NF-κB/Bcl-2/Caspase 3信号通路与吲哚美辛作用机制的综述与假说:急性胰腺炎胃肠道功能受损的潜在机制研究
Review and Hypothesis on the NF-κB/Bcl-2/Caspase 3 Signaling Pathway and the Mechanism of Action of Indomethacin: Research on the Potential Mechanism of Gastrointestinal Dysfunction in Acute Pancreatitis
DOI: 10.12677/acm.2026.161006, PDF, HTML, XML,   
作者: 付 民:承德医学院研究生学院,河北 承德;陈治国*:承德市中心医院急诊科,河北 承德
关键词: 急性胰腺炎NF-κB信号通路Bcl-2/Caspase 3信号通路吲哚美辛Acute Pancreatitis NF-κB Signaling Pathway Bcl-2/Caspase 3 Signaling Pathway Indomethacin
摘要: 急性胰腺炎是一种严重的炎症性疾病,可导致胃肠道功能障碍,增加病死率。NF-κB信号通路在急性胰腺炎的炎症反应中起关键作用,其激活可诱导多种炎症因子和抗凋亡蛋白的表达,加剧炎症并影响细胞存活。Bcl-2/Caspase 3信号通路也与急性胰腺炎的发展密切相关,调节细胞凋亡过程。NF-κB信号通路与Bcl-2/Caspase 3信号通路存在联系,NF-κB的激活可影响Bcl-2家族蛋白的表达,进而调控细胞凋亡。吲哚美辛是一种非甾体类抗炎药,已被发现可降低急性胰腺炎的风险并减轻胰腺损伤,但其具体机制尚不明确。吲哚美辛是否可以抑制NF-κB信号通路的激活还有待探索,未来可进一步研究吲哚美辛在调节NF-κB和Bcl-2/Caspase 3信号通路中的作用,从而缓解急性胰腺炎引起的胃肠道损伤。
Abstract: Acute pancreatitis is a severe inflammatory condition that can lead to gastrointestinal dysfunction and increased mortality. The NF-κB signaling pathway plays a key role in the inflammatory response of acute pancreatitis; its activation induces the expression of various inflammatory cytokines and anti-apoptotic proteins, thereby exacerbating inflammation and affecting cell survival. The Bcl-2/Caspase 3 signaling pathway is also closely associated with the progression of acute pancreatitis, regulating the process of cell apoptosis. There is crosstalk between the NF-κB and Bcl-2/Caspase 3 pathways—activation of NF-κB can influence the expression of Bcl-2 family proteins, thereby modulating apoptosis. Indomethacin, a nonsteroidal anti-inflammatory drug, has been found to reduce the risk of acute pancreatitis and alleviate pancreatic injury, but its precise mechanism remains unclear. Whether indomethacin can suppress the activation of the NF-κB signaling pathway warrants further investigation. Future studies may explore the role of indomethacin in modulating both the NF-κB and Bcl-2/Caspase 3 pathways to mitigate gastrointestinal damage caused by acute pancreatitis.
文章引用:付民, 陈治国. NF-κB/Bcl-2/Caspase 3信号通路与吲哚美辛作用机制的综述与假说:急性胰腺炎胃肠道功能受损的潜在机制研究[J]. 临床医学进展, 2026, 16(1): 42-49. https://doi.org/10.12677/acm.2026.161006

1. 引言

急性胰腺炎(acute pancreatitis, AP),是一种因多种因素引发胰酶提前激活,进而对胰腺组织造成损伤的局部炎症性疾病,其病情发展过程中可能会对其他器官功能产生影响,也可能仅局限于胰腺本身[1]。AP在临床上可分为轻型、中度重症和重症3种类型,重症急性胰腺炎约占AP的20%,起病急、进展快,临床病理变化复杂,早期即可发生全身性炎症反应综合征(systemic inflammatory response syndrome, SIRS)、多器官功能障碍综合征(multiple organ dysfunction syndrome, MODS),病死率高达20%~30% [2] [3]。全球范围内,急性胰腺炎的发病率为23~49/10万,且该疾病复发风险较高[4]。在我国,人口老龄化的趋势推动了胰腺炎发病率逐年上升[5] [6]。胰腺炎在消化系统疾病中的影响力和关注度显著提升,对国民健康构成了严峻挑战。

