基于多介质模型的矿山污染物模拟预测的研究进展与展望
Research Progress and Prospects of Simulation and Prediction of Mine Pollutants Based on Multi-Medium Model
DOI: 10.12677/aep.2025.1512186, PDF, HTML, XML,    国家自然科学基金支持
作者: 王 恒, 陈美凤, 王 涵, 张千峰*:安徽工业大学分子工程与应用化学研究所,安徽 马鞍山;袁 静*:铜陵学院建筑工程学院,安徽 铜陵
关键词: 矿山污染物多介质模型蒙特卡洛模拟数据预测Mine Pollutants Multi-Media Models Monte Carlo Simulation Data Prediction
摘要: 随着矿山的持续开采,水环境问题日益突出,铜陵市是一个具有悠久历史的资源型城市,矿产资源方面,铜、硫、铁、金、银、煤、石灰石等储量丰富,其矿产资源的开发利用,为该市经济建设和社会发展提供了坚实基础,但同时也造成了一系列严重的矿山地质环境问题。本文以铜陵市露天矿山及其附近具有相同补给和排放系统的地下水分布区域作为研究区域,对12组地表水水样和3组地下水水样中的污染物因子的浓度进行模拟预测。传统的单一介质模型难以全面评估污染风险,而多介质模型(Multimedia Model)通过耦合不同环境介质的质量平衡与动力学过程,能够更准确地预测污染物的时空分布及其生态健康风险。同时蒙特卡洛模拟(Monte Carlo Simulation, MCS)可以用于预测矿山污染物在地下水和地表水中的浓度变化,尤其是在参数不确定性较高的情况下,该方法通过随机采样输入参数的分布,运行数千至数万次的模拟,最终输出污染物浓度的概率分布,而非单一确定值,从而为铜陵市矿区及其临近区域的水环境修复和保护提供相应的技术依据。
Abstract: With the continuous exploitation of mines, water environment problems have become increasingly prominent. Tongling City is a resource-based city with a long history. In terms of mineral resources, it is rich in reserves of copper, sulfur, iron, gold, silver, coal, limestone, etc. The development and utilization of its mineral resources have laid a solid foundation for the economic construction and social development of the city, but at the same time, they have also caused a series of serious mine geological environment problems. This study takes the open-pit mines in Tongling City and the surrounding groundwater distribution areas with the same recharge and discharge systems as the research area, and conducts simulation and prediction on the concentrations of pollutant factors in 12 groups of surface water samples and 3 groups of groundwater samples. Traditional single-medium models are difficult to comprehensively assess pollution risks, while multi-media models (MMMs), by coupling the mass balance and dynamic processes of different environmental media, can more accurately predict the temporal and spatial distribution of pollutants and their ecological and health risks. Meanwhile, Monte Carlo Simulation (MCS) can be used to predict the concentration changes of mine pollutants in groundwater and surface water, especially when parameter uncertainty is high. This method involves randomly sampling the distribution of input parameters (such as hydrogeological parameters, pollutant release rates, etc.), running thousands to tens of thousands of simulations, and finally outputting the probability distribution of pollutant concentrations instead of a single deterministic value. Thus, it provides a corresponding technical basis for the water environment restoration and protection in the mining areas of Tongling City and their adjacent regions.
文章引用:王恒, 陈美凤, 王涵, 袁静, 张千峰. 基于多介质模型的矿山污染物模拟预测的研究进展与展望[J]. 环境保护前沿, 2025, 15(12): 1737-1749. https://doi.org/10.12677/aep.2025.1512186

1. 绪论

矿山活动,特别是长期、高强度的资源开采,对当地区域水环境会构成严重的持续性威胁[1]-[3]。铜陵市是我国典型的有色金属矿区,以铜、硫等矿产资源开采为核心产业,历经数十年的矿业开发,其矿山活动对周边水环境的污染具有“来源广、污染物杂、影响深”的特点[4],周边地表水与地下水环境正面临着严峻挑战,且已对地表水和地下水两大系统造成系统性破坏[5]。在地表水环境方面,矿山开采过程中产生的尾矿渣、废石堆,经雨水淋滤作用会持续释放出以Cu2+、Pb2+、Zn2+、Cd2+为代表的重金属污染物,这些污染物随地表径流汇入大通河、顺安河等周边流域,导致河流表层水体重金属浓度超标[6];同时硫化矿物如黄铁矿在暴露环境中易发生氧化反应,生成酸性废水(AMD) [7] [8],不仅直接破坏水生生物栖息地、导致流域生态系统退化,还会通过降低水体pH值加剧重金属离子的溶解与迁移能力[9]。此外矿山选矿、冶炼环节排放的含油废水及有机污染物,进一步导致水体高锰酸盐指数升高,形成有机污染和无机污染叠加的复合型污染态势[10]。在地下水环境方面,矿山开采中的井下疏干排水、尾矿库渗漏问题,会导致污染物突破包气带防护层进入地下水含水层,对地下水资源造成隐蔽性污染[11]。根据监测数据显示,铜陵矿区部分区域地下水已出现Mn、 SO 4 2 NO 2 、Fe浓度超标现象,同时酸性废水还会溶解含水层中的钙、镁离子,导致地下水化学类型由 HCO 3 型向 SO 4 2 型转变[12],伴随着地下水硬度逐渐升高,最终会使地下水资源丧失生活引用功能,对周边居民饮水安全构成直接威胁[13]

矿山水环境污染具有滞后性、累积性与隐蔽性等特点,单纯依赖定点监测难以全面掌握污染演化规律,也无法满足污染防控和治理决策需求,因此开展污染模拟预测具有重要现实意义[14]。现状监测仅能获取离散点位的污染数据,无法完整刻画污染物从矿山源头→地表水→地下水→沉积物的跨介质迁移路径,而模拟预测可通过构建数学模型填补空间与时间维度的监测空白,呈现污染物在不同环境介质中的分布特征与迁移趋势[15]-[17]。随着矿山开采强度的调整、气候变化如降雨量波动等外部条件变化,污染程度会呈现动态演变特征[18],通过模拟预测可构建不同情景(如矿山减产、停产、新建防渗工程)下的污染发展模型,避免传统被动治理模式的局限性,为提前部署防控措施提供科学依据。同时针对铜陵矿区复合型污染现状,模拟预测可量化不同治理如尾矿库覆膜、人工湿地净化等方案的实际效果,对比分析各类方案的成本与效益,有效避免治理方案制定的盲目性,提升污染治理工作的精准性与经济性[19] [20]

