|
[1]
|
Peery, A.F., Crockett, S.D., Murphy, C.C., Lund, J.L., Dellon, E.S., Williams, J.L., et al. (2019) Burden and Cost of Gastrointestinal, Liver, and Pancreatic Diseases in the United States: Update 2018. Gastroenterology, 156, 254-272.e11. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Strum, W.B. and Boland, C.R. (2023) Advances in Acute and Chronic Pancreatitis. World Journal of Gastroenterology, 29, 1194-1201. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Banks, P.A., Bollen, T.L., Dervenis, C., Gooszen, H.G., Johnson, C.D., Sarr, M.G., et al. (2012) Classification of Acute Pancreatitis—2012: Revision of the Atlanta Classification and Definitions by International Consensus. Gut, 62, 102-111. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Xiao, A.Y., Tan, M.L.Y., Wu, L.M., Asrani, V.M., Windsor, J.A., Yadav, D., et al. (2016) Global Incidence and Mortality of Pancreatic Diseases: A Systematic Review, Meta-Analysis, and Meta-Regression of Population-Based Cohort Studies. The Lancet Gastroenterology & Hepatology, 1, 45-55. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
蒋梦可, 陆宗庆, 周伍明, 等. 1990-2019年中国胰腺炎疾病负担分析[J]. 中国循证医学杂志, 2022, 22(8): 869-875.
|
|
[6]
|
金海港, 蒋桔红, 朱仲鑫. 1990-2019年中国胰腺炎疾病负担分析[J]. 肝胆胰外科杂志, 2022, 34(6): 344-348.
|
|
[7]
|
Garg, P.K. and Singh, V.P. (2019) Organ Failure Due to Systemic Injury in Acute Pancreatitis. Gastroenterology, 156, 2008-2023. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Zhang, D., Li, Y., Ding, L., Fu, Y., Dong, X. and Li, H. (2018) Prevalence and Outcome of Acute Gastrointestinal Injury in Critically Ill Patients: A Systematic Review and Meta-Analysis. Medicine, 97, e12970. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Fu, W., Shi, N., Wan, Y., Mei, F., Qiu, B., Bao, Y., et al. (2020) Risk Factors of Acute Gastrointestinal Failure in Critically Ill Patients with Traumatic Brain Injury. Journal of Craniofacial Surgery, 31, e176-e179. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Wang, M. and Lei, R. (2016) Organ Dysfunction in the Course of Severe Acute Pancreatitis. Pancreas, 45, e5-e7. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Zhao, H., Jia, L., Yan, Q., Deng, Q. and Wei, B. (2020) Effect of Clostridium Butyricum and Butyrate on Intestinal Barrier Functions: Study of a Rat Model of Severe Acute Pancreatitis with Intra-Abdominal Hypertension. Frontiers in Physiology, 11, Article ID: 561061. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Bhat, A.A., Uppada, S., Achkar, I.W., Hashem, S., Yadav, S.K., Shanmugakonar, M., et al. (2019) Tight Junction Proteins and Signaling Pathways in Cancer and Inflammation: A Functional Crosstalk. Frontiers in Physiology, 9, Article ID: 1942. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Wang, H., Segaran, R.C., Chan, L.Y., Aladresi, A.A.M., Chinnathambi, A., Alharbi, S.A., et al. (2019) Gamma Radiation-Induced Disruption of Cellular Junctions in HUVECs Is Mediated through Affecting MAPK/NF-κB Inflammatory Pathways. Oxidative Medicine and Cellular Longevity, 2019, Article ID: 1486232. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Yu, S., He, J. and Xie, K. (2023) Zonula Occludens Proteins Signaling in Inflammation and Tumorigenesis. International Journal of Biological Sciences, 19, 3804-3815. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Wang, J., Zhao, H., Lv, K., Zhao, W., Zhang, N., Yang, F., et al. (2021) Pterostilbene Ameliorates DSS-Induced Intestinal Epithelial Barrier Loss in Mice via Suppression of the NF-κB-Mediated MLCK-MLC Signaling Pathway. Journal of Agricultural and Food Chemistry, 69, 3871-3878. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Beeman, N., Webb, P.G. and Baumgartner, H.K. (2012) Occludin Is Required for Apoptosis When Claudin-Claudin Interactions Are Disrupted. Cell Death & Disease, 3, e273-e273. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Cianci, R., Spada, C., Perri, V., et al. (2008) Active Thymopoiesis in Idiopathic Chronic Pancreatitis. European Review for Medical and Pharmacological Sciences, 12, 41-46.