2. 急性胰腺炎与胃肠道损伤

2.1. 急性胃肠道损伤及其可能机制

重症急性胰腺炎(severe acute pancreatitis, SAP)早期产生大量炎症介质、细胞因子和细菌毒素,导致血流动力学异常,对心、肝、肾和胃肠道等器官造成损害,严重时出现器官衰竭[7]。急性胃肠道损伤(acute gastrointestinal injury, AGI)是SAP患者最常见的并发症之一。由于胃肠道是全身菌群的储存库,因此具有调节免疫和炎症功能等功能,AGI发生时,患者有胃肠功能障碍和黏膜损伤,因此AGI的发生很可能与炎症反应、细胞凋亡、氧化应激、肠道菌群失调、微循环障碍等密切相关[8] [9]。AGI发生的机制一直处于不断探索中,王敏等[10]发现AGI是SAP的独立危险因素。因此,积极治疗AGI促进胃肠功能的恢复是缓解急性胰腺炎、降低死亡率、改善预后的关键。

2.2. 急性胃肠道损伤与紧密连接蛋白

健康的肠粘膜机械屏障由完整的上皮细胞和细胞旁连接复合物组成,紧密连接(tight junction, TJ)蛋白属于细胞旁连接复合物。主要的TJ蛋白是咬合蛋白(Occludin)、闭合蛋白(Claudins)和闭合小环蛋白(zonula occluden, ZO),它们增强肠道屏障以降低细胞的通透性。研究发现SAP发生时肠道组织ZO-1、Claudin-1和Occludin的mRNA和蛋白水平表达不足,而Claudin-2过度表达,Claudin-2蛋白导致细胞旁通透性增加[11]。这表明急性胰腺炎可引发肠道上皮细胞及细胞旁连接复合物的结构改变,成为其诱发胃肠道功能障碍的重要机制之一。NF-κB信号通路激活可造成TJ发生改变,ZO蛋白主要受NF-κB信号通路和细胞因子调控。NF-κB激活后可通过会引发一系列炎症反应,产生多种促炎细胞因子,一些细胞因子可直接作用于肠道上皮细胞,抑制紧密连接蛋白ZO-1、Occludin等的表达[12],NF-κB激活后也可以直接作用于紧密连接蛋白基因的启动子区域,抑制其转录,从而减少紧密连接蛋白的表达,从可能的机制上讲,炎症激活的NF-κB形成NF-κB-CBP (cAMP-response element binding protein binding protein, CBP)复合物,替代了CREB (cAMP-response element binding protein, CREB)-CBP蛋白复合物中的CREB,从而抑制ZO-1的表达。这种ZO-1表达的减少会加剧炎症损伤,并加速病理过程[13] [14]。除了在表达数量上的调控,NF-κB激活后,也可通过相关信号通路促进Occludin的内化,从而破坏紧密连接。例如,在TNF-α诱导的屏障功能丧失中,Occludin的内化被描述为MLCK肌球蛋白轻链激酶(myosin light-chain kinase, MLCK)依赖的过程,而NF-κB可正向调节MLCK的表达[15]。细胞凋亡可能也会降低紧密连接蛋白ZO-1、Occludin和Claudin-1的表达,这可能是通过凋亡通路中半胱天冬氨酸特异性蛋白酶(cysteine aspartate specific proteinase, caspase)活化实现的,Caspase-3是凋亡的关键执行者,其激活与紧密连接蛋白表达下降有关,Caspase的激活可能直接或间接地影响紧密连接蛋白的稳定性或转录水平,从而导致其表达下调[16]。细胞凋亡和炎症反应在肠道炎症中相互交织,炎症因子可诱导肠道上皮细胞凋亡,而凋亡细胞释放的物质又可加剧炎症反应,形成恶性循环。这种相互作用不仅加剧了肠道上皮细胞的损伤,还导致紧密连接蛋白的持续下调,使肠道屏障的完整性遭到破坏。AP引发胃肠道紧密连接蛋白改变的机制颇为繁杂,诸多环节的内在关联与作用原理尚未理清,有待后续更深入且系统的研究进一步夯实证据。

