|
[1]
|
Mohan, B., Singh, G., Gupta, R.K., Sharma, P.K., Solovev, A.A., Pombeiro, A.J.L., et al. (2024) Hydrogen-Bonded Organic Frameworks (HOFs): Multifunctional Material on Analytical Monitoring. Trac-Trends in Analytical Chemistry, 170, Article 117436. [Google Scholar] [CrossRef]
|
|
[2]
|
Cao, J.P., Tang, G. and Yan, F. (2024) Applications of Emerging Metal and Covalent Organic Frameworks in Perovskite Photovoltaics: Materials and Devices. Advanced Energy Materials, 14, Article 2304027. [Google Scholar] [CrossRef]
|
|
[3]
|
Yang, Y., Sun, Z.Y., Wu, Y.W., Liang, Z.W., Li, F.K., Zhu, M., et al. (2024) Porous Organic Framework Materials (MOF, COF, and HOF) as the Multifunctional Separator for Rechargeable Lithium Metal Batteries. Small, 20, e2401457. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Masoomi, M.Y., Morsali, A., Dhakshinamoorthy, A. and Garcia, H. (2019) Mixed-Metal MOFs: Unique Opportunities in Metal-Organic Framework (MOF) Functionality and Design. Angewandte Chemie International Edition, 58, 15188-15205. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Kaur, H., Siwal, S.S., Saini, R.V. and Thakur, V.K. (2024) Covalent-Organic Framework-Based Materials in Theranostic Applications: Insights into Their Advantages and Challenges. ACS Omega, 9, 6235-6252. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Jiang, M., Yan, X., Wang, Y., Pu, F., Liu, H., Li, Y., et al. (2023) One-Component Artificial Gustatory System Based on Hydrogen-Bond Organic Framework for Discrimination of Versatile Analytes. Advanced Functional Materials, 33, Article 2300091. [Google Scholar] [CrossRef]
|
|
[7]
|
Ding, M., Liu, W. and Gref, R. (2022) Nanoscale MOFs: From Synthesis to Drug Delivery and Theranostics Applications. Advanced Drug Delivery Reviews, 190, Article 114496. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Wang, Y., Yan, J., Wen, N., Xiong, H., Cai, S., He, Q., et al. (2020) Metal-Organic Frameworks for Stimuli-Responsive Drug Delivery. Biomaterials, 230, Article 119619. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Huang, Y., Hao, X., Ma, S., Wang, R. and Wang, Y. (2022) Covalent Organic Framework-Based Porous Materials for Harmful Gas Purification. Chemosphere, 291, Article 132795. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Zhou, C.L., Pan, M.F., Li, S.J., Sun, Y.X., et al. (2022) Metal Organic Frameworks (MOFs) as Multifunctional Nanoplatform for Anticorrosion Surfaces and Coatings. Advances in Colloid and Interface Science, 305, Article 102707. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Ding, L., Shi, M., Xu, Y., Yu, E., Zhang, Y., Li, J., et al. (2025) Covalent Organic Framework: A Rising Star in Antibacterial Agents. Advanced Functional Materials, 35, Article 2411237. [Google Scholar] [CrossRef]
|
|
[12]
|
Honarvar Nazari, M., Zhang, Y., Mahmoodi, A., Xu, G., Yu, J., Wu, J., et al. (2022) Nanocomposite Organic Coatings for Corrosion Protection of Metals: A Review of Recent Advances. Progress in Organic Coatings, 162, Article 106573. [Google Scholar] [CrossRef]
|
|
[13]
|
Liu, W., Yan, Z., Zhang, Z., Zhang, Y., Cai, G. and Li, Z. (2019) Bioactive and Anti-Corrosive Bio-MOF-1 Coating on Magnesium Alloy for Bone Repair Application. Journal of Alloys and Compounds, 788, 705-711. [Google Scholar] [CrossRef]
|
|
[14]
|
Pettinari, C., Pettinari, R., Di Nicola, C., Tombesi, A., Scuri, S. and Marchetti, F. (2021) Antimicrobial MOFs. Coordination Chemistry Reviews, 446, Article 214121. [Google Scholar] [CrossRef]
|
|
[15]
|
Zhu, L., Huo, A., Chen, Y., Bai, X., Cao, C., Zheng, Y., et al. (2023) A ROS Reservoir Based on a Polyoxometalate and Metal-Organic Framework Hybrid for Efficient Bacteria Eradication and Wound Healing. Chemical Engineering Journal, 476, Article 146613. [Google Scholar] [CrossRef]
|
|
[16]
|
Pandya, I., Kumar, S., Aswal, V.K., El Seoud, O., Assiri, M.A. and Malek, N. (2024) Metal Organic Framework-Based Polymeric Hydrogel: A Promising Drug Delivery Vehicle for the Treatment of Breast Cancer. International Journal of Pharmaceutics, 658, Article 124206. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Diercks, C.S. and Yaghi, O.M. (2017) The Atom, the Molecule, and the Covalent Organic Framework. Science, 355, eaal1585. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Abuzeid, H.R., EL-Mahdy, A.F.M. and Kuo, S. (2021) Covalent Organic Frameworks: Design Principles, Synthetic Strategies, and Diverse Applications. Giant, 6, Article 100054. [Google Scholar] [CrossRef]
