|
[1]
|
Wang, L., Wang, N., Zhang, W., Cheng, X., Yan, Z., Shao, G., et al. (2022) Therapeutic Peptides: Current Applications and Future Directions. Signal Transduction and Targeted Therapy, 7, Article No. 48. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Muttenthaler, M., King, G.F., Adams, D.J. and Alewood, P.F. (2021) Trends in Peptide Drug Discovery. Nature Reviews Drug Discovery, 20, 309-325. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Xiao, W., Jiang, W., Chen, Z., Huang, Y., Mao, J., Zheng, W., et al. (2025) Advance in Peptide-Based Drug Development: Delivery Platforms, Therapeutics and Vaccines. Signal Transduction and Targeted Therapy, 10, Article No. 74. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Lau, J.L. and Dunn, M.K. (2018) Therapeutic Peptides: Historical Perspectives, Current Development Trends, and Future Directions. Bioorganic & Medicinal Chemistry, 26, 2700-2707. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Ghosh, D., Peng, X., Leal, J. and Mohanty, R.P. (2017) Peptides as Drug Delivery Vehicles across Biological Barriers. Journal of Pharmaceutical Investigation, 48, 89-111. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Góngora-Benítez, M., Tulla-Puche, J. and Albericio, F. (2013) Multifaceted Roles of Disulfide Bonds. Peptides as Therapeutics. Chemical Reviews, 114, 901-926. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Davda, J., Declerck, P., Hu-Lieskovan, S., Hickling, T.P., Jacobs, I.A., Chou, J., et al. (2019) Immunogenicity of Immunomodulatory, Antibody-Based, Oncology Therapeutics. Journal for ImmunoTherapy of Cancer, 7, Article 105. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Craik, D.J., Fairlie, D.P., Liras, S. and Price, D. (2012) The Future of Peptide-Based Drugs. Chemical Biology & Drug Design, 81, 136-147. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
López-Otín, C. and Bond, J.S. (2008) Proteases: Multifunctional Enzymes in Life and Disease. Journal of Biological Chemistry, 283, 30433-30437. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Alavi, S.E., Cabot, P.J. and Moyle, P.M. (2019) Glucagon-Like Peptide-1 Receptor Agonists and Strategies to Improve Their Efficiency. Molecular Pharmaceutics, 16, 2278-2295. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Merseburger, A.S. and Roesch, M.C. (2022) Advanced Delivery of Leuprorelin Acetate for the Treatment of Prostatic Cancer. Expert Review of Anticancer Therapy, 22, 703-715. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Han, L., Zhai, C., Da, L. and Sun, Y. (2025) The Effect of Leuprolide Acetate 11.25 mg 3-Month Formulation in Children with Central Precocious Puberty: A Systematic Review and Meta-Analysis. Advances in Therapy, 42, 5282-5299. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Zhang, P., Jiang, Y., Xu, C., Zhou, L., Zheng, H., Xie, D., et al. (2023) Pegmolesatide for the Treatment of Anemia in Patients Undergoing Dialysis: A Randomized Clinical Trial. eClinicalMedicine, 65, Article ID: 102273. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Toivanen, P.I., Nieminen, T., Laakkonen, J.P., Heikura, T., Kaikkonen, M.U. and Ylä-Herttuala, S. (2017) Snake Venom VEGF Vammin Induces a Highly Efficient Angiogenic Response in Skeletal Muscle via VEGFR-2/NRP Specific Signaling. Scientific Reports, 7, Article No. 5525. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Ma, C., Wei, T., Hua, Y., Wang, Z. and Zhang, L. (2021) Effective Antitumor of Orally Intestinal Targeting Penetrating Peptide-Loaded Tyroserleutide/PLGA Nanoparticles in Hepatocellular Carcinoma. International Journal of Nanomedicine, 16, 4495-4513. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Awan, A.R., Shaw, W.M. and Ellis, T. (2016) Biosynthesis of Therapeutic Natural Products Using Synthetic Biology. Advanced Drug Delivery Reviews, 105, 96-106. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