3. 急性胰腺炎与NF-κB信号通路

AP的早期阶段的特征是胰腺内胰酶的病理激活导致胰腺组织的自我消化,这种自消化将导致局部和全身炎症的激活[17]。多种信号通路贯穿于胰腺炎症的发生,包括PI3K/Akt、JAK/STAT和NF-κB等关键信号通路[18]。众所周知,NF-κB信号通路是一种成熟的炎症信号通路,可在胰腺腺泡细胞中引发炎症[19]。NF-κB的激活起始信号主要包括促炎细胞因子(如TNF-α和IL-1β)、病原体相关分子模式(pathogen-associated molecular patterns, PAMPs)以及损伤相关分子模式(damage-associated molecular patterns, DAMPs)。这些刺激信号最终转化为胰腺腺泡中可以激活NF-κB信号途径的多种病理刺激,例如钙过载,激活I-kappaB激酶(inhibitor of NF-κB kinase, IKK),导致NF-κB抑制蛋白(inhibitor of NF-κB, IκB)磷酸化、p65/50二聚体释放和核易位[18],进而调控细胞的状态。NF-κB的激活是通过经典、非经典和不常见的非典型激活途径来调控的,刺激信号通过其相应的受体激活IKK复合体,导致IκB蛋白的磷酸化和随后的泛素化降解。IκB的降解使得NF-κB二聚体得以释放并转移到细胞核内,激活目标基因的转录[20] [21]。NF-κB活化是AP中的关键炎症事件[22]。活化的NF-κB作为转录因子发挥作用,可以诱导促炎细胞因子、生长因子、趋化因子、粘附分子、环氧化酶(cyclooxygenase 2, COX2)和抗凋亡蛋白(如Bcl-XL、Bcl-2)的转录[23]-[25]。通过NF-κB激活从腺泡细胞释放的细胞因子有助于产生初始信号,进而导致中性粒细胞和淋巴细胞浸润到胰腺和肠道中,从而放大炎症反应[26]。一方面加剧各种细胞因子、趋化因子、粘附分子、氧自由基、血小板激活因子(platelet-activating factor, PAF)和内皮素的释放。另一方面,这些释放的细胞因子以及其他信号分子又通过高度特异性的受体结合模式激活NF-κB [27]。造成NF-κB过度激活,形成炎症风暴。

4. 急性胰腺炎与Bcl-2/Caspase 3信号通路

4.1. Bcl-2蛋白家族和Caspase 3蛋白

B细胞淋巴瘤2 (B-cell Lymphoma 2, Bcl-2)蛋白家族成员是具有促凋亡和抗凋亡活性的关键调节因子。这些调节因子在健康细胞中保持着精细、微妙的平衡[28]。Bcl-2家族蛋白被分为3个亚族。以Bcl-2和Bcl-XL为代表的抗凋亡和促存活蛋白,以BAX和Bak为代表的促凋亡蛋白,以BAD和BID为代表的促凋亡BH3-only蛋白[29]。Bcl-2家族蛋白发挥各自功能机制有所不同,其中Bcl-2通过与BAX形成异源二聚体来抑制细胞凋亡[30],促凋亡蛋白(如Bax、Bak)通过促进细胞色素c的释放,激活Caspase级联反应,最终导致细胞凋亡[31] [32],Bax可以插入线粒体外膜,形成孔道,促进细胞色素c的释放[33],Bak可破坏线粒体外膜的稳定性[34],促进细胞色素c的释放。Caspase 3是凋亡通路中的关键执行者,它通过蛋白水解切割将多种底物转化为凋亡相关蛋白,从而导致细胞结构和功能的破坏,Bcl-2家族蛋白通过调节线粒体凋亡通路间接调控Caspase 3的活性[35]

4.2. 急性胰腺炎与Bcl-2/Caspase 3信号通路联系

细胞凋亡在AP的发生发展中起关键作用,胰腺腺泡细胞凋亡作为一种防御机制来防止胰腺坏死的发展。凋亡和坏死是AP时胰腺腺泡细胞死亡的两种主要方式,二者最大的区别是凋亡细胞形成凋亡小体后很快被巨噬细胞吞噬,不引起或极少引起炎症反应。在AP中,抗凋亡蛋白的上调是一个常见的现象。宋凯峰等指出这些抗凋亡蛋白通过稳定线粒体膜电位,防止线粒体去极化,和ATP耗竭来保护胰腺腺泡免于坏死,而不是防止凋亡,同时还发现Bcl-xL/Bcl-2抑制剂能增强胆囊收缩(cholecystokinin, CCK)诱导的细胞坏死,但不能增强细胞凋亡。进一步说明了Bcl-xL/Bcl-2抑制会加重急性胰腺炎,而Bcl-xL/Bcl-2上调是预防或减轻胰腺炎坏死的一种策略[36]。但是在Jacek J Litewka等实验中证明使用Bcl-2抑制剂维奈托克(Venetoclax)选择性抑制BcL-2可促进细胞凋亡、减少坏死并改善AP的预后[37]。很明显这两种观点截然相反,这可能与胰腺炎模型种类、Bcl-2抑制剂种类不同及胰腺炎模型处于不同阶段有关。这些研究说明Bcl-2家族蛋白与AP病程发展中胰腺损伤密切关联。