|
|
[19]
|
He, Y.B. and Chen, B.L. (2011) A Microporous Hydrogen-Bonded Organic Framework for Highly Selective C2H2/C2H4 Separation at Ambient Temperature. Journal of the American Chemical Society, 133, 14570-14573. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Wang, B., Lin, R., Zhang, Z., Xiang, S. and Chen, B. (2020) Hydrogen-Bonded Organic Frameworks as a Tunable Platform for Functional Materials. Journal of the American Chemical Society, 142, 14399-14416. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Chen, W., Liu, M., Yang, H., Nezamzadeh-Ejhieh, A., Lu, C., Pan, Y., et al. (2023) Recent Advances of Fe(III)/Fe(II)-MPNs in Biomedical Applications. Pharmaceutics, 15, Article 1323. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Guo, X., Zhou, L., Liu, X., Tan, G., Yuan, F., Nezamzadeh-Ejhieh, A., et al. (2023) Fluorescence Detection Platform of Metal-Organic Frameworks for Biomarkers. Colloids and Surfaces B: Biointerfaces, 229, Article 113455. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Zheng, Q., Li, J., Yuan, W., Liu, X., Tan, L., Zheng, Y., et al. (2019) Metal-Organic Frameworks Incorporated Polycaprolactone Film for Enhanced Corrosion Resistance and Biocompatibility of Mg Alloy. ACS Sustainable Chemistry & Engineering, 7, 18114-18124. [Google Scholar] [CrossRef]
|
|
[24]
|
Rao, C., Liao, D., Pan, Y., Zhong, Y., Zhang, W., Ouyang, Q., et al. (2022) Novel Formulations of Metal-Organic Frameworks for Controlled Drug Delivery. Expert Opinion on Drug Delivery, 19, 1183-1202. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Shao, Y., Suo, H., Wang, S., Peng, Y., Chu, X., Long, Z., et al. (2024) A Facile Method to Construct ZIF-8 MOFs on Contact Lens for High Antibiotics Loading and Self-Defensive Release. Chemical Engineering Journal, 481, Article 148576. [Google Scholar] [CrossRef]
|
|
[26]
|
Hu, W., Ouyang, Q., Jiang, C., Huang, S., Alireza, N., Guo, D., et al. (2024) Biomedical Metal-Organic Framework Materials on Antimicrobial Therapy: Perspectives and Challenges. Materials Today Chemistry, 41, Article 102300. [Google Scholar] [CrossRef]
|
|
[27]
|
Xie, W., Chen, J., Cheng, X., Feng, H., Zhang, X., Zhu, Z., et al. (2023) Multi-Mechanism Antibacterial Strategies Enabled by Synergistic Activity of Metal-Organic Framework-Based Nanosystem for Infected Tissue Regeneration. Small, 19, Article 2205941. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Hynek, J., Zelenka, J., Rathouský, J., Kubát, P., Ruml, T., Demel, J., et al. (2018) Designing Porphyrinic Covalent Organic Frameworks for the Photodynamic Inactivation of Bacteria. ACS Applied Materials & Interfaces, 10, 8527-8535. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Zhang, C., Guo, J., Zou, X., Guo, S., Guo, Y., Shi, R., et al. (2021) Acridine-Based Covalent Organic Framework Photosensitizer with Broad-Spectrum Light Absorption for Antibacterial Photocatalytic Therapy. Advanced Healthcare Materials, 10, Article 2100775. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Liu, B., Pan, X., Nie, D., Hu, X., Liu, E. and Liu, T. (2022) Ionic Hydrogen-Bonded Organic Frameworks for Ion-Responsive Antimicrobial Membranes. Advanced Materials, 34, Article 2202280. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Wang, Y., Ma, K., Bai, J., Xu, T., Han, W., Wang, C., et al. (2022) Chemically Engineered Porous Molecular Coatings as Reactive Oxygen Species Generators and Reservoirs for Long-Lasting Self-Cleaning Textiles. Angewandte Chemie International Edition, 61, e202115956. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Yu, J.L. and Bai, Z. (2025) Recent Advances in Zn-MOFs and Their Derivatives for Cancer Therapeutic Applications; Application and Prospect of Cu-Based Metal-Organic Frameworks in Tumor Therapy. Journal of Molecular Structure, 321, Article 139984.
