矮小症儿童甲状腺激素敏感性评估及其与IGF-1/IGFBP-3轴关联的研究进展
Research Progress on Thyroid Hormone Sensitivity Assessment in Children with Short Stature and Its Association with the IGF-1/IGFBP-3 Axis
DOI: 10.12677/jcpm.2026.51030, PDF, HTML, XML,   
作者: 朱俊珂:济宁医学院临床医学院(附属医院),山东 济宁;李 萍*:济宁医学院附属医院内分泌科,山东 济宁
关键词: 矮小症甲状腺激素敏感性IGF-1/IGFBP-3轴表观遗传调控Short Stature Thyroid Hormone Sensitivity IGF-1/IGFBP-3 Axis Epigenetic Regulation
摘要: 矮小症是儿童内分泌领域常见疾病,其发病机制涉及多种内分泌轴功能异常。近年来,甲状腺激素敏感性评估在矮小症诊疗中的价值日益受到关注。本文系统综述了甲状腺激素敏感性评估方法及其与胰岛素样生长因子-1 (IGF-1)/胰岛素样生长因子结合蛋白-3 (IGFBP-3)轴关联的最新研究进展。甲状腺激素敏感性异常通过影响生长激素-IGF-1轴功能参与矮小症的发病过程。新型生物标志物和评估指标的开发为临床提供了更精准的诊断工具,而表观遗传机制的深入研究为理解其分子机制提供了新视角。本综述旨在为矮小症的临床诊疗和科研方向提供参考。
Abstract: Short stature is a common disease in the field of pediatric endocrinology, and its pathogenesis involves abnormal functions of multiple endocrine axes. In recent years, the value of thyroid hormone sensitivity assessment in the diagnosis and treatment of short stature has attracted increasing attention. This article systematically reviews the latest research progress on thyroid hormone sensitivity assessment methods and their association with the insulin-like growth factor-1 (IGF-1)/insulin-like growth factor-binding protein-3 (IGFBP-3) axis. Abnormal thyroid hormone sensitivity participates in the pathogenesis of short stature by affecting the function of the growth hormone-IGF-1 axis. The development of new biomarkers and evaluation indicators provides more accurate diagnostic tools for clinical practice, while in-depth research on epigenetic mechanisms offers a new perspective for understanding its molecular mechanisms. This review aims to provide references for the clinical diagnosis, treatment, and research directions of short stature.
文章引用:朱俊珂, 李萍. 矮小症儿童甲状腺激素敏感性评估及其与IGF-1/IGFBP-3轴关联的研究进展[J]. 临床个性化医学, 2026, 5(1): 202-208. https://doi.org/10.12677/jcpm.2026.51030

1. 引言

矮小症是指身高低于同种族、同年龄和同性别正常健康儿童生长曲线第3百分位数或2个标准差以下的生长障碍性疾病[1]。全球儿童矮小症患病率约为3%,其病因复杂多样,包括生长激素缺乏症(GHD)、特发性矮小(ISS)、甲状腺功能异常及遗传综合征等[2] [3]。生长激素–胰岛素样生长因子-1 (GH-IGF-1)轴是调控儿童线性生长的核心内分泌通路,而甲状腺激素作为关键的调节因子,通过影响GH的合成与分泌、上调肝脏生长激素受体表达以及协同增强IGF-1的生物学效应,在该轴中扮演着不可或缺的角色[4]

研究发现,甲状腺激素敏感性异常与矮小症的发病密切相关。甲状腺激素敏感性特指靶组织(如肝脏、骨骼和软骨细胞)对循环中甲状腺激素(主要是T3)产生相应生物学效应的能力。这种敏感性不仅取决于血清甲状腺激素水平,更关键地取决于甲状腺激素受体(TRs)的表达水平与功能、辅助调节因子的活性以及下游信号通路的完整性[5]。近年来,部分矮小症患儿被发现存在血清甲状腺功能正常,但其生长状态仍提示甲状腺激素作用不足的现象,这促使研究焦点从单纯的激素水平测定转向对组织敏感性的深入评估[6]