2. 矿区污染物特征与多介质迁移转化机理

2.1. 矿区污染物特征

矿山开采过程中,因矿石特性、开采工艺及药剂使用会产生多种污染物,其形成机制各有不同[21]-[23],污染物形成与扩散如所示。重金属污染源于矿石自身含有的铅、镉等元素在开采破碎中随矿尘扩散[24],以及选矿药剂残留和酸性废水溶解导致的迁移;酸性废水主要由硫化矿物经微生物氧化生成硫酸,或酸性药剂未处理排放形成[25];高锰酸盐指数超标与选矿有机药剂残留、矿石中无机还原性物质溶解及尾矿库有机物分解有关[26];氰化物多来自贵金属选矿的氰化浸出工艺,少量源于含氰矿石淋溶及环境转化;化学需氧量(COD)升高是选矿有机药剂、矿石夹带有机质及生活污水混入,导致水体可氧化物质增加的结果;其他无机盐类则因矿石溶解、药剂使用及工艺排水,使硫酸盐、氯化物等离子进入环境[27]-[30]

Figure 1. Illustration of pollutant formation and dispersion

1. 污染物形成与扩散示意图

重金属如铜、锌、镉和砷等,是矿区最具代表性的持久性有毒污染物。其在环境中的迁移能力、生物有效性与生态毒性,主要不取决于总浓度,而是由其赋存形态决定,而形态转化过程强烈受环境条件,尤其是pH值的控制[31]。在酸性废水影响所形成的低pH环境中,高浓度的氢离子(H+)会促使沉积物或尾矿中的重金属碳酸盐、氢氧化物及氧化物发生溶解,导致大量自由离子态重金属(如Cu2+、Zn2+、Cd2+)释放进入水相,显著增强其迁移性与生物可利用性[32] [33]。反之,当水体pH升至中性或碱性时,这些重金属离子倾向于形成氢氧化物或碳酸盐沉淀,从而从水相转移至沉积物相,迁移能力随之降低。酸性废水,亦称酸性矿山排水(AMD),是矿区水环境酸化和重金属活化的主要驱动源[34]。其产生机理核心是硫化物矿物(以黄铁矿FeS2为主)在开采暴露后的氧化过程。酸性废水一旦汇入地表水体或渗入含水层,将作为一个持续的“酸化源”,显著降低水体的pH值,形成大范围的酸性污染羽[35]。这种酸化效应从根本上改变了水体的地球化学环境,如前所述,它抑制了重金属的沉淀与吸附过程,同时促进了其解吸与溶解,从而将原固定在沉积物或土壤中的重金属“活化”出来,大幅提升了重金属的迁移扩散能力与生态毒性风险。高锰酸盐指数(CODMn)是表征水体中易被强氧化剂氧化的有机物和部分无机还原性物质(如Fe2+、S2−)总量的综合指标。在矿区环境中,其来源主要包括浮选工艺中残留的选矿药剂(如黄药、黑药等捕收剂和起泡剂)、矿区生活污水[36] [37]

这些污染物对环境和健康危害显著。环境层面,酸性废水、重金属、氰化物等会破坏水体pH值,导致水生生物死亡、多样性下降,引发水华现象,还会造成土壤退化、盐碱化,抑制植物生长,同时矿尘和氰化物气体影响大气环境,降低区域生物多样性[38] [39]。健康层面,重金属通过食物链累积损伤人体神经、肾脏等系统,酸性废水腐蚀皮肤黏膜、破坏人体酸碱平衡,氰化物可快速导致呼吸衰竭,高COD水体增加肠道传染病和癌症风险,无机盐过量摄入影响心血管功能和电解质平衡[40],酸性矿山排水对环境和健康的影响如所示。

引用于Journal of Hazardous Materials Advances, 2025, 18, 100659 [24]

Figure 2. Illustration of environmental and health impacts of acid mine drainage

2. 酸性矿山排水对环境和健康影响的示意图

2.2. 多介质迁移转化过程

矿山开采污染物的多介质迁移转化,是指污染物从释放源头出发,在大气、水体、土壤、生物四大环境介质间通过物理、化学、生物作用实现移动,并伴随形态、毒性变化的连续过程,核心体现为“介质间传递→形态转化→生物累积”的连锁效应[41] [42]。从具体路径来看,首先是大气介质的迁移与沉降,开采爆破、破碎产生的矿尘含重金属、无机盐,以及氰化物、挥发性有机药剂,会通过大气扩散向周边区域迁移,部分颗粒态污染物如铅、砷颗粒等经重力作用发生“干沉降”,附着于植物叶片或土壤表面;另一部分则随降雨、降雪发生“湿沉降”,进入土壤或水体[43] [44]。其次是水体介质的迁移与转化,矿山酸性废水、选矿尾水携带的重金属离子如Cd2+、Pb2+ SO 4 2 、氰化物及有机污染物,会通过地表径流汇入河流、湖泊,或通过淋滤作用渗透至地下水层;在水体中,重金属会与悬浮物如泥沙发生“吸附→解吸平衡”,低pH值的酸性条件会促进重金属离子溶解,使其更易随水流远距离迁移,而氰化物会与水体中的金属离子形成络合物如金氰络离子等,延长其在水体中的留存时间,有机污染物则会在微生物作用下发生部分降解如黄药分解为小分子有机酸,或转化为更稳定的中间产物[45]-[47]。再者是土壤介质的迁移与转化,大气沉降、水体渗透的污染物进入土壤后,重金属会与土壤胶体如黏土、腐殖质等结合形成稳定态,或在酸性土壤中重新溶解为离子态,随土壤水横向迁移至周边农田;无机盐如硫酸盐、氯化物等会在土壤孔隙水中累积,导致土壤盐度升高;有机污染物则会在土壤微生物作用下发生氧化还原反应,部分降解为CO2和水,部分则残留于土壤中,形成“土壤→地下水”的二次污染[48]。最后是生物介质的富集与转化,土壤或水体中的污染物会通过植物吸收进入生物体,如重金属被农作物根系吸收后,会在果实、茎叶中累积(如水稻吸收镉),氰化物则会通过水生植物叶片进入植物体内;随后,污染物通过食物链逐级富集,鱼类摄食含重金属的藻类,鸟类摄食鱼类,导致高营养级生物体内污染物浓度远高于环境介质,即生物放大效应,而部分污染物在生物体内会发生形态转化(如无机汞在鱼类体内转化为毒性更强的甲基汞),进一步加剧对生态与人体健康的危害[49] [50]