George, C., Byun, A. and Howard-Thompson, A. (2018) New Injectable Agents for the Treatment of Type 2 Diabetes Part 2—Glucagon-Like Peptide-1 (GLP-1) Agonists. The American Journal of Medicine, 131, 1304-1306. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Hauser, A.S., Attwood, M.M., Rask-Andersen, M., Schiöth, H.B. and Gloriam, D.E. (2017) Trends in GPCR Drug Discovery: New Agents, Targets and Indications. Nature Reviews Drug Discovery, 16, 829-842. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Hamad, F., Elnour, A.A., Elamin, A., Mohamed, S., Yousif, I., Don, J., et al. (2021) Systematic Review of Glucagon-Like Peptide One Receptor Agonist Liraglutide of Subjects with Heart Failure with Reduced Left Ventricular Ejection Fraction. Current Diabetes Reviews, 17, 280-292. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Knudsen, L.B. and Lau, J. (2019) The Discovery and Development of Liraglutide and Semaglutide. Frontiers in Endocrinology, 10, Article 155. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Li, Y., Cheng, Z., Lu, W., Li, P., Jiang, H., Yang, J., et al. (2023) Efficacy of Noiiglutide Injection on Body Weight in Obese Chinese Adults without Diabetes: A Multicentre, Randomized, Double‐Blind, Placebo‐Controlled, Phase 2 Trial. Diabetes, Obesity and Metabolism, 26, 1057-1068. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Jayaweera, S.P.E., Wanigasinghe Kanakanamge, S.P., Rajalingam, D. and Silva, G.N. (2021) Carfilzomib: A Promising Proteasome Inhibitor for the Treatment of Relapsed and Refractory Multiple Myeloma. Frontiers in Oncology, 11, Article 740796. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Gomes, N.G.M., Valentao, P., Andrade, P.B., and Pereira, R.B., (2020) Plitidepsin to Treat Multiple Myeloma. Drugs of Today, 56, 337-347. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Li, C.M., Haratipour, P., Lingeman, R.G., Perry, J.J.P., Gu, L., Hickey, R.J., et al. (2021) Novel Peptide Therapeutic Approaches for Cancer Treatment. Cells, 10, Article 2908. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Desgrosellier, J.S. and Cheresh, D.A. (2010) Integrins in Cancer: Biological Implications and Therapeutic Opportunities. Nature Reviews Cancer, 10, 9-22. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Alves de Souza, S.M., Hernández-Ledesma, B. and de Souza, T.L.F. (2022) Lunasin as a Promising Plant-Derived Peptide for Cancer Therapy. International Journal of Molecular Sciences, 23, Article 9548. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Yang, Y. (2015) Cancer Immunotherapy: Harnessing the Immune System to Battle Cancer. Journal of Clinical Investigation, 125, 3335-3337. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Sasikumar, P.G., Ramachandra, R.K., Adurthi, S., Dhudashiya, A.A., Vadlamani, S., Vemula, K., et al. (2019) A Rationally Designed Peptide Antagonist of the PD-1 Signaling Pathway as an Immunomodulatory Agent for Cancer Therapy. Molecular Cancer Therapeutics, 18, 1081-1091. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Maxwell, J.E. and Howe, J.R. (2015) Imaging in Neuroendocrine Tumors: An Update for the Clinician. International Journal of Endocrine Oncology, 2, 159-168. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Zhang, J., Hu, H., Liang, S., Yin, J., Hui, X., Hu, S., et al. (2013) Targeted Radiotherapy with Tumor Vascular Homing Trimeric GEBP11 Peptide Evaluated by Multimodality Imaging for Gastric Cancer. Journal of Controlled Release, 172, 322-329. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Escala Cornejo, R.A., García-Talavera, P., Navarro Martin, M., Pérez López, B., García Muñoz, M., Tamayo Alonso, M.P., et al. (2018) Large Cell Neuroendocrine Carcinoma of the Lung with Atypical Evolution and a Remarkable Response to Lutetium Lu 177 Dotatate. Annals of Nuclear Medicine, 32, 568-572. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Zhang, M. and Xu, H. (2023) Peptide-Assembled Nanoparticles Targeting Tumor Cells and Tumor Microenvironment for Cancer Therapy. Frontiers in Chemistry, 11, Article 1115495. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Rossino, G., Marchese, E., Galli, G., Verde, F., Finizio, M., Serra, M., et al. (2023) Peptides as Therapeutic Agents: Challenges and Opportunities in the Green Transition Era. Molecules, 28, Article 7165. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Rosenthal, S., Decano, A.G., Bandali, A., et al. (2018) Oritavancin (Orbactiv): A New-Generation Lipoglycopeptide for the Treatment of Acute Bacterial Skin and Skin Structure Infections. P T, 43, 143-179.