甲状腺激素敏感性的调控机制极为复杂,其中表观遗传学调控作为连接基因与环境因素的桥梁,正日益受到关注。研究表明,表观遗传修饰在不改变DNA序列的情况下,通过调控基因表达,精细地调节着甲状腺激素信号通路及GH-IGF-1轴的功能。在DNA甲基化层面,研究发现甲状腺激素受体基因(如THRA和THRB)启动子区域的异常高甲基化可导致其转录沉默,从而降低靶细胞对T3的反应性,这可能是某些甲状腺功能正常性矮小症的潜在机制。在微小RNA (miRNA)层面,多种miRNA被证实参与该调控网络[7]。例如,miR-206可直接靶向IGF-1基因的3'非翻译区(3'-UTR),抑制IGF-1的翻译,从而削弱GH的促生长效应[8]。此外,miR-424和miR-503等也被报道能够调控TRs的表达或功能,间接影响甲状腺激素的敏感性[9]。这些表观遗传学发现为理解矮小症的异质性提供了新的分子视角。

因此,对矮小症儿童进行甲状腺激素敏感性评估,有望揭示传统内分泌检测未能发现的病理生理机制。本文重点综述近三年来矮小症儿童甲状腺激素敏感性评估方法的最新进展,并深入探讨其与IGF-1/IGFBP-3轴的关联机制,为临床实现更精准的个体化诊断与治疗提供新的理论依据。

2. 矮小症儿童甲状腺激素敏感性评估方法进展

2.1. 传统评估指标及局限性

传统甲状腺功能评估主要依赖促甲状腺激素(TSH)、游离甲状腺素(FT4)、游离三碘甲状腺原氨酸(FT3)等指标[10]。然而,这些传统指标无法全面反映组织水平的甲状腺激素敏感性状态。研究发现,单纯TSH和FT4检测在评估甲状腺激素敏感性方面存在明显局限性。约64.18%的矮小症患儿存在血清游离脂肪酸水平增高,提示代谢异常与甲状腺激素敏感性可能存在关联[11]。此外,rhGH治疗可通过增加T4向T3的转化和生长抑素分泌抑制TSH分泌,导致中枢性甲状腺功能减退表现,这些变化无法通过传统指标完全体现[12]

2.2. 新型评估指标及临床应用

为克服传统指标的局限性,近年来多项研究致力于开发更精准的甲状腺激素敏感性评估指标。甲状腺激素敏感性指数(TSHI)作为“fT4-调整的TSH”指标,能够更准确评估垂体甲状腺功能和病理抑制状态[13] [14]。研究人员开发了各种指标,如基于甲状腺反馈分位数的指数(TFQI)、基于甲状腺反馈分位数的参数指数(PTFQI)、甲状腺营养甲状腺素抵抗指数(TT4RI)和促甲状腺激素指数(TSHI),以量化甲状腺功能与代谢因素之间的关系[15]。2016年一项前瞻性研究建立了上海地区儿童甲状腺功能检测指标参考区间,为甲状腺激素敏感性评估提供了地域特异性标准[16]

在矮小症儿童中,甲状腺激素敏感性异常表现为血清甲状腺激素水平正常或轻度异常,但机体对激素的生理效应明显减弱。这种现象在临床上表现为生长发育迟缓,骨骼生长板发育受阻,进而导致身高增长受限。具体临床表现可能包括生长速度减慢、骨龄滞后以及代谢紊乱等,这些均与甲状腺激素的组织效应减弱密切相关。多项研究证实,部分矮小症儿童存在甲状腺激素敏感性降低的情况,机制复杂且多样。在遗传层面,甲状腺激素受体基因(如THRβ)的点突变或缺失可导致受体功能障碍,是耐甲状腺激素综合征(RTH)的典型表现,患者血清T3、T4升高但临床表现为甲状腺功能减退样症状[17]。在表达调控层面,受体表达下调或受体异构体比例失衡也可造成敏感性降低。