Figure 3. Illustration of the study area boundary

3. 研究区域边界行政图

2.3. 研究区域概况与数据基础

2.3.1. 研究区域概况

铜陵市属北亚热带湿润季风气候,季风明显,四季分明,全年气候温暖湿润,雨量充足。受江浙一带高山阻挡,冬夏温差明显,多出现冷暖气团交锋,气候多变,降水年差异性大。研究区域所在的铜陵市位于安徽省中南部、长江下游,东西宽约103.9千米,总面积3008平方千米,选取铜陵市露天矿山及其附近具有相同补给和排放系统的地下水分布区域作为研究区域(如)。

2.3.2. 数据基础

研究数据来源于2018年《矿山地质环境报告》,节取其中在矿区附近采集到的12组地表水样本和3组地下水样本。根据矿山地质环境报告,地表水水质检测指标按pH值、重金属及类金属(含特征重金属离子)、无机阴离子、有机化合物、综合性水质指标五类划分。pH值是反映水体酸碱性的基础指标;重金属主要有汞、镉、铜等,类金属如砷,其中特征重金属离子六价铬属于铬的有毒价态;无机阴离子主要有氟离子、氯离子、硫酸根离子、硝酸盐;有机物主要有酚类化合物和氰化物;综合性水质指标如高锰酸盐指数。地下水水质检测指标按重金属及类金属、无机阴离子、有机物、综合性水质指标四类划分,与地表水水质检测指标相比,地下水水质检测指标新增专属特征指标(如溶解性总固体、总硬度)及更多特异性重金属和阴离子,检测指标更侧重反映地下水化学特性和溶解态污染物。其中地表水和地下水水质检测指标对比见:

Table 1. Table of comparison of water quality testing indicators

1. 水质检测指标对比表

对比维度

地表水水质检测指标

地下水水质检测指标

重金属及类金属

含As、Hg、Cd等,无Se、Be、Co等

含As、Se等,新增Se、Be、Co、Ni等

无机阴离子

含F、Cl等,无I NO 2

含F、I等,新增I NO 2

有机化合物

酚类、氰化物

酚类、氰化物

综合性指标

高锰酸盐指数

含溶解性总固体、总硬度

专属指标

pH、高锰酸盐指数

溶解性总固体、总硬度

在重金属及类金属检测方面,地下水水质检测为了适配地层溶出特性,新增了更多特异性重金属如Se、Be、Co、Ni等;在无机阴离子检测方面,地下水水质检测补充了氮素中间产物如亚硝酸根离子和碘离子检测,这两种离子因为地下水的埋藏环境而更易积累;在综合性指标方面,地表水水质检测侧重氧化还原性,而地下水水质检测更侧重化学特性;在专属指标检测方面,地表水水质检测指标中的pH和高锰酸盐指数,pH主要反映了水体自净与酸碱性,高锰酸盐指数反映了水体中可被高锰酸钾氧化的有机物和无机物总量,而地下水水质检测更关注供水适用性和地层影响,溶解性总固体(TDS)主要体现地下水溶解矿物质总量,总硬度则反映钙镁离子含量,直接关联地下水用于供水。而对于有毒污染物如酚类、氰化物、Cr6+、Cd、Pb等两类水体均重点检测,无机阴离子核心项如F、Cl SO 4 2 NO 3 等完全重合,均为水质基础检测指标。

3. 多介质模型和蒙特卡洛模拟的理论基础

3.1. 多介质模型的基本原理

多介质模型的基本原理在于将自然环境视为一个由多个相互连通、处于动态平衡的介质所构成的复杂系统,这些介质通常包括大气、水体、土壤、沉积物和生物体等[51]。其核心思想是遵循质量守恒定律,追踪污染物在这个系统网络中的全部行为。模型通过建立一系列数学方程,量化污染物在不同介质(如从尾矿扬尘进入大气,再通过沉降进入土壤和水体)之间的迁移通量,这些过程包括平流、扩散、挥发、沉降、吸附→解吸以及生物降解等物理、化学和生物转化。多介质模型这一系统性的模型应用于矿山污染物浓度预测,相较于传统的单介质或简化预测方法,展现出显著的优势[52]。传统方法往往孤立地考察单一环境介质,例如仅预测河流中的污染物浓度和仅针对土壤的吸附模型,而忽略了污染物在介质间的复杂交换,这种视角的局限性可能导致对整体环境风险的低估或误判,完整覆盖污染物“排放源→大气→水体→土壤→生物”的全迁移链条,例如预测土壤重金属时可同时计入尾水淋溶与矿尘沉降的贡献,避免因路径遗漏导致的浓度低估或高估;相较于经验公式和统计模型,多介质模型摆脱了对历史数据的依赖,仅需矿石污染物含量、气象水文等基础数据即可模拟[53],且能动态响应环境变化,如预测暴雨时尾水泄漏的水体浓度峰值、10年尺度下土壤重金属累积趋势,解决传统模型无法应对新建矿山或突发污染的问题;相较于传统模型忽略复合污染效应与风险关联的不足,其可通过多污染物耦合模拟量化酸性废水对重金属溶解的促进作用。相比之下多介质模型的优势首先体现在其系统性与整体性上,能够同步模拟和预测污染物在空气、水、土壤、沉积物等多个介质中的浓度水平。不仅揭示了污染物在环境中的最终归宿,更重要的是能够动态地模拟污染物长期的、跨介质的迁移转化规律,如准确预测尾矿中重金属随雨水径流进入水体、再沉降富集于底泥,并最终通过食物链在水生生物体内放大的全过程[54]