5. NF-κB信号通路与Bcl-2/Caspase 3信号通路联系

5.1. 细胞凋亡

凋亡通路主要包括外源性通路和内源性通路。外源性通路主要由死亡受体介导,如Fas受体与Fas配体结合后,可激活下游的Caspase 8,进而激活Caspase 3等效应Caspase,导致细胞凋亡。内源性通路则主要由线粒体介导,当细胞受到各种应激信号如DNA损伤、缺氧等刺激时,Bcl-2家族蛋白的平衡被打破,促凋亡蛋白如Bax、Bak等被激活,导致线粒体外膜通透性增加,细胞色素c释放到细胞质中,与凋亡蛋白酶激活因子-1 (apoptotic protease activating factor-1, Apaf-1)结合形成凋亡小体,激活Caspase 9,进而激活下游的效应Caspase,最终导致细胞凋亡。此外,还有非Caspase依赖的凋亡途径,如通过凋亡诱导因子(apoptosis-inducing factor, AIF)等蛋白介导的细胞核DNA损伤,也可诱导细胞凋亡[35]

5.2. NF-κB信号通路与BCL-2/Caspase 3信号通路的交互

多种信号参与BCL-2/Caspase 3信号通路的激活,包括PI3K/AKT信号通路、NF-κB信号通路、ERK信号通路和/或JAK/STAT信号通路等,这表明NF-κB信号通路与Bcl-2/Caspase 3信号通路存在着密切的联系[38]。NF-κB可作为程序性细胞死亡的抑制剂[39] [40]。NF-κB激活后可诱导Bcl-XL、A1/Bfl-1、细胞凋亡抑制剂(inhibitor of apoptosis, IAP)等多种抗细胞凋亡蛋白表达[25],这些抗细胞凋亡蛋白会通过各自途径抑制细胞凋亡。NF-κB还可以通过多种途径诱导细胞凋亡,如通过表达靶基因产物TNF-α,TNF-α产生后通过外源性凋亡途径诱导细胞凋亡[41]。NF-κB激活后调控细胞凋亡机制复杂,除了通过调控抗凋亡基因的表达和抑制凋亡信号通路的激活来拮抗刺激信号诱导的细胞凋亡外,还取决于多种因素的综合影响。在SAP大鼠模型中,大鼠肠道BAX表达增加和Bcl-2减少,这与NF-κB抗凋亡作用似乎矛盾,造成这种相反结论的原因有多种,例如,在SAP的极端环境下,NF-κB抗凋亡的保护性作用可能被其自身驱动的剧烈炎症所淹没和压倒,NF-κB的过度激活产生海量TNF-α等因子,这些因子强烈激活Caspase 8和Bid/Bax通路,导致促凋亡蛋白在功能和表达上占据主导地位,压倒了NF-κB诱导的抗凋亡作用,从而引发细胞凋亡[42] [43]。这为缓解AP患者肠道损伤提供了新思路,通过抑制NF-κB过度激活来恢复NF-κB抗凋亡的作用,减轻急性胰腺炎时肠道损伤。

6. 假说构建与论证

在AP病程中,活化的NF-κB驱动参与炎症的基因表达,也参与驱动细胞存活的基因表达,调节腺泡细胞凋亡和坏死。在SAP中,通过NF-κB过度激活的炎症因子加剧炎症反应,进一步造成胰腺和其他器官的损伤,包括肠道的损伤。AP肠道炎症的发生被认为与血液循环紊乱、炎症因子和胃肠道激素失调有关。然而,具体机制尚无完全阐明,炎症反应在AP肠道损伤的发展和预后中起着至关重要的作用[44]。刘元启等[45]证明,肠系膜淋巴管结扎可有效阻止肠道炎症介质进入体循环,从而限制其在肠道内的积累。因此,SAP期间,会诱导炎症介质过度释放和免疫反应过度,从而加剧肠道损伤。宋秀等研究发现,在SAP合并胃肠功能障碍大鼠模型的肠道中存在大量NF-κB p65阳性细胞[46],这表明在SAP初期,肠黏膜中NF-κB的早期和显著激活。因此NF-κB信号通路在急性胰腺炎炎症反应致胃肠道功能障碍中很可能发挥重要的作用。除了NF-κB信号通路在胃肠道功能障碍中发挥重要的作用外,是否还有Bcl-2/Caspase 3家族蛋白参与其中呢?目前针对急性胰腺炎通过Bcl-2/Caspase 3信号通路造成胃肠道损伤的研究过少,白金霞等研究发现在L-精氨酸诱导的SAP小鼠模型中,与正常对照组相比,小肠组织中抗凋亡蛋白Bcl-2和Bcl-xL的mRNA表达水平显著降低,IL-22通过激活STAT3信号通路,上调抗凋亡蛋白Bcl-2和Bcl-XL的表达,保护肠道屏障功能[47]。齐周等[48]研究发现,大黄素可通过调节BAX/Bcl-2/Caspase 3信号通路作为预防急性胰腺炎肠道屏障损伤的潜在药物,SAP诱导后的大鼠肠道BAX表达增加和Bcl-2减少,经典的BAX/Bcl-2/Caspase 3通路可能参与肠道屏障损伤。因此,通过调节Bcl-2/Caspase 3信号通路,可能使急性胰腺炎造成的急性胃肠道损伤得到有效改善。吲哚美辛(indomethacin, IND)是临床上常见的非甾体类抗炎药(nonsteroidal anti-inflammatory drugs, NSAIDs)。多数研究证实吲哚美辛可以降低患者ERCP术后胰腺炎(post-ERCP pancreatitis, PEP)的风险[49] [50]。众多动物试验发现吲哚美辛可以减轻SAP大鼠的胰腺损伤[51] [52]。然而,吲哚美辛预防AP造成胰腺和其他器官损伤的具体机制尚不明确。非甾体抗炎药发挥抗炎作用的经典途径主要是通过抑制环氧合酶来实现的,特异性阻环氧合酶途径似乎对胰腺炎的炎症情况无明显保护作用,所以吲哚美辛很有可能通过独立于环氧合酶的非经典途径发挥其对胰腺炎的保护作用。有研究发现吲哚美辛可以抑制KBM-5细胞(人类髓系白血病细胞系,具有单核细胞分化特征)中NF-κB的激活[53]。在SAP的极端环境下,大量NF-κB的激活总效应可以造成促凋亡因素的升高,压倒其抗凋亡效应。所以通过抑制NF-κB的大量激活来降低Bcl-2/Caspase 3通路中促凋亡蛋白表达很可能成为吲哚美辛缓解急性胰腺炎胃肠道损伤的一种途径。