在骨骼系统中,甲状腺激素通过调节生长板软骨细胞的增殖和分化参与骨骼发育[18]。敏感性降低导致激素信号减弱,骨骼生长板发育受阻,骨密度和结构异常,可能会进而影响到最终身高。研究表明,敏感性异常不仅影响骨骼,还可能涉及脂代谢异常和胰岛素样生长因子(IGF)轴的调控异常,共同影响儿童的生长发育[10] [19]。此外,甲状腺激素敏感性异常还与代谢紊乱相关。脂质代谢异常、胰岛素抵抗及炎症状态的改变均加重了生长障碍的临床表现。部分矮小症儿童可能存在相关的代谢风险,需要综合评估和管理[17] [19] [20]

多组学技术的应用极大地推动了对甲状腺激素敏感性异常机制的解析。国内外学者利用高通量测序技术发现,甲状腺激素信号通路相关关键基因(包括受体基因、转运蛋白基因及代谢酶编码基因等)的变异与矮小症的发生密切相关[17]。同时,利用前述敏感性指数结合临床表型数据的研究显示,敏感性降低的患者通常伴随骨骼发育迟缓和脂代谢异常,表明这些指数可作为矮小症儿童病情评估和预后判断的重要生物标志物[19] [21]。在临床干预方面,针对甲状腺激素敏感性异常的个体化治疗策略也开始探索,如调整甲状腺激素补充剂量、联合GH治疗或利用靶向TR的药物,初步研究显示其有改善生长预后的潜力,但仍需更大规模的临床试验验证[22]

综上所述,从传统功能指标到新型敏感性指数的演进,标志着评估策略从反映激素水平向揭示组织应答能力的转变。甲状腺激素敏感性的异常最终的生长抑制效应,很大程度上是通过与儿童生长的核心调控轴——GH-IGF-1轴的复杂交互来实现的。因此,深入理解IGF-1/IGFBP-3轴的功能及其与甲状腺激素信号的关联,是揭示矮小症完整病理生理网络的关键环节。

3. IGF-1/IGFBP-3轴在矮小症儿童中的作用及其与甲状腺激素的关联

3.1. IGF-1/IGFBP-3轴的生理功能及其在生长发育中的作用

胰岛素样生长因子1 (IGF-1)是主要的生长因子,在促进软组织和骨骼细胞增殖与分化中发挥重要作用[23]。IGF-1通过与其受体结合,激活下游信号通路,调控细胞周期和代谢,从而促进骨骼的纵向生长和软组织发育。同时,IGF结合蛋白3 (IGFBP-3)作为IGF-1的主要结合蛋白,调节IGF-1的生物活性,延长其血浆半衰期并调控其靶向组织的分布[24]。IGF-1与IGFBP-3形成的复合物在血液中循环,控制IGF-1的有效浓度,进而影响生长速度。

多项研究证实,IGF-1/IGFBP-3轴功能异常是导致儿童矮小症的重要机制之一。例如,IGF-1水平的降低常见于生长激素缺乏(GHD)患者,这直接导致骨骼生长受限,表现为身高增长缓慢[25]。临床数据显示,GHD组儿童的血清IGF-1水平显著低于特发性矮小(ISS)组及正常对照组,且IGF-1与生长激素(GH)和IGFBP-3呈正相关关系,提示三者在生长调控中协同作用[26]。此外,IGF-1的缺乏还可能影响骨骼的矿化和软组织的发育,进一步加重生长障碍。

