|
[1]
|
Wardlaw, J.M., Smith, C. and Dichgans, M. (2019) Small Vessel Disease: Mechanisms and Clinical Implications. The Lancet Neurology, 18, 684-696. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Wardlaw, J.M., Smith, E.E., Biessels, G.J., Cordonnier, C., Fazekas, F., Frayne, R., et al. (2013) Neuroimaging Standards for Research into Small Vessel Disease and Its Contribution to Ageing and Neurodegeneration. The Lancet Neurology, 12, 822-838. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Pantoni, L. (2010) Cerebral Small Vessel Disease: From Pathogenesis and Clinical Characteristics to Therapeutic Challenges. The Lancet Neurology, 9, 689-701. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Gillies, R.J., Kinahan, P.E. and Hricak, H. (2016) Radiomics: Images Are More than Pictures, They Are Data. Radiology, 278, 563-577. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Nation, D.A., Sweeney, M.D., Montagne, A., Sagare, A.P., D’Orazio, L.M., Pachicano, M., et al. (2019) Blood-Brain Barrier Breakdown Is an Early Biomarker of Human Cognitive Dysfunction. Nature Medicine, 25, 270-276. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Iadecola, C., Duering, M., Hachinski, V., Joutel, A., Pendlebury, S.T., Schneider, J.A., et al. (2019) Vascular Cognitive Impairment and Dementia. Journal of the American College of Cardiology, 73, 3326-3344. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Bagi, Z., Kroenke, C.D., Fopiano, K.A., Tian, Y., Filosa, J.A., Sherman, L.S., et al. (2022) Association of Cerebral Microvascular Dysfunction and White Matter Injury in Alzheimer’s Disease. GeroScience, 44, 1-14. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Xiao, H., He, X., Zhou, W., Guo, X., Cai, X. and Li, T. (2025) The Application of Radiomics in the Diagnosis and Evaluation of Cognitive Impairment Related to Neurological Diseases. Frontiers in Neuroscience, 19, Article ID: 1591605. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
ter Telgte, A., van Leijsen, E.M.C., Wiegertjes, K., Klijn, C.J.M., Tuladhar, A.M. and de Leeuw, F. (2018) Cerebral Small Vessel Disease: From a Focal to a Global Perspective. Nature Reviews Neurology, 14, 387-398. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Akoudad, S., Wolters, F.J., Viswanathan, A., de Bruijn, R.F., van der Lugt, A., Hofman, A., et al. (2016) Association of Cerebral Microbleeds with Cognitive Decline and Dementia. JAMA Neurology, 73, 934-943. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Wardlaw, J.M., Smith, C. and Dichgans, M. (2013) Mechanisms of Sporadic Cerebral Small Vessel Disease: Insights from Neuroimaging. The Lancet Neurology, 12, 483-497.
|
|
[12]
|
Zhang, C.E., Wong, S.M., Uiterwijk, R., Backes, W.H., Jansen, J.F.A., Jeukens, C., van Oostenbrugge, R.J. and Staals, J. (2019) Blood-Brain Barrier Leakage in Relation to White Matter Hyperintensity Volume and Cognition in Small Vessel Disease and Normal Aging. Brain Imaging and Behavior, 13, 389-395.
|
|
[13]
|
Rouhl, R.P., Damoiseaux, J.G., Lodder, J., Theunissen, R.O., Knottnerus, I.L., Staals, J., Henskens, L.H., Kroon, A.A., de Leeuw, P.W., Tervaert, J.W. and van Oostenbrugge, R.J. (2012) Vascular Inflammation in Cerebral Small Vessel Disease. Neurobiology of Aging, 33, 1800-1806.
|
|
[14]
|
Rajeev, V., Fann, D.Y., Dinh, Q.N., Kim, H.A., De Silva, T.M., Lai, M.K.P., Chen, C.L., Drummond, G.R., Sobey, C.G. and Arumugam, T.V. (2022) Pathophysiology of Blood Brain Barrier Dysfunction during Chronic Cerebral Hypoperfusion in Vascular Cognitive Impairment. Theranostics, 12, 1639-1658.
|
|
[15]
|
Iadecola, C. (2013) The Pathobiology of Vascular Dementia. Neuron, 80, 844-866.