NOTES

*通讯作者。

参考文献

[1] Peery, A.F., Crockett, S.D., Murphy, C.C., Lund, J.L., Dellon, E.S., Williams, J.L., et al. (2019) Burden and Cost of Gastrointestinal, Liver, and Pancreatic Diseases in the United States: Update 2018. Gastroenterology, 156, 254-272.e11. [Google Scholar] [CrossRef] [PubMed]
[2] Strum, W.B. and Boland, C.R. (2023) Advances in Acute and Chronic Pancreatitis. World Journal of Gastroenterology, 29, 1194-1201. [Google Scholar] [CrossRef] [PubMed]
[3] Banks, P.A., Bollen, T.L., Dervenis, C., Gooszen, H.G., Johnson, C.D., Sarr, M.G., et al. (2012) Classification of Acute Pancreatitis—2012: Revision of the Atlanta Classification and Definitions by International Consensus. Gut, 62, 102-111. [Google Scholar] [CrossRef] [PubMed]
[4] Xiao, A.Y., Tan, M.L.Y., Wu, L.M., Asrani, V.M., Windsor, J.A., Yadav, D., et al. (2016) Global Incidence and Mortality of Pancreatic Diseases: A Systematic Review, Meta-Analysis, and Meta-Regression of Population-Based Cohort Studies. The Lancet Gastroenterology & Hepatology, 1, 45-55. [Google Scholar] [CrossRef] [PubMed]
[5] 蒋梦可, 陆宗庆, 周伍明, 等. 1990-2019年中国胰腺炎疾病负担分析[J]. 中国循证医学杂志, 2022, 22(8): 869-875.
[6] 金海港, 蒋桔红, 朱仲鑫. 1990-2019年中国胰腺炎疾病负担分析[J]. 肝胆胰外科杂志, 2022, 34(6): 344-348.
[7] Garg, P.K. and Singh, V.P. (2019) Organ Failure Due to Systemic Injury in Acute Pancreatitis. Gastroenterology, 156, 2008-2023. [Google Scholar] [CrossRef] [PubMed]
[8] Zhang, D., Li, Y., Ding, L., Fu, Y., Dong, X. and Li, H. (2018) Prevalence and Outcome of Acute Gastrointestinal Injury in Critically Ill Patients: A Systematic Review and Meta-Analysis. Medicine, 97, e12970. [Google Scholar] [CrossRef] [PubMed]
[9] Fu, W., Shi, N., Wan, Y., Mei, F., Qiu, B., Bao, Y., et al. (2020) Risk Factors of Acute Gastrointestinal Failure in Critically Ill Patients with Traumatic Brain Injury. Journal of Craniofacial Surgery, 31, e176-e179. [Google Scholar] [CrossRef] [PubMed]
[10] Wang, M. and Lei, R. (2016) Organ Dysfunction in the Course of Severe Acute Pancreatitis. Pancreas, 45, e5-e7. [Google Scholar] [CrossRef] [PubMed]
[11] Zhao, H., Jia, L., Yan, Q., Deng, Q. and Wei, B. (2020) Effect of Clostridium Butyricum and Butyrate on Intestinal Barrier Functions: Study of a Rat Model of Severe Acute Pancreatitis with Intra-Abdominal Hypertension. Frontiers in Physiology, 11, Article ID: 561061. [Google Scholar] [CrossRef] [PubMed]
[12] Bhat, A.A., Uppada, S., Achkar, I.W., Hashem, S., Yadav, S.K., Shanmugakonar, M., et al. (2019) Tight Junction Proteins and Signaling Pathways in Cancer and Inflammation: A Functional Crosstalk. Frontiers in Physiology, 9, Article ID: 1942. [Google Scholar] [CrossRef] [PubMed]
[13] Wang, H., Segaran, R.C., Chan, L.Y., Aladresi, A.A.M., Chinnathambi, A., Alharbi, S.A., et al. (2019) Gamma Radiation-Induced Disruption of Cellular Junctions in HUVECs Is Mediated through Affecting MAPK/NF-κB Inflammatory Pathways. Oxidative Medicine and Cellular Longevity, 2019, Article ID: 1486232. [Google Scholar] [CrossRef] [PubMed]
[14] Yu, S., He, J. and Xie, K. (2023) Zonula Occludens Proteins Signaling in Inflammation and Tumorigenesis. International Journal of Biological Sciences, 19, 3804-3815. [Google Scholar] [CrossRef] [PubMed]
