction of Cognitive Progression in Individuals with Mild Cognitive Impairment Using Radiomics as an Improvement of the ATN System: A Five-Year Follow-Up Study. Korean Journal of Radiology, 23, Article No. 89. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Chen, F. (2023) PET Radiomics of White Matter, Can Be Employed as a Biomarker to Identify the Progression of Mild Cognitive Impairment to Alzheimer’s Disease. Academic Radiology, 30, 1885-1886. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Ding, Y., Zhao, K., Che, T., Du, K., Sun, H., Liu, S., et al. (2021) Quantitative Radiomic Features as New Biomarkers for Alzheimer’s Disease: An Amyloid PET Study. Cerebral Cortex, 31, 3950-3961. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Lin, A., Chen, Y., Chen, Y., Ye, Z., Luo, W., Chen, Y., et al. (2024) MRI Radiomics Combined with Machine Learning for Diagnosing Mild Cognitive Impairment: A Focus on the Cerebellar Gray and White Matter. Frontiers in Aging Neuroscience, 16, Article ID: 1460293. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Chen, Y., Qi, Y., Hu, Y., Qiu, X., Qiu, T., Li, S., et al. (2024) Integrated Cerebellar Radiomic‐Network Model for Predicting Mild Cognitive Impairment in Alzheimer’s Disease. Alzheimer’s & Dementia, 21, e14361. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Lu, J., Cai, G., Xiao, N., Zheng, K., Ye, Q. and Chen, X. (2025) Cerebellar MRI-Based Radiomics Models for Identifying Mild Cognitive Impairment: A Retrospective Multicenter Study in Southeast China. Frontiers in Aging Neuroscience, 17, Article ID: 1566247. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Tang, L., Wu, X., Liu, H., Wu, F., Song, R., Zhang, W., et al. (2021) Individualized Prediction of Early Alzheimer’s Disease Based on Magnetic Resonance Imaging Radiomics, Clinical, and Laboratory Examinations: A 60‐Month Follow‐Up Study. Journal of Magnetic Resonance Imaging, 54, 1647-1657. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Lin, S., Xue, M., Sun, J., Xu, C., Wang, T., Lian, J., et al. (2025) MRI Radiomics Nomogram for Predicting Disease Transition Time and Risk Stratification in Preclinical Alzheimer’s Disease. Academic Radiology, 32, 951-962. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Zhou, H., Jiang, J., Lu, J., Wang, M., Zhang, H. and Zuo, C. (2019) Dual-Model Radiomic Biomarkers Predict Development of Mild Cognitive Impairment Progression to Alzheimer’s Disease. Frontiers in Neuroscience, 12, Article No. 1045. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Reiss, A.B., Arain, H.A., Stecker, M.M., Siegart, N.M. and Kasselman, L.J. (2018) Amyloid Toxicity in Alzheimer’s Disease. Reviews in the Neurosciences, 29, 613-627. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Wang, M., Jiang, J., Yan, Z., Alberts, I., Ge, J., Zhang, H., et al. (2020) Individual Brain Metabolic Connectome Indicator Based on Kullback-Leibler Divergence Similarity Estimation Predicts Progression from Mild Cognitive Impairment to Alzheimer’s Dementia. European Journal of Nuclear Medicine and Molecular Imaging, 47, 2753-2764. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Rasi, R. and Guvenis, A. (2024) Predicting Amyloid Positivity from FDG-PET Images Using Radiomics: A Parsimonious Model. Computer Methods and Programs in Biomedicine, 247, Article ID: 108098. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Kim, J.P., Kim, J., Jang, H., Kim, J., Kang, S.H., Kim, J.S., et al. (2021) Predicting Amyloid Positivity in Patients with Mild Cognitive Impairment Using a Radiomics Approach. Scientific Reports, 11, Article No. 6954. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Park, Y.W., Choi, D., Park, M., Ahn, S.J., Ahn, S.S., Suh, S.H., et al. (2021) Predicting Amyloid Pathology in Mild Cognitive Impairment Using Radiomics Analysis of Magnetic Resonance Imaging. Journal of Alzheimer’s Disease, 79, 483-491. [Google Scholar] [CrossRef] [PubMed]
|