基因变异研究表明,IGF-1轴中相关基因的突变也会导致不同程度的生长迟缓。IGF1基因的罕见突变可能引起IGF-1的功能缺失,导致严重的生长发育障碍及胰岛素抵抗[27]。同时,IGFBP-3的表达水平和功能障碍亦被认为与生长异常密切相关。总之,IGF-1/IGFBP-3轴作为生长调节的核心通路,其正常功能对于儿童的身高增长和发育至关重要。

3.2. 甲状腺激素对IGF-1/IGFBP-3轴的调控机制

甲状腺激素(TH),主要包括甲状腺素(T4)和三碘甲腺原氨酸(T3),在儿童生长发育中具有关键调节作用[28]。甲状腺激素不仅直接调节细胞代谢和增殖,还通过调节生长激素(GH)分泌及其受体表达间接影响IGF-1的合成。研究显示,甲状腺激素促进肝脏对GH的响应,增强肝细胞中GH受体的表达,进而促进IGF-1的合成和分泌[29]。此外,甲状腺激素还可直接作用于骨骼细胞,调节IGF-1和IGFBP-3的表达,促进骨骼生长和重塑。

在细胞水平上,甲状腺激素通过核内受体介导基因表达的调控,同时也通过非基因组机制影响信号转导,例如通过整合素αvβ3介导的信号通路调节IGF-1的效应[30]。这一调控机制体现了甲状腺激素与IGF-1轴之间的复杂交互,影响细胞迁移、增殖及组织再生。

临床和动物模型研究进一步证实了甲状腺激素敏感性降低时,IGF-1/IGFBP-3轴活性减弱,导致生长速度下降。甲状腺功能减退的儿童常伴有IGF-1水平下降,表现为生长迟缓[31]。反之,甲状腺激素水平升高能够促进IGF-1表达,促进骨骼和软组织发育[32]。此外,甲状腺疾病患者的IGF-1/IGFBP-3轴紊乱也与生长异常密切相关,提示甲状腺激素对IGF-1轴的调控具有重要的临床意义。当甲状腺激素敏感性降低时,如在SOFT综合征中,患者表现为严重的生长迟缓和IGF-1抵抗,伴随脂代谢异常[33]。这进一步证明了甲状腺激素与IGF-1/IGFBP-3轴的功能连接对于维持正常生长代谢的必要性。

4. 结论与展望

本综述系统梳理了矮小症儿童甲状腺激素敏感性评估从传统功能指标到新型综合指数的演进历程。传统TSH、FT4等指标虽能识别典型的甲状腺功能异常,却难以揭示组织水平的激素应答障碍。而TFQI、TSHI等一系列新型敏感性指数的开发与应用,标志着评估策略正向精准化、个体化迈进。这些指数在近年的研究中已被证实与矮小症患者的生长迟缓、骨龄滞后及脂代谢异常等临床表型密切相关,展现出重要的生物标志物潜力。

展望未来,本领域的深入研究应聚焦于以下几个方向:首先,需要进一步推动新型敏感性指数在多中心、大样本矮小症队列中的验证,建立适用于不同年龄、性别和病因的儿童参考区间,并探索其在中国人群中的特异性。其次,随着多组学技术的普及,应着力于解析甲状腺激素敏感性、IGF-1/IGFBP-3轴以及表观遗传调控之间的复杂交互网络,从系统生物学角度全面理解矮小症的发病机制。最后,基于对个体激素敏感性状态和分子特征的精准评估,开发个体化的治疗干预策略将成为终极目标。例如,对于明确存在甲状腺激素敏感性降低的特定矮小症亚组,探索调整甲状腺激素补充剂量、联合生长激素治疗或未来应用靶向甲状腺激素受体的药物等策略的可行性与疗效,将是转化医学的重点课题。

最终,通过将“激素敏感性”这一概念深度整合进矮小症的临床评估、病因研究与治疗决策中,我们有望实现从“治已病”到“辨病因、精准治”的范式转变,从而为更多矮小症儿童提供真正意义上的个体化精准医疗,改善其长期生长预后与生命质量。