综上,多介质模型通过机制化模拟突破传统模型局限,适配矿山污染物跨介质、动态、复合特征,既能精准量化浓度时空分布,又能衔接源头与生态健康风险,能够综合考虑人类和生态系统可能通过呼吸、饮水、摄食等多种途径暴露于污染物的综合风险,从而使评估结果更为科学和可靠,是矿山环境风险评估与防控的核心分析手段,为制定精准、高效的污染预防与控制策略,实现从被动治理到主动管理的转变,提供了不可或缺的科学依据。

3.2. 不确定性分析与蒙特卡洛方法

蒙特卡洛方法是一种以概率统计理论为基础的数值计算思想,其核心在于通过大量重复的随机抽样来求解不确定性的问题,通过大量随机抽样来逼近复杂问题的概率解[55]。将待求解问题转化为参数输入与结果输出的概率模型,转化过程中涉及的不确定参数需要用特定概率分布描述,然后按照参数的概率分布生成成千上万组随机参数组合,最后将每组参数带入模型运行,通过对海量输出结果进行例如计算均值、超标概率等统计分析方法,从而得到待求解问题的概率化解,而非单一确定值[56] [57]

而矿山多介质模型则是描述污染物迁移转化的物理框架,主要聚焦于矿山区域内污染物如重金属Pb、Cd、酸性废水AMD等在土壤、地表水、地下水这三类核心介质间的迁移路径,量化污染物在介质之间的关键迁移转化过程——土壤吸附系数决定污染物被土壤固定的比例,地下水渗透系数影响污染物在地下的迁移速度,为污染物浓度预测提供了物理层面的计算基础[58]。然而,传统的确定性多介质模型在输入一组固定参数后,只会给出一个确定的预测值,这无法反映现实世界中诸多参数如渗透系数、降解速率、分配系数等固有的空间变异性和认知不确定性,从而导致预测结果可能无法全面揭示潜在的环境风险。

当蒙特卡洛方法与矿山多介质模型相结合预测污染物浓度时,二者的融合围绕解决多介质模型中参数的不确定性展开,形成强大的概率性多介质风险评估框架[59] [60]。首先要明确多介质模型中的不确定参数,矿山场景中土壤渗透系数、孔隙度等介质物理参数,土壤–水分配系数、污染物降解速率等特性参数,因无法精确测量或存在空间变异性,通常需分别采用对数正态分布、正态分布、均匀分布、基于历史数据的经验分布等概率分布来描述。随后借助Python的scipy库、MATLAB的mhsample等工具,按这些参数的概率分布生成大量随机参数组合,确保覆盖参数的所有可能情况,最终获得一个关于污染物浓度的完整概率分布。这种结合模式的核心优势在于精准解决矿山污染预测的不确定性,通过敏感性分析识别出对结果不确定性贡献最大的参数,完成了从确定性预测到概率性风险评估的范式转变[61]。传统多介质模型仅用参数均值计算,输出的单一浓度值无法反映矿山复杂环境的实际波动,而蒙特卡洛方法输出的超标概率等概率化结果,更契合矿山污染预测中风险评估的核心需求,能为决策提供更有价值的依据;同时,随机抽样覆盖了矿山土壤、水文参数的空间变异性,提升了预测的准确性;敏感参数识别则可减少无效监测成本,优化后续监测方案,让整个预测过程既具备物理合理性,又能充分应对实际环境中的不确定性。

以多介质模型预测Cu为例,蒙特卡洛模拟关键输入参数如下见。

Table 2. Table of key input parameters

2. 关键输入参数表

参数类别

参数名称

符号

数据来源

概率分布类型

分布参数

水文地质参数

水力传导系数

K

文献类比

对数正态分布

μ = ln(0.5), σ = 0.8

有效孔隙度

n

区域地质报告

均匀分布

Min = 0.15, Max = 0.25

纵向弥散度

αL

文献经验公式

均匀分布

Min = 5, Max = 20

反应迁移参数(Cu)

分配系数

Kd.Cu

文献数据

正态分布

μ = 120, σ = 25

一阶降解/反应速率常数

λL

文献数据与模型反演

三角分布

Min = 0.001, Mode = 0.005, Max = 0.01

污染源项参数

初始浓度(Cu)

C0.Cu

污染区采样数据统计

正态分布

μ = 50, σ = 10

源强释放速率

Q

历史记录

三角分布

Min = 10, Mode = 15, Max = 25

边界条件参数

地下水补给率

R

区域水文报告

正态分布

μ = 300, σ = 50

3.3. 基于MATLAB/Python的模型构建与模拟实现

在基于多介质模型的矿山污染物模拟预测研究中,MATLAB与Python可构成优势互补的协同技术方案。MATLAB的核心优势在于其高度集成且经过优化的数值计算环境,尤其在内置偏微分方程求解工具箱(如PDE Toolbox)方面表现卓越,能够快速实现复杂地质域中污染物迁移转化控制方程(如对流–弥散–反应方程)的离散化、求解与验证,极大地简化了核心物理模型的实现过程。其高效的矩阵运算能力和丰富的内置数学工具箱,使其非常适用于模型核心算法的原型开发与数值计算。Python则凭借其强大的科学计算生态系统,扮演着工作流控制器与智能增强器的角色。其Pandas、NumPy等库为处理多源、异构的现场监测数据提供了比MATLAB更灵活、强大的数据处理能力;而Scikit-learn、TensorFlow等机器学习库则支持先进的参数反演、代理模型构建以及不确定性量化,这些是传统MATLAB优化工具箱功能的重要拓展与增强。此外,Matplotlib、Seaborn和Plotly等库共同构成了一个从静态报告到交互式探索的可视化解决方案。两者可通过MATLAB中Engine for Python实现无缝协同,可构建一个高效的工作流:以Python作为主控平台,负责数据预处理、工作流自动化及驱动高级优化算法,同时调用MATLAB引擎来执行计算密集的核心物理模型模拟。这种整合模式不仅发挥了MATLAB在专业科学计算上的深度与可靠性,更融合了Python在数据处理、人工智能及系统集成上的广度与灵活性,从而在保证模型物理严谨性的同时,显著提升了效率、分析深度。