|
|
[16]
|
Montagne, A., Barnes, S.R., Sweeney, M.D., Halliday, M.R., Sagare, A.P., Zhao, Z., et al. (2015) Blood-Brain Barrier Breakdown in the Aging Human Hippocampus. Neuron, 85, 296-302. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Iadecola, C. (2017) The Neurovascular Unit Coming of Age: A Journey through Neurovascular Coupling in Health and Disease. Neuron, 96, 17-42. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Liang, Z., Wu, L., Gong, S. and Liu, X. (2021) The Cognitive Dysfunction Related to Alzheimer Disease or Cerebral Small Vessel Disease. Medicine, 100, e26967. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Liao, Q., Hu, X., Jiang, Z., Huang, X., Guo, J., Zhu, Y., et al. (2025) The Value of Radiomics Features of White Matter Hyperintensities in Diagnosing Cognitive Frailty: A Study Based on T2-FLAIR Imaging. BMC Medical Imaging, 25, Article No. 181. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Han, X., Wang, Y., Chen, Y., Qiu, Y., Gu, X., Dai, Y., et al. (2024) Predicting White-Matter Hyperintensity Progression and Cognitive Decline in Patients with Cerebral Small-Vessel Disease: A Magnetic Resonance-Based Habitat Analysis. Quantitative Imaging in Medicine and Surgery, 14, 6621-6634. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Baykara, E., Gesierich, B., Adam, R., Tuladhar, A.M., Biesbroek, J.M., Koek, H.L., et al. (2016) A Novel Imaging Marker for Small Vessel Disease Based on Skeletonization of White Matter Tracts and Diffusion Histograms. Annals of Neurology, 80, 581-592. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Zwanenburg, A., Vallières, M., Abdalah, M.A., Aerts, H.J.W.L., Andrearczyk, V., Apte, A., et al. (2020) The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-Based Phenotyping. Radiology, 295, 328-338. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Li, H., Jiang, G., Zhang, J., Wang, R., Wang, Z., Zheng, W., et al. (2018) Fully Convolutional Network Ensembles for White Matter Hyperintensities Segmentation in MR Images. NeuroImage, 183, 650-665. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
van Griethuysen, J.J.M., Fedorov, A., Parmar, C., Hosny, A., Aucoin, N., Narayan, V., et al. (2017) Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Research, 77, e104-e107. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Daneshvar, A. and Mousa, G. (2023) Regression Shrinkage and Selection via Least Quantile Shrinkage and Selection Operator. PLOS ONE, 18, e0266267. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Cao, J., Zhang, L., Wang, B., Li, F. and Yang, J. (2015) A Fast Gene Selection Method for Multi-Cancer Classification Using Multiple Support Vector Data Description. Journal of Biomedical Informatics, 53, 381-389. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Greener, J.G., Kandathil, S.M., Moffat, L. and Jones, D.T. (2021) A Guide to Machine Learning for Biologists. Nature Reviews Molecular Cell Biology, 23, 40-55. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Huang, L., Li, Z., Zhu, X., Zhao, H., Mao, C., Ke, Z., et al. (2025) Deep Adaptive Learning Predicts and Diagnoses CSVD-Related Cognitive Decline Using Radiomics from T2-FLAIR: A Multi-Centre Study. npj Digital Medicine, 8, Article No. 444. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Lin, G., Chen, W., Geng, Y., Peng, B., Liu, S., Chen, M., et al. (2025) A Multimodal MRI-Based Machine Learning Framework for Classifying Cognitive Impairment in Cerebral Small Vessel Disease. Scientific Reports, 15, Article No. 13112. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Inoue, Y., Shue, F., Bu, G. and Kanekiyo, T. (2023) Pathophysiology and Probable Etiology of Cerebral Small Vessel Disease in Vascular Dementia and Alzheimer’s Disease. Molecular Neurodegeneration, 18, Article No. 46. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
邱悦, 徐阳, 薛婧, 等. 脑小血管病与代谢: 危险因素、治疗靶点和未来方向[J]. 中国卒中杂志, 2024, 19(12): 1392-1399.
|
|
[32]
|
Iadecola, C. and Gottesman, R.F. (2019) Neurovascular and Cognitive Dysfunction in Hypertension. Circulation Research, 124, 1025-1044. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Khalil, M., Teunissen, C.E., Lehmann, S., Otto, M., Piehl, F., Ziemssen, T., et al. (2024) Neurofilaments as Biomarkers in Neurological Disorders—Towards Clinical Application. Nature Reviews Neurology, 20, 269-287. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
柯维春, 陈向红, 苏庆杰. 血清GFAP、Hcy与Fazekas评分对脑小血管病患者认知障碍的预测价值[J]. 脑与神经疾病杂志, 2022, 30(1): 45-49.