NOTES

*通讯作者。

参考文献

[1] Hua, C. and Yu, D. (2022) Correlation Study between Levels of Gastrin, Serum IGF-1, and GHBP and Growth and Development in Children with Short Stature Based on Big Data Analysis. Disease Markers, 2022, 1-6. [Google Scholar] [CrossRef] [PubMed]
[2] Wu, H., Li, Y. and Li, H. (2022) Brachydactyly Type A3 Is More Commonly Seen in Children with Short Stature but Does Not Affect Their Height Improvement by Growth Hormone Therapy. Frontiers in Endocrinology, 13, Article 824315. [Google Scholar] [CrossRef] [PubMed]
[3] Patel, R.S., Daniel, R., Bhardwaj, C., Kumari, A., Bawa, P., Tyagi, A., et al. (2024) Estrogen Receptor 1 Gene Polymorphism and Its Association with Idiopathic Short Stature in North Indian Population. Journal of Clinical Research in Pediatric Endocrinology, 16, 279-287. [Google Scholar] [CrossRef] [PubMed]
[4] Esposito, S., Leonardi, A., Lanciotti, L., Cofini, M., Muzi, G. and Penta, L. (2019) Vitamin D and Growth Hormone in Children: A Review of the Current Scientific Knowledge. Journal of Translational Medicine, 17, Article No. 87. [Google Scholar] [CrossRef] [PubMed]
[5] Susperrguy, S., Muñoz, L., Tkalenko, N.Y., et al. (2011) Growth Hormone Treatment in Children with Idiopathic Short Stature: Correlation of Growth Response with Peripheral Thyroid Hormone Action. Pediatric Diabetes, 12, 33-40.
[6] Wang, W., Jiang, S.Q., Cui, Z.R., et al. (2018) Sensitivity of Supplementation of Thyroid Hormone on Treatment of Idiopathic Short-Stature Children during Therapy with Recombinant Human Growth Hormone. Endocrine, 60, 645-652.
[7] Kazlauskiene, M., Klimaite, R., Kondrotiene, A., Dauksa, A., Dauksiene, D., Verkauskiene, R., et al. (2024) Plasma miRNA-146b-3p,-222-3p,-221-5p,-21a-3p Expression Levels and TSHR Methylation: Diagnostic Potential and Association with Clinical and Pathological Features in Papillary Thyroid Cancer. International Journal of Molecular Sciences, 25, Article 8412. [Google Scholar] [CrossRef] [PubMed]
[8] Wu, H.Y., Wang, X.H., Liu, K., et al. (2020) LncRNA MALAT1 Regulates Trophoblast Cells Migration and Invasion via miR-206/IGF-1 Axis. Cell Cycle, 19, 39-52. [Google Scholar] [CrossRef] [PubMed]
[9] Ruiz-Llorente, L., Ardila-González, S., Fanjul, L.F., Martínez-Iglesias, O. and Aranda, A. (2014) microRNAs 424 and 503 Are Mediators of the Anti-Proliferative and Anti-Invasive Action of the Thyroid Hormone Receptor Beta. Oncotarget, 5, 2918-2933. [Google Scholar] [CrossRef] [PubMed]
[10] Chen, Z., Chen, Y., Li, Y., Leng, Z., Li, N. and Xia, W. (2024) Association between Sensitivity to Thyroid Hormones and Trabecular Bone Score in Euthyroid Individuals: A Population-Based Cross-Sectional Study. BMC Musculoskeletal Disorders, 25, Article No. 1050. [Google Scholar] [CrossRef] [PubMed]
[11] 李彦晓, 徐灵敏, 宋宗先, 等. 矮小症患儿血清游离脂肪酸异常增高的临床意义[J]. 中国医刊, 2020, 55(8): 867-869.
[12] 张海姣, 兰丽珍. 重组人生长激素治疗矮小症的临床效果及治疗期间胰岛素样生长因子、血清碱性磷酸酶的变化[J]. 临床内科杂志, 2024, 41(7): 493-495.