[15] Wang, J., Zhao, H., Lv, K., Zhao, W., Zhang, N., Yang, F., et al. (2021) Pterostilbene Ameliorates DSS-Induced Intestinal Epithelial Barrier Loss in Mice via Suppression of the NF-κB-Mediated MLCK-MLC Signaling Pathway. Journal of Agricultural and Food Chemistry, 69, 3871-3878. [Google Scholar] [CrossRef] [PubMed]
[16] Beeman, N., Webb, P.G. and Baumgartner, H.K. (2012) Occludin Is Required for Apoptosis When Claudin-Claudin Interactions Are Disrupted. Cell Death & Disease, 3, e273-e273. [Google Scholar] [CrossRef] [PubMed]
[17] Cianci, R., Spada, C., Perri, V., et al. (2008) Active Thymopoiesis in Idiopathic Chronic Pancreatitis. European Review for Medical and Pharmacological Sciences, 12, 41-46.
[18] Luo, M., Jin, T., Fang, Y., Chen, F., Zhu, L., Bai, J., et al. (2025) Signaling Pathways Involved in Acute Pancreatitis. Journal of Inflammation Research, 18, 2287-2303. [Google Scholar] [CrossRef] [PubMed]
[19] Mayerle, J., Sendler, M., Hegyi, E., Beyer, G., Lerch, M.M. and Sahin-Tóth, M. (2019) Genetics, Cell Biology, and Pathophysiology of Pancreatitis. Gastroenterology, 156, 1951-1968.e1. [Google Scholar] [CrossRef] [PubMed]
[20] Mao, H., Zhao, X. and Sun, S. (2025) NF-κB in Inflammation and Cancer. Cellular & Molecular Immunology, 22, 811-839. [Google Scholar] [CrossRef] [PubMed]
[21] Taniguchi, K. and Karin, M. (2018) NF-κB, Inflammation, Immunity and Cancer: Coming of Age. Nature Reviews Immunology, 18, 309-324. [Google Scholar] [CrossRef] [PubMed]
[22] Długosz JW, Andrzejewska A, Nowak K, et al. (2005) The Cumulative Effect of Nuclear Factor-kappaB (NF-kappaB) in-Hibition and Endothelins in Early Cerulein-Induced Acute Pancreatitis in Rats. Roczniki Akademii Medycznej w Bialymstoku, 50, 230-236.
[23] Karin, M. (2006) Nuclear Factor-κB in Cancer Development and Progression. Nature, 441, 431-436. [Google Scholar] [CrossRef] [PubMed]
[24] Ruland, J. (2011) Return to Homeostasis: Downregulation of NF-κB Responses. Nature Immunology, 12, 709-714. [Google Scholar] [CrossRef] [PubMed]
[25] Luo, J.L., Kamata, H. and Karin, M. (2005) IKK/NF-kappaB Signaling: Balancing Life and Death—A New Approach to Cancer Therapy. Journal of Clinical Investigation, 115, 2625-2632. [Google Scholar] [CrossRef] [PubMed]
[26] Virlos, I., Mazzon, E., Serraino, I., Genovese, T., Di Paola, R., Thiemerman, C., et al. (2004) Calpain I Inhibitor Ameliorates the Indices of Disease Severity in a Murine Model of Cerulein-Induced Acute Pancreatitis. Intensive Care Medicine, 30, 1645-1651. [Google Scholar] [CrossRef] [PubMed]
[27] Jakkampudi, A., Jangala, R., Reddy, B.R., Mitnala, S., Reddy, D.N. and Talukdar, R. (2016) NF-κB in Acute Pancreatitis: Mechanisms and Therapeutic Potential. Pancreatology, 16, 477-488. [Google Scholar] [CrossRef] [PubMed]
[28] Carneiro, B.A. and El-Deiry, W.S. (2020) Targeting Apoptosis in Cancer Therapy. Nature Reviews Clinical Oncology, 17, 395-417. [Google Scholar] [CrossRef] [PubMed]
[29] Luna‐Vargas, M.P.A. and Chipuk, J.E. (2016) The Deadly Landscape of Pro‐Apoptotic Bcl‐2 Proteins in the Outer Mitochondrial Membrane. The FEBS Journal, 283, 2676-2689. [Google Scholar] [CrossRef] [PubMed]
