|
[1]
|
Ye, Z., Li, Z., Zhong, S., Xing, Q., Li, K., Sheng, W., et al. (2024) The Recent Two Decades of Traumatic Brain Injury: A Bibliometric Analysis and Systematic Review. International Journal of Surgery, 110, 3745-3759. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Maas, A.I.R., Menon, D.K., Manley, G.T., Abrams, M., Åkerlund, C., Andelic, N., et al. (2022) Traumatic Brain Injury: Progress and Challenges in Prevention, Clinical Care, and Research. The Lancet Neurology, 21, 1004-1060. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Maldonado, J., Huang, J.H., Childs, E.W. and Tharakan, B. (2023) Racial/Ethnic Differences in Traumatic Brain Injury: Pathophysiology, Outcomes, and Future Directions. Journal of Neurotrauma, 40, 502-513. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Hajivalili, M., Nikkhoo, N., Salahi, S. and Hosseini, M. (2025) Traumatic Brain Injury: Comprehensive Overview from Pathophysiology to Mesenchymal Stem Cell-Based Therapies. International Immunopharmacology, 146, Article ID: 113816. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Galluzzi, L., Vitale, I., Aaronson, S.A., Abrams, J.M., Adam, D., Agostinis, P., et al. (2018) Molecular Mechanisms of Cell Death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death & Differentiation, 25, 486-541. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Tang, D., Kang, R., Berghe, T.V., Vandenabeele, P. and Kroemer, G. (2019) The Molecular Machinery of Regulated Cell Death. Cell Research, 29, 347-364. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Guo, Z., Liu, Y., Chen, D., Sun, Y., Li, D., Meng, Y., et al. (2025) Targeting Regulated Cell Death: Apoptosis, Necroptosis, Pyroptosis, Ferroptosis, and Cuproptosis in Anticancer Immunity. Journal of Translational Internal Medicine, 13, 10-32. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Hadian, K. and Stockwell, B.R. (2023) The Therapeutic Potential of Targeting Regulated Non-Apoptotic Cell Death. Nature Reviews Drug Discovery, 22, 723-742. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Newton, K., Strasser, A., Kayagaki, N. and Dixit, V.M. (2024) Cell Death. Cell, 187, 235-256. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Tsvetkov, P., Coy, S., Petrova, B., Dreishpoon, M., Verma, A., Abdusamad, M., et al. (2022) Copper Induces Cell Death by Targeting Lipoylated TCA Cycle Proteins. Science, 375, 1254-1261. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Moyer, A., Tanaka, K. and Cheng, E.H. (2025) Apoptosis in Cancer Biology and Therapy. Annual Review of Pathology: Mechanisms of Disease, 20, 303-328. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Thapa, K., Khan, H., Singh, T.G. and Kaur, A. (2021) Traumatic Brain Injury: Mechanistic Insight on Pathophysiology and Potential Therapeutic Targets. Journal of Molecular Neuroscience, 71, 1725-1742. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Unnisa, A., Greig, N.H. and Kamal, M.A. (2023) Inhibition of Caspase 3 and Caspase 9 Mediated Apoptosis: A Multimodal Therapeutic Target in Traumatic Brain Injury. Current Neuropharmacology, 21, 1001-1012. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Li, X., He, S. and Ma, B. (2020) Autophagy and Autophagy-Related Proteins in Cancer. Molecular Cancer, 19, Article No. 12. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Luo, C.L., Li, B.X., Li, Q.Q., Chen, X., Sun, Y., Bao, H., et al. (2011) Autophagy Is Involved in Traumatic Brain Injury-Induced Cell Death and Contributes to Functional Outcome Deficits in Mice. Neuroscience, 184, 54-63. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Pei, C., Li, B., Wen, S., Zhao, K., Yu, S., Li, T., et al. (2024) Neuron-Specific Deficiency of Autophagy Increases Neuronal Loss in Traumatic Brain Injury. PNAS Nexus, 3, pgae457. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Sarkar, C., Zhao, Z., Aungst, S., Sabirzhanov, B., Faden, A.I. and Lipinski, M.M. (2014) Impaired Autophagy Flux Is Associated with Neuronal Cell Death after Traumatic Brain Injury. Autophagy, 10, 2208-2222. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Tian, J., Mao, Y., Liu, D., Li, T., Wang, Y. and Zhu, C. (2025) Mitophagy in Brain Injuries: Mechanisms, Roles, and Therapeutic Potential. Molecular Neurobiology, 62, 10856-10868. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Liu, J., Zhu, Z., Wang, L., Du, J., Zhang, B., Feng, X., et al. (2020) Functional Suppression of Ripk1 Blocks the NF-κB Signaling Pathway and Induces Neuron Autophagy after Traumatic Brain Injury. Molecular and Cellular Biochemistry, 472, 105-114. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Shi, J., Zhao, Y., Wang, K., Shi, X., Wang, Y., Huang, H., et al. (2015) Cleavage of GSDMD by Inflammatory Caspases Determines Pyroptotic Cell Death. Nature, 526, 660-665. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Huang, Y., Xu, W. and Zhou, R. (2021) NLRP3 Inflammasome Activation and Cell Death. Cellular & Molecular Immunology, 18, 2114-2127. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Liu, H., Li, W., Chen, Z., Hu, Y., Zhang, D., Shen, W., et al. (2013) Expression of the NLRP3 Inflammasome in Cerebral Cortex after Traumatic Brain Injury in a Rat Model. Neurochemical Research, 38, 2072-2083. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Kuwar, R., Rolfe, A., Di, L., Xu, H., He, L., Jiang, Y., et al. (2019) A Novel Small Molecular NLRP3 Inflammasome Inhibitor Alleviates Neuroinflammatory Response Following Traumatic Brain Injury. Journal of Neuroinflammation, 16, Article No. 81. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Yan, J., Wan, P., Choksi, S. and Liu, Z. (2022) Necroptosis and Tumor Progression. Trends in Cancer, 8, 21-27. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Wu, Y., Xu, Y., Sun, J., Dai, K., Wang, Z. and Zhang, J. (2024) Inhibiting RIPK1-Driven Neuroinflammation and Neuronal Apoptosis Mitigates Brain Injury Following Experimental Subarachnoid Hemorrhage. Experimental Neurology, 374, Article ID: 114705. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Hu, X., Xu, Y., Zhang, H., Li, Y., Wang, X., Xu, C., et al. (2022) Role of Necroptosis in Traumatic Brain and Spinal Cord Injuries. Journal of Advanced Research, 40, 125-134. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Liu, Z., Chen, Q., Chen, Z., Tian, D., Li, M., Wang, J., et al. (2018) RIP3 Deficiency Protects against Traumatic Brain Injury (TBI) through Suppressing Oxidative Stress, Inflammation and Apoptosis: Dependent on AMPK Pathway. Biochemical and Biophysical Research Communications, 499, 112-119. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Dixon, S.J. and Olzmann, J.A. (2024) The Cell Biology of Ferroptosis. Nature Reviews Molecular Cell Biology, 25, 424-442. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Geng, Z., Guo, Z., Guo, R., Ye, R., Zhu, W. and Yan, B. (2021) Ferroptosis and Traumatic Brain Injury. Brain Research Bulletin, 172, 212-219. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Isaev, N.K., Stelmashook, E.V. and Genrikhs, E.E. (2019) Role of Zinc and Copper Ions in the Pathogenetic Mechanisms of Traumatic Brain Injury and Alzheimer’s Disease. Reviews in the Neurosciences, 31, 233-243. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Scheiber, I.F., Mercer, J.F.B. and Dringen, R. (2014) Metabolism and Functions of Copper in Brain. Progress in Neurobiology, 116, 33-57. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Li, P., Gao, Y., Tao, Z., Mu, Z., Du, S. and Zhao, X. (2025) PANoptosis: Cross-Talk among Apoptosis, Necroptosis, and Pyroptosis in Neurological Disorders. Journal of Inflammation Research, 18, 8131-8140. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Zhang, L., Hu, Z., Li, Z. and Lin, Y. (2023) Crosstalk among Mitophagy, Pyroptosis, Ferroptosis, and Necroptosis in Central Nervous System Injuries. Neural Regeneration Research, 19, 1660-1670. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Wei, Z., Yu, H., Zhao, H., Wei, M., Xing, H., Pei, J., et al. (2024) Broadening Horizons: Ferroptosis as a New Target for Traumatic Brain Injury. Burns & Trauma, 12, tkad051. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Hu, X., Chen, H., Xu, H., Wu, Y., Wu, C., Jia, C., et al. (2020) Role of Pyroptosis in Traumatic Brain and Spinal Cord Injuries. International Journal of Biological Sciences, 16, 2042-2050. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Li, S., Sun, Y., Song, M., Song, Y., Fang, Y., Zhang, Q., et al. (2021) NLRP3/Caspase-1/GSDMD-Mediated Pyroptosis Exerts a Crucial Role in Astrocyte Pathological Injury in Mouse Model of Depression. JCI Insight, 6, e146852. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Zhang, A., Zhang, Z., Liu, Y., Lenahan, C., Xu, H., Jiang, J., et al. (2022) The Role of Caspase Family in Acute Brain Injury: The Potential Therapeutic Targets in the Future. Current Neuropharmacology, 20, 1194-1211. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Zhang, L. and Wang, H. (2018) Autophagy in Traumatic Brain Injury: A New Target for Therapeutic Intervention. Frontiers in Molecular Neuroscience, 11, Article 190. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Coll, R.C., Schroder, K. and Pelegrín, P. (2022) NLRP3 and Pyroptosis Blockers for Treating Inflammatory Diseases. Trends in Pharmacological Sciences, 43, 653-668. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Jantas, D. and Lasoń, W. (2021) Preclinical Evidence for the Interplay between Oxidative Stress and RIP1-Dependent Cell Death in Neurodegeneration: State of the Art and Possible Therapeutic Implications. Antioxidants, 10, Article 1518. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Shen, L., Lin, D., Li, X., Wu, H., Lenahan, C., Pan, Y., et al. (2020) Ferroptosis in Acute Central Nervous System Injuries: The Future Direction? Frontiers in Cell and Developmental Biology, 8, Article 594. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Li, L., Lv, L., Wang, Z., Liu, X., Wang, Q., Zhu, H., et al. (2025) From Copper Homeostasis to Cuproptosis: A New Perspective on CNS Immune Regulation and Neurodegenerative Diseases. Frontiers in Neurology, 16, Article 1581045. [Google Scholar] [CrossRef] [PubMed]
|