|
[1]
|
Groenewegen, A., Rutten, F.H., Mosterd, A. and Hoes, A.W. (2020) Epidemiology of Heart Failure. European Journal of Heart Failure, 22, 1342-1356. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
高超, 于普林. 老年人肌少症的研究现状和进展[J]. 中华老年医学杂志, 2021, 40(5): 668-671.
|
|
[3]
|
Yuan, S. and Larsson, S.C. (2023) Epidemiology of Sarcopenia: Prevalence, Risk Factors, and Consequences. Metabolism, 144, Article 155533. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Shen, Y., Chen, J., Chen, X., Hou, L., Lin, X. and Yang, M. (2019) Prevalence and Associated Factors of Sarcopenia in Nursing Home Residents: A Systematic Review and Meta-Analysis. Journal of the American Medical Directors Association, 20, 5-13. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
施晴波, 樊璠. 三酰甘油-葡萄糖指数、脑源性神经营养因子对非糖尿病维持性血液透析患者的肌肉减少症的诊断价值分析[J]. 中国血液净化, 2024, 23(1): 30-34.
|
|
[6]
|
Papadopoulou, S. (2020) Sarcopenia: A Contemporary Health Problem among Older Adult Populations. Nutrients, 12, Article 1293. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Lu, J.-L., Ding, L.-Y., Xu, Q., Zhu, S., Xu, X.-Y., Hua, H.-X., et al. (2021) Screening Accuracy of SARC-F for Sarcopenia in the Elderly: A Diagnostic Meta-Analysis. The Journal of nutrition, health and aging, 25, 172-182. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Xiong, L., Liao, T., Guo, T., Zeng, Z., Wang, S., Yang, G., et al. (2023) The Relationship between Sarcopenia and Mortality in Chinese Community-Dwelling Adults: A 7-Year Cohort Study with Propensity Score Matching and Mendelian Randomization. Frontiers in Endocrinology, 14, Article ID: 1215512. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Kakehi, S., Wakabayashi, H., Inuma, H., Inose, T., Shioya, M., Aoyama, Y., et al. (2022) Rehabilitation Nutrition and Exercise Therapy for Sarcopenia. The World Journal of Men’s Health, 40, 1-10. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Cai, Z., Liu, D., Yang, Y., Xie, W., He, M., Yu, D., et al. (2022) The Role and Therapeutic Potential of Stem Cells in Skeletal Muscle in Sarcopenia. Stem Cell Research & Therapy, 13, Article No. 28. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Kalinkovich, A., Becker, M. and Livshits, G. (2022) New Horizons in the Treatment of Age-Associated Obesity, Sarcopenia and Osteoporosis. Drugs & Aging, 39, 673-683. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Gielen, E., Dupont, J., Dejaeger, M. and Laurent, M.R. (2023) Sarcopenia, Osteoporosis and Frailty. Metabolism, 145, Article 155638. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Li, Y., Chen, M., Zhao, Y., Li, M., Qin, Y., Cheng, S., et al. (2020) Advance in Drug Delivery for Ageing Skeletal Muscle. Frontiers in Pharmacology, 11, Article ID: 1016. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Moiseeva, V., Cisneros, A., Sica, V., Deryagin, O., Lai, Y., Jung, S., et al. (2022) Senescence Atlas Reveals an Aged-Like Inflamed Niche That Blunts Muscle Regeneration. Nature, 613, 169-178. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Feike, Y., Zhijie, L. and Wei, C. (2021) Advances in Research on Pharmacotherapy of Sarcopenia. Aging Medicine, 4, 221-233. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Huang, Q., Wan, J., Nan, W., Li, S., He, B. and Peng, Z. (2024) Association between Manganese Exposure in Heavy Metals Mixtures and the Prevalence of Sarcopenia in US Adults from NHANES 2011-2018. Journal of Hazardous Materials, 464, Article 133005. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Liu, Z. and Zhu, C. (2023) Causal Relationship between Insulin Resistance and Sarcopenia. Diabetology & Metabolic Syndrome, 15, Article No. 46. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Makanae, Y. and Fujita, S. (2015) Role of Exercise and Nutrition in the Prevention of Sarcopenia. Journal of Nutritional Science and Vitaminology, 61, S125-S127. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Ebert, S.M., Dyle, M.C., Kunkel, S.D., Bullard, S.A., Bongers, K.S., Fox, D.K., et al. (2012) Stress-Induced Skeletal Muscle Gadd45a Expression Reprograms Myonuclei and Causes Muscle Atrophy. Journal of Biological Chemistry, 287, 27290-27301. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Yamamoto, S., Kuramoto, K., Wang, N., Situ, X., Priyadarshini, M., Zhang, W., et al. (2018) Autophagy Differentially Regulates Insulin Production and Insulin Sensitivity. Cell Reports, 23, 3286-3299. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Simental-Mendía, L.E., Rodríguez-Morán, M. and Guerrero-Romero, F. (2008) The Product of Fasting Glucose and Triglycerides as Surrogate for Identifying Insulin Resistance in Apparently Healthy Subjects. Metabolic Syndrome and Related Disorders, 6, 299-304. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Park, K., Ahn, C.W., Lee, S.B., Kang, S., Nam, J.S., Lee, B.K., et al. (2019) Elevated Tyg Index Predicts Progression of Coronary Artery Calcification. Diabetes Care, 42, 1569-1573. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Vasques, A.C.J., Novaes, F.S., de Oliveira, M.d.S., Matos Souza, J.R., Yamanaka, A., Pareja, J.C., et al. (2011) Tyg Index Performs Better than HOMA in a Brazilian Population: A Hyperglycemic Clamp Validated Study. Diabetes Research and Clinical Practice, 93, e98-e100. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Couto, A.N., Pohl, H.H., Bauer, M.E. and Schwanke, C.H.A. (2023) Accuracy of the Triglyceride-Glucose Index as a Surrogate Marker for Identifying Metabolic Syndrome in Non-Diabetic Individuals. Nutrition, 109, Article 111978. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Pan, Y., Zhong, S., Zhou, K., Tian, Z., Chen, F., Liu, Z., et al. (2021) Association between Diabetes Complications and the Triglyceride-Glucose Index in Hospitalized Patients with Type 2 Diabetes. Journal of Diabetes Research, 2021, Article ID: 8757996. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Xue, Y., Xu, J., Li, M. and Gao, Y. (2022) Potential Screening Indicators for Early Diagnosis of NAFLD/MAFLD and Liver Fibrosis: Triglyceride Glucose Index-Related Parameters. Frontiers in Endocrinology, 13, Article ID: 951689. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Ding, X., Wang, X., Wu, J., Zhang, M. and Cui, M. (2021) Triglyceride-Glucose Index and the Incidence of Atherosclerotic Cardiovascular Diseases: A Meta-Analysis of Cohort Studies. Cardiovascular Diabetology, 20, Article No. 76. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Yan, Y., Zhou, L., La, R., Jiang, M., Jiang, D., Huang, L., et al. (2023) The Association between Triglyceride Glucose Index and Arthritis: A Population-Based Study. Lipids in Health and Disease, 22, Article No. 60. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Qin, Z., Zhao, J., Geng, J., Chang, K., Liao, R. and Su, B. (2021) Higher Triglyceride-Glucose Index Is Associated with Increased Likelihood of Kidney Stones. Frontiers in Endocrinology, 12, Article ID: 774567. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Shi, Y., Zheng, R., Cai, J. and Qian, S. (2021) The Association between Triglyceride Glucose Index and Depression: Data from NHANES 2005-2018. BMC Psychiatry, 21, Article No. 267. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Yang, X., Li, L., Li, R., Li, P. and Zhao, H. (2024) Association between Triglyceride-Glucose Index and Sarcopenia in Patients with Chronic Inflammatory Airway Disease. Heliyon, 10, e34194. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Kim, J.A., Hwang, S.Y., Yu, J.H., Roh, E., Hong, S., Lee, Y., et al. (2021) Association of the Triglyceride and Glucose Index with Low Muscle Mass: KNHANES 2008-2011. Scientific Reports, 11, Article No. 450. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Ahn, S., Lee, J. and Lee, J. (2020) Inverse Association between Triglyceride Glucose Index and Muscle Mass in Korean Adults: 2008-2011 Knhanes. Lipids in Health and Disease, 19, Article No. 243. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Yang, J., Liu, C., Zhao, S., Wang, L., Wu, G., Zhao, Z., et al. (2024) The Association between the Triglyceride-Glucose Index and Sarcopenia: Data from the NHANES 2011-2018. Lipids in Health and Disease, 23, Article No. 219. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Wei, X. and Liu, D. (2024) Association of Triglyceride-Glucose Index with Sarcopenia: NHANES 2011-2014. Frontiers in Endocrinology, 15, Article ID: 1452664. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Chen, Y., Liu, C. and Hu, M. (2024) Association between Triglyceride-Glucose Index and Sarcopenia in China: A Nationally Representative Cohort Study. Experimental Gerontology, 190, Article 112419. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Wang, S., Wu, W., Zhang, L., Zeng, Q., Luo, Y., He, W., et al. (2025) Association between Visceral Fat Accumulation and Sarcopenia: A Cross-Sectional Study. Experimental Gerontology, 209, Article 112849. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Zhao, R., Ji, X. and Wang, F. (2025) Association of Triglyceride Glucose-Related Obesity Indices with Sarcopenia among U.S. Adults: A Cross-Sectional Study from the National Health and Nutrition Examination Survey. Scientific Reports, 15, Article No. 574. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Shao, X., Liang, L., Shen, X., Lang, X., Wang, Y., Lin, W., et al. (2025) Triglyceride-Glucose Index, a Silent Predictor for Osteosarcopenic Adiposity Occurrence and Risk of Cardiovascular and All-Cause Mortality. Diabetology & Metabolic Syndrome, 17, Article No. 410. [Google Scholar] [CrossRef]
|
|
[40]
|
陈月, 喻维薇, 高瑾, 等. TyG-BMI指数、AIP联合餐后血糖波动对2型糖尿病患者肌少症的预测作用[J]. 陆军军医大学学报, 2025, 47(15): 1792-1799.
|
|
[41]
|
张新瑜. 2型糖尿病患者四肢骨骼肌质量指数与糖脂代谢及人体成分分析的相关性研究[D]: [硕士学位论文]. 晋中: 山西医科大学, 2023.
|