[30] Park, H., Broman, K. and Jonas, E. (2021) Oxidative Stress Battles Neuronal Bcl-Xl in a Fight to the Death. Neural Regeneration Research, 16, 12. [Google Scholar] [CrossRef] [PubMed]
[31] Jeng, P.S., Inoue-Yamauchi, A., Hsieh, J.J. and Cheng, E.H. (2018) BH3-Dependent and Independent Activation of BAX and BAK in Mitochondrial Apoptosis. Current Opinion in Physiology, 3, 71-81. [Google Scholar] [CrossRef] [PubMed]
[32] Zhang, Z., Guo, M., Liu, Y., Liu, P., Cao, X., Xu, Y., et al. (2020) RNPS1 Inhibition Aggravates Ischemic Brain Injury and Promotes Neuronal Death. Biochemical and Biophysical Research Communications, 523, 39-45. [Google Scholar] [CrossRef] [PubMed]
[33] Hauseman, Z.J., Harvey, E.P., Newman, C.E., Wales, T.E., Bucci, J.C., Mintseris, J., et al. (2020) Homogeneous Oligomers of Pro-Apoptotic BAX Reveal Structural Determinants of Mitochondrial Membrane Permeabilization. Molecular Cell, 79, 68-83.e7. [Google Scholar] [CrossRef] [PubMed]
[34] Zhang, H., Holzgreve, W. and De Geyter, C. (2000) Evolutionarily Conserved Bok Proteins in the Bcl‐2 Family. FEBS Letters, 480, 311-313. [Google Scholar] [CrossRef] [PubMed]
[35] Mustafa, M., Ahmad, R., Tantry, I.Q., Ahmad, W., Siddiqui, S., Alam, M., et al. (2024) Apoptosis: A Comprehensive Overview of Signaling Pathways, Morphological Changes, and Physiological Significance and Therapeutic Implications. Cells, 13, Article 1838. [Google Scholar] [CrossRef] [PubMed]
[36] Sung, K., Odinokova, I.V., Mareninova, O.A., Rakonczay Jr, Z., Hegyi, P., Pandol, S.J., et al. (2009) Prosurvival Bcl-2 Proteins Stabilize Pancreatic Mitochondria and Protect against Necrosis in Experimental Pancreatitis. Experimental Cell Research, 315, 1975-1989. [Google Scholar] [CrossRef] [PubMed]
[37] Litewka, J.J., Szopa, M.D., Fryt, K., Jakubowska, M.A., Jankowska, U., Skupien-Rabian, B., et al. (2025) Repurposing BCL2 Inhibitors: Venetoclax Protects against Acinar Cell Necrosis in Acute Pancreatitis by Promoting Apoptosis. Cell Death & Disease, 16, Article No. 566. [Google Scholar] [CrossRef] [PubMed]
[38] Thus, Y.J., Eldering, E., Kater, A.P. and Spaargaren, M. (2022) Tipping the Balance: Toward Rational Combination Therapies to Overcome Venetoclax Resistance in Mantle Cell Lymphoma. Leukemia, 36, 2165-2176. [Google Scholar] [CrossRef] [PubMed]
[39] Beg, A.A. and Baltimore, D. (1996) An Essential Role for NF-κB in Preventing TNF-α-Induced Cell Death. Science, 274, 782-784. [Google Scholar] [CrossRef] [PubMed]
[40] Van Antwerp, D.J., Martin, S.J., Kafri, T., Green, D.R. and Verma, I.M. (1996) Suppression of TNF-α-Induced Apoptosis by NF-κB. Science, 274, 787-789. [Google Scholar] [CrossRef] [PubMed]
[41] Van Quickelberghe, E., De Sutter, D., van Loo, G., Eyckerman, S. and Gevaert, K. (2018) A Protein-Protein Interaction Map of the TNF-Induced NF-κB Signal Transduction Pathway. Scientific Data, 5, Article No. 180289. [Google Scholar] [CrossRef] [PubMed]
[42] Arfin, S., Jha, N.K., Jha, S.K., Kesari, K.K., Ruokolainen, J., Roychoudhury, S., et al. (2021) Oxidative Stress in Cancer Cell Metabolism. Antioxidants, 10, Article 642. [Google Scholar] [CrossRef] [PubMed]
