|
[1]
|
武占云, 王菡, 单菁菁. 我国生态安全面临的气候变化风险及应对策略[J]. 中南林业科技大学学报(社会科学版), 2022, 16(4): 25-33.
|
|
[2]
|
周国逸, 李琳, 吴安驰. 气候变暖下干旱对森林生态系统的影响[J]. 南京信息工程大学学报(自然科学版), 2020, 12(1): 81-88.
|
|
[3]
|
汤恒睿, 叶恩童, 娄星驰, 等. 干旱区植被对水分胁迫的响应特征分析[J/OL]. 地球与环境, 1-15. https://link.cnki.net/urlid/52.1139.p.20251027.1538.001, 2025-10-28.
|
|
[4]
|
罗丹丹, 王传宽, 金鹰. 木本植物水力系统对干旱胁迫的响应机制[J]. 植物生态学报, 2021, 45(9): 925-941.
|
|
[5]
|
程莉, 李玉霖, 宁志英, 等. 木本植物应对干旱胁迫的响应机制: 基于水力学性状视角[J]. 生态学报, 2024, 44(7): 2688-2705.
|
|
[6]
|
马涛, 罗晨梦, 李思佳, 等. 木本植物响应干旱胁迫的研究现状[J]. 四川大学学报(自然科学版), 2023, 60(5): 25-34.
|
|
[7]
|
万贤崇, 孟平. 植物体内水分长距离运输的生理生态学机制[J]. 植物生态学报, 2007(5): 804-813.
|
|
[8]
|
王婷, 郭雯, 潘志立, 等. 植物木质部栓塞测定技术的研究进展[J]. 应用生态学报, 2020, 31(11): 3895-3905.
|
|
[9]
|
李雅妮, 梁海斌, 温海瑞, 等. 气候变化和人类活动驱动的森林衰退特征及机制[J]. 生态学报, 2025, 45(12): 6081-6094.
|
|
[10]
|
陈锐, 吉喜斌, 赵文玥. 干旱胁迫下植物气孔导度估算模型研究进展与展望[J]. 地球科学进展, 2025, 40(9): 877-889.
|
|
[11]
|
游韧, 邓湘雯, 胡彦婷, 等. 树木对干旱胁迫及复水的生理生态响应研究进展[J]. 林业科学, 2023, 59(11): 124-136.
|
|
[12]
|
Tyree, M.T. and Sperry, J.S. (1989) Vulnerability of Xylem to Cavitation and Embolism. Annual Review of Plant Physiology and Plant Molecular Biology, 40, 19-36. [Google Scholar] [CrossRef]
|
|
[13]
|
Milburn, J.A. and McLaughlin, M.E. (1974) Studies of Cavitation in Isolated Vascular Bundles and Whole Leaves of Plantago major L. New Phytologist, 73, 861-871. [Google Scholar] [CrossRef]
|
|
[14]
|
Tyree, M.T. and Dixon, M.A. (1983) Cavitation Events in Thuja occidentalis L.? 1: Utrasonic Acoustic Emissions from the Sapwood Can Be Measured. Plant Physiology, 72, 1094-1099. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Sperry, J.S., Donnelly, J.R. and Tyree, M.T. (1988) A Method for Measuring Hydraulic Conductivity and Embolism in Xylem. Plant, Cell & Environment, 11, 35-40. [Google Scholar] [CrossRef]
|
|
[16]
|
Ladjal, M., Huc, R. and Ducrey, M. (2005) Drought Effects on Hydraulic Conductivity and Xylem Vulnerability to Embolism in Diverse Species and Provenances of Mediterranean Cedars. Tree Physiology, 25, 1109-1117. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Tyree, M.T., Alexander, J. and Machado, J. (1992) Loss of Hydraulic Conductivity Due to Water Stress in Intact Juveniles of Quercus rubra and Populus deltoides. Tree Physiology, 10, 411-415. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Alder, N.N., Sperry, J.S. and Pockman, W.T. (1996) Root and Stem Xylem Embolism, Stomatal Conductance, and Leaf Turgor in Acer grandidentatum Populations along a Soil Moisture Gradient. Oecologia, 105, 293-301. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Cochard, H., Badel, E., Herbette, S., Delzon, S., Choat, B. and Jansen, S. (2013) Methods for Measuring Plant Vulnerability to Cavitation: A Critical Review. Journal of Experimental Botany, 64, 4779-4791. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Cochard, H., Bréda, N., Granier, A. and Aussenac, G. (1992) Vulnerability to Air Embolism of Three European Oak Species (Quercus petraea (matt) Liebl, Q Pubescens Willd, Q Robur L). Annales des Sciences Forestières, 49, 225-233. [Google Scholar] [CrossRef]
|
|
[21]
|
Cochard, H. (1992) Vulnerability of Several Conifers to Air Embolism. Tree Physiology, 11, 73-83. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Sperry, J.S., Holbrook, N.M., Zimmermann, M.H. and Tyree, M.T. (1987) Spring Filling of Xylem Vessels in Wild Grapevine. Plant Physiology, 83, 414-417. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Yang, S.J., Zhang, Y.J., Sun, M., Goldstein, G. and Cao, K.F. (2012) Recovery of Diurnal Depression of Leaf Hydraulic Conductance in a Subtropical Woody Bamboo Species: Embolism Refilling by Nocturnal Root Pressure. Tree Physiology, 32, 414-422. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
梁昭. 基于离心机技术构建长导管物种木质部栓塞脆弱性曲线的方法研究[D]: [硕士学位论文]. 金华: 浙江师范大学, 2019.
|
|
[25]
|
Alder, N.N., Pockman, W.T., Sperry, J.S. and Nuismer, S. (1997) Use of Centrifugal Force in the Study of Xylem Cavitation. Journal of Experimental Botany, 48, 665-674. [Google Scholar] [CrossRef]
|
|
[26]
|
Sperry, J.S. and Tyree, M.T. (1990) Water-Stress-Induced Xylem Embolism in Three Species of Conifers. Plant, Cell & Environment, 13, 427-436. [Google Scholar] [CrossRef]
|
|
[27]
|
Sperry, J.S. and Saliendra, N.Z. (1994) Intra‐ and Inter‐Plant Variation in Xylem Cavitation in Betula occidentalis. Plant, Cell & Environment, 17, 1233-1241. [Google Scholar] [CrossRef]
|
|
[28]
|
Cochard, H., Cruiziat, P. and Tyree, M.T. (1992) Use of Positive Pressures to Establish Vulnerability Curves: Further Support for the Air-Seeding Hypothesis and Implications for Pressure-Volume Analysis. Plant Physiology, 100, 205-209. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Sergent, A.S., Varela, S.A., Barigah, T.S., Badel, E., Cochard, H., Dalla-Salda, G., et al. (2020) A Comparison of Five Methods to Assess Embolism Resistance in Trees. Forest Ecology and Management, 468, Article ID: 118175. [Google Scholar] [CrossRef]
|
|
[30]
|
曾俊, 孙慧珍. 超声发射特征归类识别木质部栓塞信息[J]. 南京林业大学学报(自然科学版), 2018, 42(1): 89-97.
