|
[1]
|
Chronic Kidney Disease: Synopsis of the Kidney Disease: Improving Global Outcomes 2024 Clinical Practice Guideline. Annals of Internal Medicine, 178, 705-713.[CrossRef] [PubMed]
|
|
[2]
|
Lin, Z., Wu, Y., Xu, Y., Li, G., Li, Z. and Liu, T. (2022) Mesenchymal Stem Cell-Derived Exosomes in Cancer Therapy Resistance: Recent Advances and Therapeutic Potential. Molecular Cancer, 21, Article No. 179. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Chen, F., Chen, N., Xia, C., Wang, H., Shao, L., Zhou, C., et al. (2023) Mesenchymal Stem Cell Therapy in Kidney Diseases: Potential and Challenges. Cell Transplantation, 32, 1-23. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Cao, Q., Huang, C., Chen, X. and Pollock, C.A. (2022) Mesenchymal Stem Cell-Derived Exosomes: Toward Cell-Free Therapeutic Strategies in Chronic Kidney Disease. Frontiers in Medicine, 9, Article ID: 816656. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Haque, N., Kasim, N.H.A. and Rahman, M.T. (2015) Optimization of Pre-Transplantation Conditions to Enhance the Efficacy of Mesenchymal Stem Cells. International Journal of Biological Sciences, 11, 324-334. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Yan, L., Li, J. and Zhang, C. (2023) The Role of MSCs and CAR-MSCs in Cellular Immunotherapy. Cell Communication and Signaling, 21, Article No. 187. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Wang, S., Xu, M., Li, X., Su, X., Xiao, X., Keating, A., et al. (2018) Exosomes Released by Hepatocarcinoma Cells Endow Adipocytes with Tumor-Promoting Properties. Journal of Hematology & Oncology, 11, Article No. 82. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Doyle, L. and Wang, M. (2019) Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells, 8, Article 727. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Zhang, J., Li, S., Li, L., Li, M., Guo, C., Yao, J., et al. (2015) Exosome and Exosomal Microrna: Trafficking, Sorting, and Function. Genomics, Proteomics & Bioinformatics, 13, 17-24. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Li, W., Pang, Y., He, Q., Song, Z., Xie, X., Zeng, J., et al. (2024) Exosome-Derived MicroRNAs: Emerging Players in Vitiligo. Frontiers in Immunology, 15, Article ID: 1419660. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Zhang, M., Johnson-Stephenson, T.K., Wang, W., Wang, Y., Li, J., Li, L., et al. (2022) Mesenchymal Stem Cell-Derived Exosome-Educated Macrophages Alleviate Systemic Lupus Erythematosus by Promoting Efferocytosis and Recruitment of IL-17+ Regulatory T Cell. Stem Cell Research & Therapy, 13, Article No. 484. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Yaghoubi, Y., Movassaghpour, A., Zamani, M., Talebi, M., Mehdizadeh, A. and Yousefi, M. (2019) Human Umbilical Cord Mesenchymal Stem Cells Derived-Exosomes in Diseases Treatment. Life Sciences, 233, Article 116733. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Zhu, F., Chong Lee Shin, O.L.S., Pei, G., Hu, Z., Yang, J., Zhu, H., et al. (2017) Adipose-Derived Mesenchymal Stem Cells Employed Exosomes to Attenuate AKI-CKD Transition through Tubular Epithelial Cell Dependent Sox9 Activation. Oncotarget, 8, 70707-70726. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Nastase, M.V., Zeng-Brouwers, J., Wygrecka, M. and Schaefer, L. (2018) Targeting Renal Fibrosis: Mechanisms and Drug Delivery Systems. Advanced Drug Delivery Reviews, 129, 295-307. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Humphreys, B.D. (2018) Mechanisms of Renal Fibrosis. Annual Review of Physiology, 80, 309-326. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