|
|
[18]
|
Luo, M., Jin, T., Fang, Y., Chen, F., Zhu, L., Bai, J., et al. (2025) Signaling Pathways Involved in Acute Pancreatitis. Journal of Inflammation Research, 18, 2287-2303. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Mayerle, J., Sendler, M., Hegyi, E., Beyer, G., Lerch, M.M. and Sahin-Tóth, M. (2019) Genetics, Cell Biology, and Pathophysiology of Pancreatitis. Gastroenterology, 156, 1951-1968.e1. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Mao, H., Zhao, X. and Sun, S. (2025) NF-κB in Inflammation and Cancer. Cellular & Molecular Immunology, 22, 811-839. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Taniguchi, K. and Karin, M. (2018) NF-κB, Inflammation, Immunity and Cancer: Coming of Age. Nature Reviews Immunology, 18, 309-324. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Długosz JW, Andrzejewska A, Nowak K, et al. (2005) The Cumulative Effect of Nuclear Factor-kappaB (NF-kappaB) in-Hibition and Endothelins in Early Cerulein-Induced Acute Pancreatitis in Rats. Roczniki Akademii Medycznej w Bialymstoku, 50, 230-236.
|
|
[23]
|
Karin, M. (2006) Nuclear Factor-κB in Cancer Development and Progression. Nature, 441, 431-436. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Ruland, J. (2011) Return to Homeostasis: Downregulation of NF-κB Responses. Nature Immunology, 12, 709-714. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Luo, J.L., Kamata, H. and Karin, M. (2005) IKK/NF-kappaB Signaling: Balancing Life and Death—A New Approach to Cancer Therapy. Journal of Clinical Investigation, 115, 2625-2632. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Virlos, I., Mazzon, E., Serraino, I., Genovese, T., Di Paola, R., Thiemerman, C., et al. (2004) Calpain I Inhibitor Ameliorates the Indices of Disease Severity in a Murine Model of Cerulein-Induced Acute Pancreatitis. Intensive Care Medicine, 30, 1645-1651. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Jakkampudi, A., Jangala, R., Reddy, B.R., Mitnala, S., Reddy, D.N. and Talukdar, R. (2016) NF-κB in Acute Pancreatitis: Mechanisms and Therapeutic Potential. Pancreatology, 16, 477-488. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Carneiro, B.A. and El-Deiry, W.S. (2020) Targeting Apoptosis in Cancer Therapy. Nature Reviews Clinical Oncology, 17, 395-417. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Luna‐Vargas, M.P.A. and Chipuk, J.E. (2016) The Deadly Landscape of Pro‐Apoptotic Bcl‐2 Proteins in the Outer Mitochondrial Membrane. The FEBS Journal, 283, 2676-2689. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Park, H., Broman, K. and Jonas, E. (2021) Oxidative Stress Battles Neuronal Bcl-Xl in a Fight to the Death. Neural Regeneration Research, 16, 12. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Jeng, P.S., Inoue-Yamauchi, A., Hsieh, J.J. and Cheng, E.H. (2018) BH3-Dependent and Independent Activation of BAX and BAK in Mitochondrial Apoptosis. Current Opinion in Physiology, 3, 71-81. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Zhang, Z., Guo, M., Liu, Y., Liu, P., Cao, X., Xu, Y., et al. (2020) RNPS1 Inhibition Aggravates Ischemic Brain Injury and Promotes Neuronal Death. Biochemical and Biophysical Research Communications, 523, 39-45. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Hauseman, Z.J., Harvey, E.P., Newman, C.E., Wales, T.E., Bucci, J.C., Mintseris, J., et al. (2020) Homogeneous Oligomers of Pro-Apoptotic BAX Reveal Structural Determinants of Mitochondrial Membrane Permeabilization. Molecular Cell, 79, 68-83.e7. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Zhang, H., Holzgreve, W. and De Geyter, C. (2000) Evolutionarily Conserved Bok Proteins in the Bcl‐2 Family. FEBS Letters, 480, 311-313. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Mustafa, M., Ahmad, R., Tantry, I.Q., Ahmad, W., Siddiqui, S., Alam, M., et al. (2024) Apoptosis: A Comprehensive Overview of Signaling Pathways, Morphological Changes, and Physiological Significance and Therapeutic Implications. Cells, 13, Article 1838. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Sung, K., Odinokova, I.V., Mareninova, O.A., Rakonczay Jr, Z., Hegyi, P., Pandol, S.J., et al. (2009) Prosurvival Bcl-2 Proteins Stabilize Pancreatic Mitochondria and Protect against Necrosis in Experimental Pancreatitis. Experimental Cell Research, 315, 1975-1989. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Litewka, J.J., Szopa, M.D., Fryt, K., Jakubowska, M.A., Jankowska, U., Skupien-Rabian, B., et al. (2025) Repurposing BCL2 Inhibitors: Venetoclax Protects against Acinar Cell Necrosis in Acute Pancreatitis by Promoting Apoptosis. Cell Death & Disease, 16, Article No. 566. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Thus, Y.J., Eldering, E., Kater, A.P. and Spaargaren, M. (2022) Tipping the Balance: Toward Rational Combination Therapies to Overcome Venetoclax Resistance in Mantle Cell Lymphoma. Leukemia, 36, 2165-2176. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Beg, A.A. and Baltimore, D. (1996) An Essential Role for NF-κB in Preventing TNF-α-Induced Cell Death. Science, 274, 782-784. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Van Antwerp, D.J., Martin, S.J., Kafri, T., Green, D.R. and Verma, I.M. (1996) Suppression of TNF-α-Induced Apoptosis by NF-κB. Science, 274, 787-789. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Van Quickelberghe, E., De Sutter, D., van Loo, G., Eyckerman, S. and Gevaert, K. (2018) A Protein-Protein Interaction Map of the TNF-Induced NF-κB Signal Transduction Pathway. Scientific Data, 5, Article No. 180289. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Arfin, S., Jha, N.K., Jha, S.K., Kesari, K.K., Ruokolainen, J., Roychoudhury, S., et al. (2021) Oxidative Stress in Cancer Cell Metabolism. Antioxidants, 10, Article 642. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Campbell, M.T., Dagher, P., Hile, K.L., Zhang, H., Meldrum, D.R., Rink, R.C., et al. (2008) Tumor Necrosis Factor-α Induces Intrinsic Apoptotic Signaling during Renal Obstruction through Truncated Bid Activation. Journal of Urology, 180, 2694-2700. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Ge, P., Luo, Y., Okoye, C.S., Chen, H., Liu, J., Zhang, G., et al. (2020) Intestinal Barrier Damage, Systemic Inflammatory Response Syndrome, and Acute Lung Injury: A Troublesome Trio for Acute Pancreatitis. Biomedicine & Pharmacotherapy, 132, Article 110770. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Liu, Y., Chen, L., Wang, L. and Xiong, Y. (2021) Effects of Intestinal Lymphatic Ligation on Intestinal Immunity in Rats with Severe Acute Pancreatitis. FEBS Open Bio, 11, 1109-1121. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Su, S., Liang, T., Zhou, X., He, K., Li, B. and Xia, X. (2019) Qingyi Decoction Attenuates Severe Acute Pancreatitis in Rats via Inhibition of Inflammation and Protection of the Intestinal Barrier. Journal of International Medical Research, 47, 2215-2227. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Bai, J., Bai, J. and Yang, M. (2021) Interleukin-22 Attenuates Acute Pancreatitis-Associated Intestinal Mucosa Injury in Mice via STAT3 Activation. Gut and Liver, 15, 771-781. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Zhou, Q., Xiang, H., Liu, H., Qi, B., Shi, X., Guo, W., et al. (2021) Emodin Alleviates Intestinal Barrier Dysfunction by Inhibiting Apoptosis and Regulating the Immune Response in Severe Acute Pancreatitis. Pancreas, 50, 1202-1211. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Elmunzer, B.J., Waljee, A.K., Elta, G.H., Taylor, J.R., Fehmi, S.M.A. and Higgins, P.D.R. (2008) A Meta-Analysis of Rectal NSAIDs in the Prevention of Post-ERCP Pancreatitis. Gut, 57, 1262-1267. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Elmunzer, B.J., Scheiman, J.M., Lehman, G.A., Chak, A., Mosler, P., Higgins, P.D.R., et al. (2012) A Randomized Trial of Rectal Indomethacin to Prevent Post-ERCP Pancreatitis. New England Journal of Medicine, 366, 1414-1422. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Lu, G., Pan, Y., Kayoumu, A., Zhang, L., Yin, T., Tong, Z., et al. (2017) Indomethacin Inhabits the NLRP3 Inflammasome Pathway and Protects Severe Acute Pancreatitis in Mice. Biochemical and Biophysical Research Communications, 493, 827-832. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Geng, C., Li, X., Li, Y., Song, S. and Wang, C. (2020) Nonsteroidal Anti‐inflammatory Drugs Alleviate Severity of Post‐endoscopic Retrograde Cholangiopancreatography Pancreatitis by Inhibiting Inflammation and Reducing Apoptosis. Journal of Gastroenterology and Hepatology, 35, 896-904. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Takada, Y., Bhardwaj, A., Potdar, P. and Aggarwal, B.B. (2004) Nonsteroidal Anti-Inflammatory Agents Differ in Their Ability to Suppress NF-κB Activation, Inhibition of Expression of Cyclooxygenase-2 and Cyclin D1, and Abrogation of Tumor Cell Proliferation. Oncogene, 23, 9247-9258. [Google Scholar] [CrossRef] [PubMed]
|