4. 当前研究的争议与挑战

矿区污染物模拟预测作为环境风险管控与生态修复的关键技术,正经历着从理论探索迈向实践应用的深刻变革,然而在此过程中仍面临诸多核心争议与挑战。首先,出于模型复杂性与计算可行性的权衡,本研究不可避免地对其中的一些关键物理化学过程进行了必要的简化,例如在描述多污染物相互作用时,未能完全捕捉其瞬态、非平衡的复杂过程;对于高度非均质的地下环境,其微观尺度的异质性也常被宏观的平均参数所替代,这可能导致对污染物迁移路径和归宿的预测出现偏差。其次,模型的构建与验证在很大程度上依赖于可获取的观测数据,而本研究可能受限于样本数量有限、时空覆盖度不足或监测指标不完整等问题,这影响了模型参数率的准确性、不确定性量化的可靠性以及模型在更广泛地理范围内的外推能力。此外,本研究可能主要聚焦于污染物在环境介质中的迁移转化过程,而未能充分纳入气候变化这一重要的外部驱动因素,例如极端降雨事件的频率与强度变化、长期气温上升对水文地球化学过程的影响等,这些因素可能显著改变污染物的释放强度与迁移速率,从而对长期模拟预测的准确性构成挑战。

5. 总结与展望

本研究基于详实的环境报告中的采样数据,依托MATLAB与Python混合编程平台,构建了涵盖水体、土壤及沉积物等多介质的环境迁移模型,并创新性地集成了蒙特卡洛模拟技术,形成了一套完整的模拟与不确定性量化研究框架。该框架不仅能够有效模拟和预测铜陵矿区污染物的时空迁移规律与扩散趋势,更能够科学量化模拟过程中由参数、数据及模型结构等来源引致的不确定性,从而为风险评估提供了可靠的置信区间。研究成果不仅为铜陵矿区的精准溯源、风险分级与高效治理提供了关键的科学技术支撑,其构建的“数据–模型–不确定性分析”一体化方法论,对于地质与水文条件相似的同类矿区环境研究亦具有重要的推广与借鉴价值。未来在技术路径上,将机器学习和深度学习中善于处理时序数据的LSTM与传统机理模型相结合,通过深度集成健康风险评价与修复成本评估模型,推动其从分析工具向决策支持核心转变,从而能够进行多情景模拟与成本效益优化,直接为矿区环境修复与风险管控的精准决策提供量化、动态的科学依据[62]-[64]。综上所述,通过多技术深度融合、驱动模拟动态化并强化决策支持功能,矿区环境污染模拟正朝着更精准、高效和实用的方向演进,以期更好地服务于矿区的可持续发展与环境安全。