|
|
[31]
|
Brodribb, T.J., Skelton, R.P., McAdam, S.A.M., Bienaimé, D., Lucani, C.J. and Marmottant, P. (2016) Visual Quantification of Embolism Reveals Leaf Vulnerability to Hydraulic Failure. New Phytologist, 209, 1403-1409. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Rodriguez‐Dominguez, C.M., Carins Murphy, M.R., Lucani, C. and Brodribb, T.J. (2018) Mapping Xylem Failure in Disparate Organs of Whole Plants Reveals Extreme Resistance in Olive Roots. New Phytologist, 218, 1025-1035. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Lopez, O.R., Kursar, T.A., Cochard, H. and Tyree, M.T. (2005) Interspecific Variation in Xylem Vulnerability to Cavitation among Tropical Tree and Shrub Species. Tree Physiology, 25, 1553-1562. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Ennajeh, M., Tounekti, T., Vadel, A.M., Khemira, H. and Cochard, H. (2008) Water Relations and Drought-Induced Embolism in Olive (Olea europaea) Varieties ‘Meski’ and ‘Chemlali’ during Severe Drought. Tree Physiology, 28, 971-976. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Barigah, T.S., Ibrahim, T., Bogard, A., Faivre-Vuillin, B., Lagneau, L.A., Montpied, P., et al. (2006) Irradiance-Induced Plasticity in the Hydraulic Properties of Saplings of Different Temperate Broad-Leaved Forest Tree Species. Tree Physiology, 26, 1505-1516. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
张海昕, 李姗, 张硕新, 等. 4个杨树无性系木质部导管结构与栓塞脆弱性的关系[J]. 林业科学, 2013, 49(5): 54-61.
|
|
[37]
|
李荣, 党维, 蔡靖, 等. 6个耐旱树种木质部结构与栓塞脆弱性的关系[J]. 植物生态学报, 2016, 40(3): 255-263.
|
|
[38]
|
李荣. 耐旱树种木质部结构与耐旱性关系研究[D]: [硕士学位论文]. 咸阳: 西北农林科技大学, 2016.
|
|
[39]
|
于秋红, 许盼云, 郭春苗, 等. 扁桃耐旱砧木木质部解剖结构与栓塞特性的关系分析[J]. 新疆农业科学, 2024, 61(11): 2693-2704.
|
|
[40]
|
刘娟娟, 李吉跃, 张建国. 干旱胁迫对油松和侧柏水分运输安全性和有效性的影响[J]. 生态学报, 2010, 30(9): 2507-2514.
|
|
[41]
|
王婷. 竹叶水分光合对干旱的响应及其生理生态适应策略[D]: [硕士学位论文]. 昆明: 云南大学, 2022.
|
|
[42]
|
李丽. 丛枝菌根真菌调控欧美杨107水分运输及耐旱相关基因表达的研究[D]: [博士学位论文]. 咸阳: 西北农林科技大学, 2022.
|
|
[43]
|
胥生荣. 水分胁迫对不同苹果砧木和砧穗组合苗导水率的影响[D]: [硕士学位论文]. 咸阳: 西北农林科技大学, 2014.
|
|
[44]
|
贾静波. 杨树对高温与干旱胁迫的生理与转录响应机制研究[D]: [博士学位论文]. 咸阳: 西北农林科技大学, 2020.
|
|
[45]
|
Wheeler, J.K., Sperry, J.S., Hacke, U.G. and Hoang, N. (2005) Inter‐Vessel Pitting and Cavitation in Woody Rosaceae and Other Vesselled Plants: A Basis for a Safety versus Efficiency Trade‐Off in Xylem Transport. Plant, Cell & Environment, 28, 800-812. [Google Scholar] [CrossRef]
|
|
[46]
|
木巴热克·阿尤普, 陈亚宁, 郝兴明, 等. 极端干旱环境下的胡杨木质部水力特征[J]. 生态学报, 2012, 32(9): 2748-2758.
|
|
[47]
|
Hacke, U.G. and Sperry, J.S. (2001) Functional and Ecological Xylem Anatomy. Perspectives in Plant Ecology, Evolution and Systematics, 4, 97-115. [Google Scholar] [CrossRef]
|
|
[48]
|
Peng, C., Ma, Z., Lei, X., Zhu, Q., Chen, H., Wang, W., et al. (2011) A Drought-Induced Pervasive Increase in Tree Mortality across Canada’s Boreal Forests. Nature Climate Change, 1, 467-471. [Google Scholar] [CrossRef]
|