He, L., Wei, Q., Liu, J., Yi, M., Liu, Y., Liu, H., et al. (2017) AKI on CKD: Heightened Injury, Suppressed Repair, and the Underlying Mechanisms. Kidney International, 92, 1071-1083. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Nie, L., Liu, Y., Zhang, B. and Zhao, J. (2020) Application of Histone Deacetylase Inhibitors in Renal Interstitial Fibrosis. Kidney Diseases, 6, 226-235. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Rodríguez‐Romo, R., Berman, N., Gómez, A. and Bobadilla, N.A. (2015) Epigenetic Regulation in the Acute Kidney Injury to Chronic Kidney Disease Transition. Nephrology, 20, 736-743. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Zhang, F., Wang, C., Wen, X., Chen, Y., Mao, R., Cui, D., et al. (2020) Mesenchymal Stem Cells Alleviate Rat Diabetic Nephropathy by Suppressing Cd103+ DCS‐Mediated Cd8+ T Cell Responses. Journal of Cellular and Molecular Medicine, 24, 5817-5831. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Choi, H., Lee, R.H., Bazhanov, N., Oh, J.Y. and Prockop, D.J. (2011) Anti-Inflammatory Protein TSG-6 Secreted by Activated MSCs Attenuates Zymosan-Induced Mouse Peritonitis by Decreasing Tlr2/NF-κB Signaling in Resident Macrophages. Blood, 118, 330-338. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Villanueva, S., Ewertz, E., Carrión, F., Tapia, A., Vergara, C., Céspedes, C., et al. (2011) Mesenchymal Stem Cell Injection Ameliorates Chronic Renal Failure in a Rat Model. Clinical Science, 121, 489-499. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Florquin, S. and Rouschop, K.M.A. (2003) Reciprocal Functions of Hepatocyte Growth Factor and Transforming Growth Factor-Β1 in the Progression of Renal Diseases: A Role for Cd44? Kidney International, 64, S15-S20. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Wang, J., Lin, Y., Chen, X., Liu, Y. and Zhou, T. (2022) Mesenchymal Stem Cells: A New Therapeutic Tool for Chronic Kidney Disease. Frontiers in Cell and Developmental Biology, 10, Article ID: 910592. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Bruno, S., Tapparo, M., Collino, F., Chiabotto, G., Deregibus, M.C., Soares Lindoso, R., et al. (2017) Renal Regenerative Potential of Different Extracellular Vesicle Populations Derived from Bone Marrow Mesenchymal Stromal Cells. Tissue Engineering Part A, 23, 1262-1273. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Bruno, S., Grange, C., Collino, F., Deregibus, M.C., Cantaluppi, V., Biancone, L., et al. (2012) Microvesicles Derived from Mesenchymal Stem Cells Enhance Survival in a Lethal Model of Acute Kidney Injury. PLOS ONE, 7, e33115. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Zhang, G., Zou, X., Miao, S., Chen, J., Du, T., Zhong, L., et al. (2014) The Anti-Oxidative Role of Micro-Vesicles Derived from Human Wharton-Jelly Mesenchymal Stromal Cells through Nox2/gp91(Phox) Suppression in Alleviating Renal Ischemia-Reperfusion Injury in Rats. PLOS ONE, 9, e92129. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Yao, J., Zheng, J., Cai, J., Zeng, K., Zhou, C., Zhang, J., et al. (2019) Extracellular Vesicles Derived from Human Umbilical Cord Mesenchymal Stem Cells Alleviate Rat Hepatic Ischemia‐Reperfusion Injury by Suppressing Oxidative Stress and Neutrophil Inflammatory Response. The FASEB Journal, 33, 1695-1710. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Lin, K., Yip, H., Shao, P., Wu, S., Chen, K., Chen, Y., et al. (2016) Combination of Adipose-Derived Mesenchymal Stem Cells (ADMSC) and Admsc-Derived Exosomes for Protecting Kidney from Acute Ischemia-Reperfusion Injury. International Journal of Cardiology, 216, 173-185. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Chen, L., Wang, Y., Li, S., Zuo, B., Zhang, X., Wang, F., et al. (2020) Exosomes Derived from GDNF-Modified Human Adipose Mesenchymal Stem Cells Ameliorate Peritubular Capillary Loss in Tubulointerstitial Fibrosis by Activating the SIRT1/eNOS Signaling Pathway. Theranostics, 10, 9425-9442. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Jiang, Z., Liu, Y., Niu, X., Yin, J., Hu, B., Guo, S., et al. (2016) Exosomes Secreted by Human Urine-Derived Stem Cells Could Prevent Kidney Complications from Type I Diabetes in Rats. Stem Cell Research & Therapy, 7, Article No. 24. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Eirin, A., Zhu, X., Ebrahimi, B., Krier, J.D., Riester, S.M., Van Wijnen, A.J., et al. (2015) Intrarenal Delivery of Mesenchymal Stem Cells and Endothelial Progenitor Cells Attenuates Hypertensive Cardiomyopathy in Experimental Renovascular Hypertension. Cell Transplantation, 24, 2041-2053. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Shi, Z., Wang, Q., Zhang, Y. and Jiang, D. (2020) Extracellular Vesicles Produced by Bone Marrow Mesenchymal Stem Cells Attenuate Renal Fibrosis, in Part by Inhibiting the Rhoa/rock Pathway, in a UUO Rat Model. Stem Cell Research & Therapy, 11, Article No. 253. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Zou, X., Zhang, G., Cheng, Z., Yin, D., Du, T., Ju, G., et al. (2014) Microvesicles Derived from Human Wharton’s Jelly Mesenchymal Stromal Cells Ameliorate Renal Ischemia-Reperfusion Injury in Rats by Suppressing Cx3cl1. Stem Cell Research & Therapy, 5, Article No. 40. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Maegdefessel, L., Spin, J.M., Raaz, U., Eken, S.M., Toh, R., Azuma, J., et al. (2014) miR-24 Limits Aortic Vascular Inflammation and Murine Abdominal Aneurysm Development. Nature Communications, 5, Article No. 5214. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Hu, X., Shen, N., Liu, A., Wang, W., Zhang, L., Sui, Z., et al. (2022) Bone Marrow Mesenchymal Stem Cell-Derived Exosomal miR-34c-5p Ameliorates RIF by Inhibiting the Core Fucosylation of Multiple Proteins. Molecular Therapy, 30, 763-781. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Jin, J., Shi, Y., Gong, J., Zhao, L., Li, Y., He, Q., et al. (2019) Exosome Secreted from Adipose-Derived Stem Cells Attenuates Diabetic Nephropathy by Promoting Autophagy Flux and Inhibiting Apoptosis in Podocyte. Stem Cell Research & Therapy, 10, Article No. 95. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Zhong, L., Liao, G., Wang, X., Li, L., Zhang, J., Chen, Y., et al. (2018) Mesenchymal Stem Cells-Microvesicle-miR-451a Ameliorate Early Diabetic Kidney Injury by Negative Regulation of P15 and P19. Experimental Biology and Medicine, 243, 1233-1242. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Frescaline, G., Bouderlique, T., Huynh, M.B., Papy-Garcia, D., Courty, J. and Albanese, P. (2012) Glycosaminoglycans Mimetics Potentiate the Clonogenicity, Proliferation, Migration and Differentiation Properties of Rat Mesenchymal Stem Cells. Stem Cell Research, 8, 180-192. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Morigi, M., Imberti, B., Zoja, C., Corna, D., Tomasoni, S., Abbate, M., et al. (2004) Mesenchymal Stem Cells Are Renotropic, Helping to Repair the Kidney and Improve Function in Acute Renal Failure. Journal of the American Society of Nephrology, 15, 1794-1804. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Gao, X., Song, L., Shen, K., Wang, H., Qian, M., Niu, W., et al. (2014) Bone Marrow Mesenchymal Stem Cells Promote the Repair of Islets from Diabetic Mice through Paracrine Actions. Molecular and Cellular Endocrinology, 388, 41-50. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Zang, L., Li, Y., Hao, H., Liu, J., Cheng, Y., Li, B., et al. (2022) Efficacy and Safety of Umbilical Cord-Derived Mesenchymal Stem Cells in Chinese Adults with Type 2 Diabetes: A Single-Center, Double-Blinded, Randomized, Placebo-Controlled Phase II Trial. Stem Cell Research & Therapy, 13, Article No. 180. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Zhuang, Q., Ma, R., Yin, Y., Lan, T., Yu, M. and Ming, Y. (2019) Mesenchymal Stem Cells in Renal Fibrosis: The Flame of Cytotherapy. Stem Cells International, 2019, 1-18. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Tang, H., Zhang, P., Zeng, L., Zhao, Y., Xie, L. and Chen, B. (2024) Retraction Note: Mesenchymal Stem Cells Ameliorate Renal Fibrosis by Galectin-3/Akt/GSK3β/snail Signaling Pathway in Adenine-Induced Nephropathy Rat. Stem Cell Research & Therapy, 15, Article No. 52. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Li, S., Wang, Y., Wang, Z., Chen, L., Zuo, B., Liu, C., et al. (2021) Enhanced Renoprotective Effect of GDNF-Modified Adipose-Derived Mesenchymal Stem Cells on Renal Interstitial Fibrosis. Stem Cell Research & Therapy, 12, Article No. 27. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Grange, C., Tritta, S., Tapparo, M., Cedrino, M., Tetta, C., Camussi, G., et al. (2019) Stem Cell-Derived Extracellular Vesicles Inhibit and Revert Fibrosis Progression in a Mouse Model of Diabetic Nephropathy. Scientific Reports, 9, Article No. 4468. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Mao, R., Shen, J. and Hu, X. (2023) Retraction Notice to “BMSCs-Derived Exosomal Microrna-Let-7a Plays a Protective Role in Diabetic Nephropathy via Inhibition of USP22 Expression” [Life Sci. 268 (2021) 118937]. Life Sciences, 318, Article 121422. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Huang, K., Chen, C., Hao, J., Huang, J., Liu, P. and Huang, H. (2015) Ages-Rage System Down-Regulates Sirt1 through the Ubiquitin-Proteasome Pathway to Promote FN and Tgf-Β1 Expression in Male Rat Glomerular Mesangial Cells. Endocrinology, 156, 268-279. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Wu, J., Zheng, C., Fan, Y., Zeng, C., Chen, Z., Qin, W., et al. (2014) Downregulation of Microrna-30 Facilitates Podocyte Injury and Is Prevented by Glucocorticoids. Journal of the American Society of Nephrology, 25, 92-104. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Yan, N., Wen, L., Peng, R., Li, H., Liu, H., Peng, H., et al. (2016) Naringenin Ameliorated Kidney Injury through Let-7a/tgfbr1 Signaling in Diabetic Nephropathy. Journal of Diabetes Research, 2016, Article ID: 8738760. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Cai, X., Zou, F., Xuan, R. and Lai, X. (2021) Exosomes from Mesenchymal Stem Cells Expressing Microribonucleic Acid-125b Inhibit the Progression of Diabetic Nephropathy via the Tumour Necrosis Factor Receptor-Associated Factor 6/Akt Axis. Endocrine Journal, 68, 817-828. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Wang, B., Yao, K., Huuskes, B.M., Shen, H., Zhuang, J., Godson, C., et al. (2016) Mesenchymal Stem Cells Deliver Exogenous Microrna-Let7c via Exosomes to Attenuate Renal Fibrosis. Molecular Therapy, 24, 1290-1301. [Google Scholar] [CrossRef] [PubMed]
|