基金项目

本工作得到国家自然科学基金面上项目的支持(基金号:42271301)。

NOTES

*通讯作者。

参考文献

[1] Singh, V.V., Lakra, A.R. and Gautam, S. (2025) Seasonal Impact of Particulate Matter Exposure on Urinary Health of Mine Workers in Iron Ore Mining Environment. Geosystems and Geoenvironment, 4, Article ID: 100342. [Google Scholar] [CrossRef
[2] Wang, Z., Zhou, W., Jiskani, I.M., Ding, X. and Luo, H. (2022) Dust Pollution in Cold Region Surface Mines and Its Prevention and Control. Environmental Pollution, 292, Article ID: 118293. [Google Scholar] [CrossRef] [PubMed]
[3] Li, X., Ren, H., Xu, Z., Chen, G., Zhang, S., Zhang, L., et al. (2023) Practical Application for Legacy Acid Mine Drainage (AMD) Prevention and Treatment Technologies in Karst-Dominated Regions: A Case Study. Journal of Contaminant Hydrology, 258, Article ID: 104238. [Google Scholar] [CrossRef] [PubMed]
[4] Ren, M., Cai, Q., Pei, W., Gao, X., Ma, J., Lu, Y., et al. (2025) Tracing Copper Pollution Migration Mechanisms in Mine Tailings Pond and Surrounding Soils Using Isotopes: A Case Study of the Shuimuchong Tailings Pond, Tongling, China. Environmental Pollution, 387, Article ID: 127305. [Google Scholar] [CrossRef
[5] Wang, R., Zhang, J., Sun, H., Sun, S., Qin, G. and Song, Y. (2021) Effect of Different Vegetation on Copper Accumulation of Copper-Mine Abandoned Land in Tongling, China. Journal of Environmental Management, 286, Article ID: 112227. [Google Scholar] [CrossRef] [PubMed]
[6] Xu, D., Zhou, P., Zhan, J., Gao, Y., Dou, C. and Sun, Q. (2013) Assessment of Trace Metal Bioavailability in Garden Soils and Health Risks via Consumption of Vegetables in the Vicinity of Tongling Mining Area, China. Ecotoxicology and Environmental Safety, 90, 103-111. [Google Scholar] [CrossRef] [PubMed]
[7] Silva, D., Weber, C. and Oliveira, C. (2021) Neutralization and Uptake of Pollutant Cations from Acid Mine Drainage (AMD) Using Limestones and Zeolites in a Pilot-Scale Passive Treatment System. Minerals Engineering, 170, Article ID: 107000. [Google Scholar] [CrossRef
[8] Bafounga, Y., Bourdelle, F., Claisse, P., Ventalon, S., Hofmann, A. and Lloret, E. (2025) Mineralogical Evidence of Acid Mine Drainage on Spoil Tips of the Nord Pas-De-Calais Coal Mining Basin (Northern France): A High-Resolution Characterization of the Black Shale Weathering. Chemical Geology, 698, 123132. [Google Scholar] [CrossRef
[9] Mertz, S., Devau, N., Thouin, H., Battaglia-Brunet, F., Norini, M., Crampon, M., et al. (2025) Leaching of Pollutant Metals (Pb, Zn) from Abandoned Mine Tailings: A Multicomponent Reactive Transport Model of a Pilot-Scale Experiment. Science of The Total Environment, 960, Article ID: 178248. [Google Scholar] [CrossRef] [PubMed]
[10] Balboa, C.J.P., Pocaan, J.P., Baute, R., Orbecido, A., Beltran, A.B., Santos, A.L., et al. (2025) A Novel Water Pollution Index for Domestic Water Quality Assessment in Acid Mine Drainage-Impacted Mining Areas. Minerals Engineering, 234, Article ID: 109730. [Google Scholar] [CrossRef
[11] Tao, M., Lu, D., Shi, Y., Liu, K., Yan, D. and Memon, M.B. (2024) Life Cycle Assessment of Coal Mines of Diverse Scales over Time in China. Science of the Total Environment, 912, Article ID: 169236. [Google Scholar] [CrossRef] [PubMed]
[12] Sasamoto, H., Yui, M. and Arthur, R.C. (2007) Estimation of in Situ Groundwater Chemistry Using Geochemical Modeling: A Test Case for Saline Type Groundwater in Argillaceous Rock. Physics and Chemistry of the Earth, Parts A/B/C, 32, 196-208. [Google Scholar] [CrossRef
[13] Manu, E., Loh, Y.S.A., Sam, F. and De Lucia, M. (2025) Evolution of Groundwater Chemistry in Birimian and Voltaian Supergroup Aquifers of Bole District, Northern Ghana: Insights from Combinatorial Inverse Geochemical Modeling. Science of the Total Environment, 987, Article ID: 179773. [Google Scholar] [CrossRef] [PubMed]
[14] Nie, Z., Luo, J., Tang, J., Li, B., Chen, B., Gao, M., et al. (2025) Pollution Sources, Characteristics and Environmental Risk Assessment of Heavy Metals in Surface Water and Sediments of Typical Pyrite Mine in Southwest China. Journal of Environmental Sciences, 157, 742-755. [Google Scholar] [CrossRef] [PubMed]
[15] Ahmed, A., Aidi, H., Liu, Q., Zhao, X., Zhao, S., Zheng, C., et al. (2025) Tracing Heavy Metal Migration in Stone Coal Mining Watersheds: Insights from Coupled SWAT-MIKE21-ECO Lab Simulations. Chemosphere, 385, Article ID: 144588. [Google Scholar] [CrossRef] [PubMed]
[16] Liang, C., Zhang, Z., Li, Y., Wang, Y., He, M., Xia, F., et al. (2025) Simulation, Prediction and Optimization for Synthesis and Heavy Metals Adsorption of Schwertmannite by Machine Learning. Environmental Research, 265, Article ID: 120471. [Google Scholar] [CrossRef] [PubMed]
[17] Gao, Y., Li, F., Mao, L., Yan, N., Peng, C., Tao, H., et al. (2022) Simulation on Water Quality of Reservoir at Construction Phase by Pollutant Release from Oxidation of Waste Rocks Rich S and Fe. Environmental Technology & Innovation, 28, Article ID: 102860. [Google Scholar] [CrossRef
[18] Mulikita, S., Ponraj, M., Mutondo, M. and Maseka, K. (2025) The Effect of Mining Pollution and Climate Change on Microbial Communities and Human Health. Pedosphere. [Google Scholar] [CrossRef
[19] Wang, S., Wang, Q., Yuan, Z. and Wu, X. (2023) Application of the Multimedia Fugacity Model in Predicting the Environmental Behaviors of PCBs: Based on Field Measurements and Level III Fugacity Model Simulation. Ecotoxicology and Environmental Safety, 263, Article ID: 115286. [Google Scholar] [CrossRef] [PubMed]
[20] Sun, C., Wang, X. and Qiao, X. (2024) Multimedia Fate Simulation of Mercury in a Coastal Urban Area Based on the Fugacity/Aquivalence Method. Science of the Total Environment, 915, Article ID: 170084. [Google Scholar] [CrossRef] [PubMed]
[21] Cheng, B., Wang, Z., Yan, X., Yu, Y., Liu, L., Gao, Y., et al. (2023) Characteristics and Pollution Risks of Cu, Ni, Cd, Pb, Hg and as in Farmland Soil near Coal Mines. Soil & Environmental Health, 1, Article ID: 100035. [Google Scholar] [CrossRef