[13] Jostel, A., Ryder, W.D.J. and Shalet, S.M. (2009) The Use of Thyroid Function Tests in the Diagnosis of Hypopituitarism: Definition and Evaluation of the TSH Index. Clinical Endocrinology, 71, 529-534. [Google Scholar] [CrossRef] [PubMed]
[14] Zhang, J., Luo, Z., Zhang, J., Zhang, R., Liu, X., Wang, J., et al. (2024) Association between Sensitivity to Thyroid Hormone Indices and Type 2 Diabetic Microvascular Complications in Euthyroid Patients. Scientific Reports, 14, Article No. 31079. [Google Scholar] [CrossRef] [PubMed]
[15] Zhou, X., Zhang, Y. and Li, Z. (2025) Impaired Sensitivity to Thyroid Hormones Is Positively Associated to Metabolic Syndrome Severity in Euthyroid Chinese Adults as Revealed by a Cross-Sectional Study. Frontiers in Endocrinology, 16, Article 1552484. [Google Scholar] [CrossRef] [PubMed]
[16] 李怀远, 蒋黎敏, 钱悦平, 等. 上海地区儿童甲状腺功能检测指标参考区间的建立[J]. 检验医学, 2016, 31(12): 1045-1049.
[17] Domingues-Hajj, P.M.D.S., Gomes, P.M., Magalhães, P.K.R. and Maciel, L.M.Z. (2024) Assessment of Cardiometabolic Risk Factors and Insulin Sensitivity by Hyperinsulinemic-Euglycemic Clamp in Resistance to Thyroid Hormone Β Syndrome. Thyroid, 34, 1038-1046. [Google Scholar] [CrossRef] [PubMed]
[18] Sun, Y., Kan, X., Zheng, R., Hao, L., Mao, Z. and Jia, Y. (2023) Hashimoto’s Thyroiditis, Vitiligo, Anemia, Pituitary Hyperplasia, and Lupus Nephritis—A Case Report of Autoimmune Polyglandular Syndrome Type III C+D and Literature Review. Frontiers in Pediatrics, 11, Article 1062505. [Google Scholar] [CrossRef] [PubMed]
[19] Liu, Y., Ma, M., Li, L., Liu, F., Li, Z., Yu, L., et al. (2022) Association between Sensitivity to Thyroid Hormones and Dyslipidemia in Patients with Coronary Heart Disease. Endocrine, 79, 459-468. [Google Scholar] [CrossRef] [PubMed]
[20] Elsayed, O.M., Abdelazim, S.A., Darwish, H.A., et al. (2023) Association of LncRNA-PAX8-AS1 and LAIR-2 Polymorphisms along with Their Expression with Clinical and Subclinical Hypothyroidism. Scientific Reports, 13, Article No. 6. [Google Scholar] [CrossRef] [PubMed]
[21] Li, Z., Hu, F., Yu, H., Yao, Y. and Lu, Y. (2025) Impaired Sensitivity to Thyroid Hormone Was Associated with Increased Continuous Metabolic Syndrome Score. Nutrition, Metabolism and Cardiovascular Diseases, 35, Article 104203. [Google Scholar] [CrossRef] [PubMed]
[22] Krysiak, R., Kowalcze, K. and Okopień, B. (2022) Thyroid Antibody Titers and Hypothalamic-Pituitary-Thyroid Axis Activity in Levothyroxine-Treated Women with Autoimmune Subclinical Hypothyroidism Receiving Atorvastatin or Metformin. The Journal of Clinical Pharmacology, 62, 1566-1573. [Google Scholar] [CrossRef] [PubMed]
[23] Sun, W., Sun, Q., Cui, Q., He, M., Wu, W., Li, Y., et al. (2023) Association of IGF-1 Level with Low Bone Mass in Young Patients with Cushing’s Disease. International Journal of Endocrinology, 2023, 1-9. [Google Scholar] [CrossRef] [PubMed]