|
|
[35]
|
Ongey, E.L. and Neubauer, P. (2016) Lanthipeptides: Chemical Synthesis versus in Vivo Biosynthesis as Tools for Pharmaceutical Production. Microbial Cell Factories, 15, Article No. 97. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Mandel, S., Michaeli, J., Nur, N., Erbetti, I., Zazoun, J., Ferrari, L., et al. (2021) OMN6 a Novel Bioengineered Peptide for the Treatment of Multidrug Resistant Gram Negative Bacteria. Scientific Reports, 11, Article No. 6603. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Dumville, J.C., Lipsky, B.A., Hoey, C., Cruciani, M., Fiscon, M. and Xia, J. (2017) Topical Antimicrobial Agents for Treating Foot Ulcers in People with Diabetes. Cochrane Database of Systematic Reviews, 6, CD011038. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Samreen, Ahmad, I., Malak, H.A. and Abulreesh, H.H. (2021) Environmental Antimicrobial Resistance and Its Drivers: A Potential Threat to Public Health. Journal of Global Antimicrobial Resistance, 27, 101-111. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
de Castro, N., Braun, J., Charreau, I., Lafeuillade, A., Viard, J., Allavena, C., et al. (2016) Incidence and Risk Factors for Liver Enzymes Elevations in Highly Treatment-Experienced Patients Switching from Enfuvirtide to Raltegravir: A Sub-Study of the ANRS-138 EASIER Trial. AIDS Research and Therapy, 13, Article No. 17. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Garnock-Jones, K.P. (2012) Boceprevir: A Review of Its Use in the Management of Chronic Hepatitis C Genotype 1 Infection. Drugs, 72, 2431-2456. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Youssef, J.G., Lavin, P., Schoenfeld, D.A., Lee, R.A., Lenhardt, R., Park, D.J., et al. (2022) The Use of IV Vasoactive Intestinal Peptide (Aviptadil) in Patients with Critical COVID-19 Respiratory Failure: Results of a 60-Day Randomized Controlled Trial. Critical Care Medicine, 50, 1545-1554. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Bai, Y., Jones, J.C., Wong, S. and Zanin, M. (2021) Antivirals Targeting the Surface Glycoproteins of Influenza Virus: Mechanisms of Action and Resistance. Viruses, 13, Article 624. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Yu, D., Ding, X., Liu, Z., Wu, X., Zhu, Y., Wei, H., et al. (2018) Molecular Mechanism of HIV-1 Resistance to Sifuvirtide, a Clinical Trial-Approved Membrane Fusion Inhibitor. Journal of Biological Chemistry, 293, 12703-12718. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Lee, G., Lee, Y., Chang, M., Kang, S.U.K., Ryou, J., Lim, J., et al. (2019) P120 BBT-401 Is a Selective Pellino-1 Protein-Protein Interaction Inhibitor in Clinical Development Targeting a First-In-Class Drug for UC Treatment. Inflammatory Bowel Diseases, 25, S58-S58. [Google Scholar] [CrossRef]
|
|
[45]
|
Liossis, S.N. and Staveri, C. (2021) What’s New in the Treatment of Systemic Lupus Erythematosus. Frontiers in Medicine, 8, Article 655100. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Drucker, D.J. (2019) The Discovery of GLP-2 and Development of Teduglutide for Short Bowel Syndrome. ACS Pharmacology & Translational Science, 2, 134-142. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Gorman, D.M., Lee, J., Payne, C.D., Woodruff, T.M. and Clark, R.J. (2021) Chemical Synthesis and Characterisation of the Complement C5 Inhibitory Peptide Zilucoplan. Amino Acids, 53, 143-147. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Min, T. and Bain, S.C. (2020) The Role of Tirzepatide, Dual GIP and GLP-1 Receptor Agonist, in the Management of Type 2 Diabetes: The SURPASS Clinical Trials. Diabetes Therapy, 12, 143-157. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Ambery, P., Parker, V.E., Stumvoll, M., Posch, M.G., Heise, T., Plum-Moerschel, L., et al. (2018) MEDI0382, a GLP-1 and Glucagon Receptor Dual Agonist, in Obese or Overweight Patients with Type 2 Diabetes: A Randomised, Controlled, Double-Blind, Ascending Dose and Phase 2a Study. The Lancet, 391, 2607-2618. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Lin, L., Ting, S., Yufei, H., Wendong, L., Yubo, F. and Jing, Z. (2020) Epitope-Based Peptide Vaccines Predicted against Novel Coronavirus Disease Caused by SARS-CoV-2. Virus Research, 288, Article ID: 198082. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Bhattacharya, M., Sharma, A.R., Patra, P., Ghosh, P., Sharma, G., Patra, B.C., et al. (2020) Development of Epitope‐based Peptide Vaccine against Novel Coronavirus 2019 (SARS‐COV‐2): Immunoinformatics Approach. Journal of Medical Virology, 92, 618-631. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Mauriello, A., Cavalluzzo, B., Manolio, C., Ragone, C., Luciano, A., Barbieri, A., et al. (2021) Long-Term Memory T Cells as Preventive Anticancer Immunity Elicited by Tua-Derived Heteroclitic Peptides. Journal of Translational Medicine, 19, Article No. 526. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Hu, Z., Leet, D.E., Allesøe, R.L., Oliveira, G., Li, S., Luoma, A.M., et al. (2021) Personal Neoantigen Vaccines Induce Persistent Memory T Cell Responses and Epitope Spreading in Patients with Melanoma. Nature Medicine, 27, 515-525. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Iversen, P.L., Kipshidze, N., Kipshidze, N., Dangas, G., Ramacciotti, E., Kakabadze, Z., et al. (2023) A Novel Therapeutic Vaccine Targeting the Soluble TNFα Receptor II to Limit the Progression of Cardiovascular Disease: AtheroVax™. Frontiers in Cardiovascular Medicine, 10, Article 1206541. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Cabri, W., Cantelmi, P., Corbisiero, D., Fantoni, T., Ferrazzano, L., Martelli, G., et al. (2021) Therapeutic Peptides Targeting PPI in Clinical Development: Overview, Mechanism of Action and Perspectives. Frontiers in Molecular Biosciences, 8, Article 697586. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Abd-Aziz, N. and Poh, C.L. (2022) Development of Peptide-Based Vaccines for Cancer. Journal of Oncology, 2022, Article ID: 9749363. [Google Scholar] [CrossRef] [PubMed]
|