[22] Xiu, Z., Nie, W., Yan, J., Chen, D., Cai, P., Liu, Q., et al. (2020) Numerical Simulation Study on Dust Pollution Characteristics and Optimal Dust Control Air Flow Rates during Coal Mine Production. Journal of Cleaner Production, 248, Article ID: 119197. [Google Scholar] [CrossRef
[23] Sarmiento, A.M., Nieto, J.M., Olías, M. and Cánovas, C.R. (2009) Hydrochemical Characteristics and Seasonal Influence on the Pollution by Acid Mine Drainage in the Odiel River Basin (SW Spain). Applied Geochemistry, 24, 697-714. [Google Scholar] [CrossRef
[24] Adetunji, A.I. and Erasmus, M. (2025) Biological Treatment of Acid Mine Drainage: An Eco-Sustainable Strategy for Removal of Toxic Pollutants. Journal of Hazardous Materials Advances, 18, 100659. [Google Scholar] [CrossRef
[25] Huang, Y., Hu, H., Li, B., Zheng, X., Long, Y. and Lv, C. (2024) Study on Ore Dust Pollution Diffusion and New Dust Removal System in Drawing Funnel Operation of Metal Mine. Powder Technology, 448, Article ID: 120242. [Google Scholar] [CrossRef
[26] Zhou, B., Qin, B., Zhou, Q., Gan, J., Deng, Z., Zhao, F., et al. (2024) Hazard and Pollution Characteristics of Rock-Containing Dust in Coal Mine Tunneling Faces Based on Experimental and Numerical Study. Process Safety and Environmental Protection, 192, 214-229. [Google Scholar] [CrossRef
[27] Zhou, L., Zhang, J., Zhu, X., Xu, D. and Zheng, S. (2024) The Pollution Characteristics and Causes of Dual Sources-Iron (Fe) in Abandoned Coal Mines: A Literature Review. Journal of Cleaner Production, 471, Article ID: 143358. [Google Scholar] [CrossRef
[28] Li, X., An, X., Jiao, K., Pan, H. and Lian, B. (2025) Current State of the Heavy Metal Pollution, Microbial Diversity, and Bioremediation Experiments around the Qixia Mountain Lead-Zinc Mine in Nanjing, China. RSC Advances, 15, 8795-8808. [Google Scholar] [CrossRef] [PubMed]
[29] Zhou, G., Liu, Y., Liu, Z., Zhang, Y., Zhu, Y., Sun, B., et al. (2024) Study on the Characteristics of Compound Dust Source Pollution and Foam Dust Suppression Technology in Coal Mine Anchor Excavation Production. Process Safety and Environmental Protection, 186, 593-611. [Google Scholar] [CrossRef
[30] Ran, H., Guo, Z., Yi, L., Xiao, X., Zhang, L., Hu, Z., et al. (2021) Pollution Characteristics and Source Identification of Soil Metal(loid)s at an Abandoned Arsenic-Containing Mine, China. Journal of Hazardous Materials, 413, Article ID: 125382. [Google Scholar] [CrossRef] [PubMed]
[31] Equeenuddin, S.M., Tripathy, S., Sahoo, P.K. and Panigrahi, M.K. (2010) Hydrogeochemical Characteristics of Acid Mine Drainage and Water Pollution at Makum Coalfield, India. Journal of Geochemical Exploration, 105, 75-82. [Google Scholar] [CrossRef
[32] Türker, O.C. and Yakar, A. (2025) Sediment-based Microbial Fuel Cell Sensor for Detecting Boron Mine Effluent Pollution in Aquatic Habitats. Microchemical Journal, 218, Article ID: 115355. [Google Scholar] [CrossRef
[33] Roy, D.K. and Ghosh, A.K. (2025) Transforming Pollution Sources into Assets: Exploring Innovative Applications of Abandoned Open Pit Mines for Rainwater Storage and Aquifer Recharge. Journal of Hydrology, 662, Article ID: 133933. [Google Scholar] [CrossRef
[34] Rashed, M.N. (2010) Monitoring of Contaminated Toxic and Heavy Metals, from Mine Tailings through Age Accumulation, in Soil and Some Wild Plants at Southeast Egypt. Journal of Hazardous Materials, 178, 739-746. [Google Scholar] [CrossRef] [PubMed]
[35] Hujun, R., Min, Z., Xibin, L., Hao, W., Jinfeng, Y. and Chang, Z. (2024) Managing Acidic Mine Water Pollution in Karst Regions Based on Hydrogeological Structures. Results in Engineering, 24, Article ID: 103399. [Google Scholar] [CrossRef
[36] Ran, H., Deng, X., Guo, Z., Hu, Z., An, Y., Xiao, X., et al. (2022) Pollution Characteristics and Environmental Availability of Toxic Elements in Soil from an Abandoned Arsenic-Containing Mine. Chemosphere, 303, Article ID: 135189. [Google Scholar] [CrossRef] [PubMed]
[37] Shu, X., Zhang, Q., Lu, G., Yi, X. and Dang, Z. (2018) Pollution Characteristics and Assessment of Sulfide Tailings from the Dabaoshan Mine, China. International Biodeterioration & Biodegradation, 128, 122-128. [Google Scholar] [CrossRef
[38] Reisen, F., Gillett, R., Choi, J., Fisher, G. and Torre, P. (2017) Characteristics of an Open-Cut Coal Mine Fire Pollution Event. Atmospheric Environment, 151, 140-151. [Google Scholar] [CrossRef
[39] Wang, Z., Zhou, W., Jiskani, I.M., Luo, H., Ao, Z. and Mvula, E.M. (2022) Annual Dust Pollution Characteristics and Its Prevention and Control for Environmental Protection in Surface Mines. Science of the Total Environment, 825, Article ID: 153949. [Google Scholar] [CrossRef] [PubMed]
[40] Xiao, H. and Ji, W. (2007) Relating Landscape Characteristics to Non-Point Source Pollution in Mine Waste-Located Watersheds Using Geospatial Techniques. Journal of Environmental Management, 82, 111-119. [Google Scholar] [CrossRef] [PubMed]
[41] Adetunji, A.I. and Erasmus, M. (2025) Biological Treatment of Acid Mine Drainage: An Eco-Sustainable Strategy for Removal of Toxic Pollutants. Journal of Hazardous Materials Advances, 18, Article ID: 100659. [Google Scholar] [CrossRef
[42] Wang, H., Ji, G. and Bai, X. (2015) Quantifying Nitrogen Transformation Process Rates Using Nitrogen Functional Genesin a Multimedia Biofilter under Hydraulic Loading Rate Constraints. Ecological Engineering, 82, 323-329. [Google Scholar] [CrossRef
[43] Gnanapragasam, E.K., Yu, C., Whelan, G., Mills, W.B., McDonald, J.P., Lew, C.S., et al. (2000) Comparison of Multimedia Model Predictions for a Contaminant Plume Migration Scenario. Journal of Contaminant Hydrology, 46, 17-38. [Google Scholar] [CrossRef
[44] Liu, S., Lu, Y., Wang, T., Xie, S., Jones, K.C. and Sweetman, A.J. (2014) Using Gridded Multimedia Model to Simulate Spatial Fate of Benzo[α]Pyrene on Regional Scale. Environment International, 63, 53-63. [Google Scholar] [CrossRef] [PubMed]