|
|
[33]
|
Ghosh, A., Ghosh, A., Bhattacharyya, A., Mitra, R., Das, B.B. and Bhaumik, A. (2023) Mitochondrial Topoisomerase 1 Targeted Anticancer Therapy Using Irinotecan Encapsulated Mesoporous MIL-101(Fe) Synthesized via a Vapour Assisted Method. Dalton Transactions, 53, 3010-3019. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Ma, J., Chen, Z., Diao, Y., Ye, M., Liu, X., Cui, S., et al. (2024) Current and Promising Applications of UiO-Based MOFs in Breast Cancer Therapy. Reactive and Functional Polymers, 200, Article 105918. [Google Scholar] [CrossRef]
|
|
[35]
|
Deng, Y., Guo, M., Zhou, L., Huang, Y., Srivastava, S., Kumar, A., et al. (2024) Prospects, Advances and Biological Applications of MOF-Based Platform for the Treatment of Lung Cancer. Biomaterials Science, 12, 3725-3744. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Hassan, A., Roy, S., Das, A., Wahed, S.A., Bairagi, A., Mondal, S., et al. (2024) Covalent Organic Frameworks as Potential Drug Carriers and Chemotherapeutic Agents for Ovarian Cancers. ACS Biomaterials Science & Engineering, 10, 4227-4236. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Yang, H., Liao, D., Cai, Z., Zhang, Y., Nezamzadeh-Ejhieh, A., Zheng, M., et al. (2023) Current Status of Fe-Based MOFs in Biomedical Applications. RSC Medicinal Chemistry, 14, 2473-2495. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Skorjanc, T., Shetty, D., Kumar, S., Makuc, D., Mali, G., Volavšek, J., et al. (2023) Nitroreductase-Sensitive Fluorescent Covalent Organic Framework for Tumor Hypoxia Imaging in Cells. Chemical Communications, 59, 5753-5756. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Ouyang, S., Chen, C., Lin, P., Wu, W., Chen, G., Li, P., et al. (2023) Hydrogen-Bonded Organic Frameworks Chelated Manganese for Precise Magnetic Resonance Imaging Diagnosis of Cancers. Nano Letters, 23, 8628-8636. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Kong, X., Ji, X., He, T., Xie, L., Zhang, Y., Lv, H., et al. (2020) A Green-Emission Metal-Organic Framework-Based Nanoprobe for Imaging Dual Tumor Biomarkers in Living Cells. ACS Applied Materials & Interfaces, 12, 35375-35384. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Liu, Y., Zhang, Y., Li, X., Gao, X., Niu, X., Wang, W., et al. (2019) Fluorescence-Enhanced Covalent Organic Framework Nanosystem for Tumor Imaging and Photothermal Therapy. Nanoscale, 11, 10429-10438. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Singh, N., Won, M., An, J., Yoon, C., Kim, D., Joong Lee, S., et al. (2024) Advances in Covalent Organic Frameworks for Cancer Phototherapy. Coordination Chemistry Reviews, 506, Article 215720. [Google Scholar] [CrossRef]
|
|
[43]
|
Zeng, Y., Liao, D., Kong, X., Huang, Q., Zhong, M., Liu, J., et al. (2023) Current Status and Prospect of ZIF-Based Materials for Breast Cancer Treatment. Colloids and Surfaces B: Biointerfaces, 232, Article 113612. [Google Scholar] [CrossRef] [PubMed]
|