[24] Long, J., Niu, M., Liao, X., Han, K., Chen, J., Su, W., et al. (2025) Feasibility, Safety, and Efficacy of High-Dose Intermittent Theta Burst Stimulation in Children with Autism Spectrum Disorder: Study Protocol for a Pilot Randomized Sham-Controlled Trial. Frontiers in Psychiatry, 16, Article 1549982. [Google Scholar] [CrossRef] [PubMed]
[25] Sun, M., Yan, W., Zhao, Q., et al. (2020) Association between Serum Calcium and Phosphorus Levels and Insulin-Like Growth Factor-1 in Chinese Children and Adolescents with Short Stature. International Journal of General Medicine, 13, 1167-1173. [Google Scholar] [CrossRef] [PubMed]
[26] Wang, Y., Zhang, H., Cao, M., Kong, L. and Ge, X. (2019) Analysis of the Value and Correlation of IGF‑1 with GH and IGFBP‑3 in the Diagnosis of Dwarfism. Experimental and Therapeutic Medicine, 17, 3689-3693. [Google Scholar] [CrossRef] [PubMed]
[27] Giacomozzi, C., Martin, A., Fernández, M.C., Gutiérrez, M., Iascone, M., Domené, H.M., et al. (2022) Novel Insulin-Like Growth Factor 1 Gene Mutation: Broadening of the Phenotype and Implications for Insulin Resistance. The Journal of Clinical Endocrinology & Metabolism, 108, 1355-1369. [Google Scholar] [CrossRef] [PubMed]
[28] Nikanorova, A., Barashkov, N., Pshennikova, V., Teryutin, F., Nakhodkin, S., Solovyev, A., et al. (2023) A Systematic Review and Meta-Analysis of Free Triiodothyronine (FT3) Levels in Humans Depending on Seasonal Air Temperature Changes: Is the Variation in FT3 Levels Related to Nonshivering Thermogenesis? International Journal of Molecular Sciences, 24, Article 14052. [Google Scholar] [CrossRef] [PubMed]
[29] Sarver, D.C., Garcia-Diaz, J., Saqib, M., et al. (2023) Tmem263 Deletion Disrupts the GH/IGF-1 Axis and Causes Dwarfism and Impairs Skeletal Acquisition. Elife, 12, Article 90949. [Google Scholar] [CrossRef
[30] Candelotti, E., De Luca, R., Megna, R., Maiolo, M., De Vito, P., Gionfra, F., et al. (2021) Inhibition by Thyroid Hormones of Cell Migration Activated by IGF-1 and MCP-1 in THP-1 Monocytes: Focus on Signal Transduction Events Proximal to Integrin αvβ3. Frontiers in Cell and Developmental Biology, 9, Article 651492. [Google Scholar] [CrossRef] [PubMed]
[31] Hu, Y., Zhu, L., Liu, Q., Xue, Y., Sun, X. and Li, G. (2021) Thyroid Function in Children with Short Stature Accompanied by Isolated Pituitary Hypoplasia. Hormones, 20, 707-713. [Google Scholar] [CrossRef] [PubMed]
[32] Zeng, B., Liao, X., Liu, L., Zhang, C., Ruan, H. and Yang, B. (2021) Thyroid Hormone Mediates Cardioprotection against Postinfarction Remodeling and Dysfunction through the IGF-1/PI3K/AKT Signaling Pathway. Life Sciences, 267, Article 118977. [Google Scholar] [CrossRef] [PubMed]
[33] Perge, K., Capel, E., Villanueva, C., Gautheron, J., Diallo, S., Auclair, M., et al. (2024) Ciliopathy Due to POC1A Deficiency: Clinical and Metabolic Features, and Cellular Modeling. European Journal of Endocrinology, 190, 151-164. [Google Scholar] [CrossRef] [PubMed]