|
|
[35]
|
Teng, Z., Feng, J., Xie, X., Xu, J., Jiang, X. and Lv, P. (2024) A Nomogram Including Total Cerebral Small Vessel Disease Burden Score for Predicting Mild Vascular Cognitive Impairment in Patients with Type 2 Diabetes Mellitus. Diabetes, Metabolic Syndrome and Obesity, 17, 1553-1562. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Prins, N.D. and Scheltens, P. (2015) White Matter Hyperintensities, Cognitive Impairment and Dementia: An Update. Nature Reviews Neurology, 11, 157-165. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Tuladhar, A.M., Reid, A.T., Shumskaya, E., de Laat, K.F., van Norden, A.G.W., van Dijk, E.J., et al. (2015) Relationship between White Matter Hyperintensities, Cortical Thickness, and Cognition. Stroke, 46, 425-432. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
田一锋, 刘纯钢, 袁艳梅. 脑白质病变部位及程度对老年患者认知功能的影响[J]. 现代医学, 2015, 43(2): 247-249.
|
|
[39]
|
Hairu, R., Close, J.C.T., Lord, S.R., Delbaere, K., Wen, W., Jiang, J., et al. (2021) The Association between White Matter Hyperintensity Volume and Cognitive/Physical Decline in Older People with Dementia: A One-Year Longitudinal Study. Aging & Mental Health, 26, 2503-2510. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Gesierich, B., Tuladhar, A.M., ter Telgte, A., Wiegertjes, K., Konieczny, M.J., Finsterwalder, S., et al. (2020) Alterations and Test-Retest Reliability of Functional Connectivity Network Measures in Cerebral Small Vessel Disease. Human Brain Mapping, 41, 2629-2641. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Tozer, D.J., Zeestraten, E., Lawrence, A.J., Barrick, T.R. and Markus, H.S. (2018) Texture Analysis of T1-Weighted and Fluid-Attenuated Inversion Recovery Images Detects Abnormalities that Correlate with Cognitive Decline in Small Vessel Disease. Stroke, 49, 1656-1661. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Bretzner, M., Bonkhoff, A.K., Schirmer, M.D., Hong, S., Dalca, A.V., Donahue, K.L., et al. (2021) MRI Radiomic Signature of White Matter Hyperintensities Is Associated with Clinical Phenotypes. Frontiers in Neuroscience, 15, Article ID: 691244. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Membreno, R., Thomas, K.R., Calcetas, A.T., Edwards, L., Bordyug, M., Showell, M., et al. (2023) Regional White Matter Hyperintensities Relate to Specific Cognitive Abilities in Older Adults without Dementia. Alzheimer Disease & Associated Disorders, 37, 303-309. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Shu, Z., Xu, Y., Shao, Y., Pang, P. and Gong, X. (2020) Radiomics from Magnetic Resonance Imaging May Be Used to Predict the Progression of White Matter Hyperintensities and Identify Associated Risk Factors. European Radiology, 30, 3046-3058. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Du, L., Wang, L., Shen, G., Zeng, M., Li, D. and Li, W. (2025) Progress of Radiomics Research on White Matter Hyperintensity Lesions. Frontiers in Neurology, 16, Article ID: 1647724. [Google Scholar] [CrossRef]
|
|
[46]
|
Stewart, C.R., Stringer, M.S., Shi, Y., Thrippleton, M.J. and Wardlaw, J.M. (2021) Associations between White Matter Hyperintensity Burden, Cerebral Blood Flow and Transit Time in Small Vessel Disease: An Updated Meta-Analysis. Frontiers in Neurology, 12, Article ID: 647848. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Su, J., Huang, Q., Ren, S., Xie, F., Zhai, Y., Guan, Y., et al. (2019) Altered Brain Glucose Metabolism Assessed by 18F-FDG PET Imaging Is Associated with the Cognitive Impairment of Cadasil. Neuroscience, 417, 35-44. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Dupré, N., Drieu, A. and Joutel, A. (2024) Pathophysiology of Cerebral Small Vessel Disease: A Journey through Recent Discoveries. Journal of Clinical Investigation, 134, e172841. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Shu, Z., Shao, Y., Xu, Y., Ye, Q., Cui, S., Mao, D., et al. (2020) Radiomics Nomogram Based on MRI for Predicting White Matter Hyperintensity Progression in Elderly Adults. Journal of Magnetic Resonance Imaging, 51, 535-546. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Lundervold, A.S. and Lundervold, A. (2019) An Overview of Deep Learning in Medical Imaging Focusing on MRI. Zeitschrift für Medizinische Physik, 29, 102-127. [Google Scholar] [CrossRef] [PubMed]
|