[43] Campbell, M.T., Dagher, P., Hile, K.L., Zhang, H., Meldrum, D.R., Rink, R.C., et al. (2008) Tumor Necrosis Factor-α Induces Intrinsic Apoptotic Signaling during Renal Obstruction through Truncated Bid Activation. Journal of Urology, 180, 2694-2700. [Google Scholar] [CrossRef] [PubMed]
[44] Ge, P., Luo, Y., Okoye, C.S., Chen, H., Liu, J., Zhang, G., et al. (2020) Intestinal Barrier Damage, Systemic Inflammatory Response Syndrome, and Acute Lung Injury: A Troublesome Trio for Acute Pancreatitis. Biomedicine & Pharmacotherapy, 132, Article 110770. [Google Scholar] [CrossRef] [PubMed]
[45] Liu, Y., Chen, L., Wang, L. and Xiong, Y. (2021) Effects of Intestinal Lymphatic Ligation on Intestinal Immunity in Rats with Severe Acute Pancreatitis. FEBS Open Bio, 11, 1109-1121. [Google Scholar] [CrossRef] [PubMed]
[46] Su, S., Liang, T., Zhou, X., He, K., Li, B. and Xia, X. (2019) Qingyi Decoction Attenuates Severe Acute Pancreatitis in Rats via Inhibition of Inflammation and Protection of the Intestinal Barrier. Journal of International Medical Research, 47, 2215-2227. [Google Scholar] [CrossRef] [PubMed]
[47] Bai, J., Bai, J. and Yang, M. (2021) Interleukin-22 Attenuates Acute Pancreatitis-Associated Intestinal Mucosa Injury in Mice via STAT3 Activation. Gut and Liver, 15, 771-781. [Google Scholar] [CrossRef] [PubMed]
[48] Zhou, Q., Xiang, H., Liu, H., Qi, B., Shi, X., Guo, W., et al. (2021) Emodin Alleviates Intestinal Barrier Dysfunction by Inhibiting Apoptosis and Regulating the Immune Response in Severe Acute Pancreatitis. Pancreas, 50, 1202-1211. [Google Scholar] [CrossRef] [PubMed]
[49] Elmunzer, B.J., Waljee, A.K., Elta, G.H., Taylor, J.R., Fehmi, S.M.A. and Higgins, P.D.R. (2008) A Meta-Analysis of Rectal NSAIDs in the Prevention of Post-ERCP Pancreatitis. Gut, 57, 1262-1267. [Google Scholar] [CrossRef] [PubMed]
[50] Elmunzer, B.J., Scheiman, J.M., Lehman, G.A., Chak, A., Mosler, P., Higgins, P.D.R., et al. (2012) A Randomized Trial of Rectal Indomethacin to Prevent Post-ERCP Pancreatitis. New England Journal of Medicine, 366, 1414-1422. [Google Scholar] [CrossRef] [PubMed]
[51] Lu, G., Pan, Y., Kayoumu, A., Zhang, L., Yin, T., Tong, Z., et al. (2017) Indomethacin Inhabits the NLRP3 Inflammasome Pathway and Protects Severe Acute Pancreatitis in Mice. Biochemical and Biophysical Research Communications, 493, 827-832. [Google Scholar] [CrossRef] [PubMed]
[52] Geng, C., Li, X., Li, Y., Song, S. and Wang, C. (2020) Nonsteroidal Anti‐inflammatory Drugs Alleviate Severity of Post‐endoscopic Retrograde Cholangiopancreatography Pancreatitis by Inhibiting Inflammation and Reducing Apoptosis. Journal of Gastroenterology and Hepatology, 35, 896-904. [Google Scholar] [CrossRef] [PubMed]
[53] Takada, Y., Bhardwaj, A., Potdar, P. and Aggarwal, B.B. (2004) Nonsteroidal Anti-Inflammatory Agents Differ in Their Ability to Suppress NF-κB Activation, Inhibition of Expression of Cyclooxygenase-2 and Cyclin D1, and Abrogation of Tumor Cell Proliferation. Oncogene, 23, 9247-9258. [Google Scholar] [CrossRef] [PubMed]