[45] Zhu, Y., Tao, S., Sun, J., Wang, X., Li, X., Tsang, D.C.W., et al. (2019) Multimedia Modeling of the PAH Concentration and Distribution in the Yangtze River Delta and Human Health Risk Assessment. Science of the Total Environment, 647, 962-972. [Google Scholar] [CrossRef] [PubMed]
[46] Jung, J.E., Kim, Y.K., Song, J.H. and Lee, D.S. (2014) Development and Evaluation of a Dynamic Multimedia Model (ECORAME) for Local Scale Assessment of Aquatic Ecological Exposure to Chemicals Originating from Sources in Environmental Media. Science of the Total Environment, 500, 103-112. [Google Scholar] [CrossRef] [PubMed]
[47] Li, S., Shimadera, H., Matsuo, T. and Kondo, A. (2023) Environmental Assessment of Lead with Spatial Gradient in the Lake Biwa-Yodo River Basin of Japan: The Development of Distributional Multimedia Model. Environmental Advances, 13, Article ID: 100392. [Google Scholar] [CrossRef
[48] Liu, S., Lu, Y., Xie, S., Wang, T., Jones, K.C. and Sweetman, A.J. (2015) Exploring the Fate, Transport and Risk of Perfluorooctane Sulfonate (PFOS) in a Coastal Region of China Using a Multimedia Model. Environment International, 85, 15-26. [Google Scholar] [CrossRef] [PubMed]
[49] Kawamoto, K. and Park, K.A. (2006) Calculation of Environmental Concentration and Comparison of Output for Existing Chemicals Using Regional Multimedia Modeling. Chemosphere, 63, 1154-1164. [Google Scholar] [CrossRef] [PubMed]
[50] Li, Y., He, T., Yang, J., Ding, F., Li, X., Huang, Y., et al. (2025) A Coupled Hydrological Multimedia Model Used to Simulate PFASs Transport and Fate in the River Network of Megacity Shanghai. Journal of Hydrology, 651, Article ID: 132592. [Google Scholar] [CrossRef
[51] Liu, D., Kang, G., Zhang, Y., Shi, L., Ma, B., Zhang, S., et al. (2025) Exploring the Distribution and Fate of Bisphenol a in an Aquatic Microcosm Combined with a Multimedia Model. Ecotoxicology and Environmental Safety, 290, Article ID: 117752. [Google Scholar] [CrossRef] [PubMed]
[52] Um, M., Weerackody, D., Gao, L., Mohseni, A., Evans, B., Murdoch, B., et al. (2023) Investigating the Fate and Transport of Microplastics in a Lagoon Wastewater Treatment System Using a Multimedia Model Approach. Journal of Hazardous Materials, 446, Article ID: 130694. [Google Scholar] [CrossRef] [PubMed]
[53] Chen, Z., Dong, J. and Asif, Z. (2022) A Regional Numerical Environmental Multimedia Modeling Approach to Assess Spatial Eco-Environmental Exposure Risk of Perfluorooctane Sulfonate (PFOS) in the Pearl River Basin. Environment International, 161, Article ID: 107101. [Google Scholar] [CrossRef] [PubMed]
[54] Song, J.H., Lee, Y. and Lee, D.S. (2016) Development of a Multimedia Model (POPsLTEA) to Assess the Influence of Climate Change on the Fate and Transport of Polycyclic Aromatic Hydrocarbons in East Asia. Science of the Total Environment, 569, 690-699. [Google Scholar] [CrossRef] [PubMed]
[55] Dong, J., Chen, Z., Wang, Q., Guo, J., Pu, Y., Han, Y., et al. (2019) A Regional Spatial Environmental Multimedia Modeling (RSEMM) Approach for Assessing the Risk of Antibiotics in River Basin System—A China Case Study. Sustainable Cities and Society, 50, Article ID: 101624. [Google Scholar] [CrossRef
[56] Pitchai, P., Jha, N.K., Nair, R.G. and Guruprasad, P.J. (2021) A Coupled Framework of Variational Asymptotic Method Based Homogenization Technique and Monte Carlo Approach for the Uncertainty and Sensitivity Analysis of Unidirectional Composites. Composite Structures, 263, Article ID: 113656. [Google Scholar] [CrossRef
[57] Lee, J.Y. and Kim, J.K. (2018) A New Propagation Analysis of Statistical Uncertainty in Multi-Group Cross Sections Generated by Monte Carlo Method. Annals of Nuclear Energy, 120, 477-484. [Google Scholar] [CrossRef
[58] Castro, H.F.F. (2024) Mathematical Modeling Applied to the Uncertainty Analysis of a Tank Prover Calibration: Understanding the Influence of Calibration Conditions on the GUM Validation Using the Monte Carlo Method. Flow Measurement and Instrumentation, 96, Article ID: 102547. [Google Scholar] [CrossRef
[59] Koutsellis, T., Xexakis, G., Koasidis, K., Frilingou, N., Karamaneas, A., Nikas, A., et al. (2023) In-Cognitive: A Web-Based Python Application for Fuzzy Cognitive Map Design, Simulation, and Uncertainty Analysis Based on the Monte Carlo Method. SoftwareX, 23, Article ID: 101513. [Google Scholar] [CrossRef
[60] Yankovsky, V., Vorobeva, E. and Manuilova, R. (2019) New Techniques for Retrieving the [O(3P)], [O3] and [CO2] Altitude Profiles from Dayglow Oxygen Emissions: Uncertainty Analysis by the Monte Carlo Method. Advances in Space Research, 64, 1948-1967. [Google Scholar] [CrossRef
[61] Grigoriev, S.N., Zakharov, O.V., Shi, S., Masterenko, D.A. and Ivanova, T.N. (2025) Analysis of Standard Uncertainty Using the Monte Carlo Method for Arc Measurement on a Coordinate Measuring Machine. Measurement, 253, Article ID: 117589. [Google Scholar] [CrossRef
[62] Masteali, S.H., Bayat, M., Bettinger, P. and Ghorbanpour, M. (2025) Uncertainty Analysis of Linear and Non-Linear Regression Models in the Modeling of Water Quality in the Caspian Sea Basin: Application of Monte-Carlo Method. Ecological Indicators, 170, Article ID: 112979. [Google Scholar] [CrossRef
[63] Dey, P., Chaulya, S.K. and Kumar, S. (2021) Hybrid CNN-LSTM and IoT-Based Coal Mine Hazards Monitoring and Prediction System. Process Safety and Environmental Protection, 152, 249-263. [Google Scholar] [CrossRef
[64] Zhang, B., Liu, Y., Yong, R., Zou, G., Yang, R., Pan, J., et al. (2023) A Spatial Correlation Prediction Model of Urban PM2.5 Concentration Based on Deconvolution and LSTM. Neurocomputing, 544, Article ID: 126280. [Google Scholar] [CrossRef
[65] Feng, Y. (2025) Participant Privacy Protection and Air Quality Prediction Based on FCM, PFI, LSTM, and DBN. Results in Engineering, 26, Article ID: 105496. [Google Scholar] [CrossRef