|
[1]
|
Tang, D., Kang, R., Berghe, T.V., Vandenabeele, P. and Kroemer, G. (2019) The Molecular Machinery of Regulated Cell Death. Cell Research, 29, 347-364. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Yuan, J. and Ofengeim, D. (2024) A Guide to Cell Death Pathways. Nature Reviews Molecular Cell Biology, 25, 379-395. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Kang, K., Park, C. and Chan, F.K. (2022) Necroptosis at a Glance. Journal of Cell Science, 135, jcs260091. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Martinez-Osorio, V., Abdelwahab, Y. and Ros, U. (2023) The Many Faces of MLKL, the Executor of Necroptosis. International Journal of Molecular Sciences, 24, Article 10108. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Bertheloot, D., Latz, E. and Franklin, B.S. (2021) Necroptosis, Pyroptosis and Apoptosis: An Intricate Game of Cell Death. Cellular & Molecular Immunology, 18, 1106-1121. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Tummers, B., Mari, L., Guy, C.S., Heckmann, B.L., Rodriguez, D.A., Rühl, S., et al. (2020) Caspase-8-Dependent Inflammatory Responses Are Controlled by Its Adaptor, FADD, and Necroptosis. Immunity, 52, 994-1006.e8. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Cho, M., Dho, S.H., Shin, S., Lee, Y., Kim, Y., Lee, J., et al. (2022) Caspase-10 Affects the Pathogenesis of Primary Biliary Cholangitis by Regulating Inflammatory Cell Death. Journal of Autoimmunity, 133, Article 102940. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Varfolomeev, E. and Vucic, D. (2022) RIP1 Post-Translational Modifications. Biochemical Journal, 479, 929-951. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Dovey, C.M., Diep, J., Clarke, B.P., Hale, A.T., McNamara, D.E., Guo, H., et al. (2018) MLKL Requires the Inositol Phosphate Code to Execute Necroptosis. Molecular Cell, 70, 936-948.e7. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Liu, S., Liu, H., Johnston, A., Hanna-Addams, S., Reynoso, E., Xiang, Y., et al. (2017) MLKL Forms Disulfide Bond-Dependent Amyloid-Like Polymers to Induce Necroptosis. Proceedings of the National Academy of Sciences, 114, E7450-E7459. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Wang, H., Sun, L., Su, L., Rizo, J., Liu, L., Wang, L., et al. (2014) Mixed Lineage Kinase Domain-Like Protein MLKL Causes Necrotic Membrane Disruption Upon Phosphorylation by Rip3. Molecular Cell, 54, 133-146. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Cai, Z., Jitkaew, S., Zhao, J., Chiang, H., Choksi, S., Liu, J., et al. (2014) Plasma Membrane Translocation of Trimerized MLKL Protein Is Required for TNF-Induced Necroptosis. Nature Cell Biology, 16, 55-65. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Dondelinger, Y., Declercq, W., Montessuit, S., Roelandt, R., Goncalves, A., Bruggeman, I., et al. (2014) MLKL Compromises Plasma Membrane Integrity by Binding to Phosphatidylinositol Phosphates. Cell Reports, 7, 971-981. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Peng, L. (2024) Necroptosis and Autoimmunity. Clinical Immunology, 266, Article 110313. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Guibao, C.D., Petrinjak, K. and Moldoveanu, T. (2019) Uncovering Human Mixed Lineage Kinase Domain-Like Activation in Necroptosis. Future Medicinal Chemistry, 11, 2831-2844. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Gong, Y., Guy, C., Olauson, H., Becker, J.U., Yang, M., Fitzgerald, P., et al. (2017) ESCRT-III Acts Downstream of MLKL to Regulate Necroptotic Cell Death and Its Consequences. Cell, 169, 286-300.e16. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Marunouchi, T., Nishiumi, C., Iinuma, S., Yano, E. and Tanonaka, K. (2021) Effects of Hsp90 Inhibitor on the RIP1-RIP3-MLKL Pathway during the Development of Heart Failure in Mice. European Journal of Pharmacology, 898, Article 173987. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Tamura, S., Marunouchi, T. and Tanonaka, K. (2019) Heat-Shock Protein 90 Modulates Cardiac Ventricular Hypertrophy via Activation of MAPK Pathway. Journal of Molecular and Cellular Cardiology, 127, 134-142. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Xue, H., Shi, H., Zhang, F., Li, H., Li, C. and Han, Q. (2022) RIP3 Contributes to Cardiac Hypertrophy by Influencing MLKL‐Mediated Calcium Influx. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 5490553. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Hu, Y., Pan, H., Peng, J., He, J., Tang, M., Yan, S., et al. (2021) Resveratrol Inhibits Necroptosis by Mediating the TNF-α/RIP1/RIP3/MLKL Pathway in Myocardial Hypoxia/reoxygenation Injury. Acta Biochimica et Biophysica Sinica, 53, 430-437. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Chen, H., Tang, L., Tu, H., Zhou, Y., Li, N., Luo, X., et al. (2020) Arctiin Protects Rat Heart against Ischemia/Reperfusion Injury via a Mechanism Involving Reduction of Necroptosis. European Journal of Pharmacology, 875, Article 173053. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Yang, Z., Li, C., Wang, Y., Yang, J., Yin, Y., Liu, M., et al. (2018) Melatonin Attenuates Chronic Pain Related Myocardial Ischemic Susceptibility through Inhibiting RIP3-MLKL/CaMKII Dependent Necroptosis. Journal of Molecular and Cellular Cardiology, 125, 185-194. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Szobi, A., Farkašová‐Ledvényiová, V., Lichý, M., Muráriková, M., Čarnická, S., Ravingerová, T., et al. (2018) Cardioprotection of Ischaemic Preconditioning Is Associated with Inhibition of Translocation of MLKL within the Plasma Membrane. Journal of Cellular and Molecular Medicine, 22, 4183-4196. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Fujita, Y., Yano, T., Kanamori, H., Nagahara, D., Muranaka, A., Kouzu, H., et al. (2022) Enhanced Nuclear Localization of Phosphorylated MLKL Predicts Adverse Events in Patients with Dilated Cardiomyopathy. ESC Heart Failure, 9, 3435-3451. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Cao, T., Ni, R., Ding, W., Ji, X., Li, L., Liao, G., et al. (2022) MLKL-Mediated Necroptosis Is a Target for Cardiac Protection in Mouse Models of Type-1 Diabetes. Cardiovascular Diabetology, 21, Article No. 165. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Wei, L., Wan, N., Zhu, W., Liu, C., Chen, Z., Rong, W., et al. (2025) Inflammatory Adhesion Mediates Myocardial Segmental Necroptosis Induced by Mixed Lineage Kinase Domain-Like Protein in Acute Myocardial Infarction. Cell Communication and Signaling, 23, Article No. 32. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Ekhlak, M., Kulkarni, P.P., Singh, V., Chaurasia, S.N., Mohapatra, S.K., Chaurasia, R.N., et al. (2023) Necroptosis Executioner MLKL Plays Pivotal Roles in Agonist-Induced Platelet Prothrombotic Responses and Lytic Cell Death in a Temporal Order. Cell Death & Differentiation, 30, 1886-1899. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
肖真, 张银妆, 匡圆圆, 等. 冠状动脉粥样硬化性心脏病患者血浆RIPK1, RIPK3及MLKL水平变化及其临床预测价值[J]. 中南大学学报(医学版), 2020, 45(9): 1096-1103.
|