瘢痕疙瘩的发病机制、临床特征及治疗进展综述
A Review on the Pathogenesis, Clinical Features, and Therapeutic Advances of Keloids
DOI: 10.12677/jcpm.2026.51040, PDF, HTML, XML,   
作者: 包金丹:延边大学医学院,吉林 延吉;金升元*:延边大学附属医院整形烧伤科,吉林 延吉
关键词: 瘢痕疙瘩发病机制临床特征治疗进展成纤维细胞Keloid Pathogenesis Clinical Features Therapeutic Advances Fibroblasts
摘要: 瘢痕疙瘩(Keloids)是一种常见的皮肤纤维增生性疾病,表现为创伤后皮肤组织的过度修复反应,其发病机制复杂,涉及遗传易感性、慢性炎症、细胞外基质代谢紊乱及成纤维细胞异常活化等多种因素。近年来,随着分子生物学和免疫学研究的深入,瘢痕疙瘩的病理机制逐渐被揭示,但其确切病因仍不完全明确。临床上,瘢痕疙瘩表现为超出原始伤口边界的隆起性瘢痕,常伴有瘙痒、疼痛及功能障碍,严重影响患者的生活质量。目前,治疗方法包括手术切除、糖皮质激素注射、放射治疗、激光治疗及新型生物制剂等,但复发率高仍是临床面临的重大挑战。本文系统综述了瘢痕疙瘩的流行病学特征、分子机制、临床表现、诊断标准及最新治疗进展,旨在为临床实践和未来研究提供理论依据和方向。
Abstract: Keloids are a common fibroproliferative skin disorder characterized by an exaggerated wound-healing response following cutaneous injury. The pathogenesis of keloids is complex and involves multiple factors, including genetic predisposition, chronic inflammation, dysregulation of extracellular matrix metabolism, and aberrant activation of fibroblasts. In recent years, advances in molecular biology and immunology have gradually elucidated the underlying pathological mechanisms; however, the precise etiology remains incompletely understood. Clinically, keloids present as raised scars that extend beyond the boundaries of the original wound and are frequently accompanied by pruritus, pain, and functional impairment, significantly compromising patients’ quality of life. Current therapeutic modalities include surgical excision, intralesional corticosteroid injections, radiotherapy, laser therapy, and emerging biologic agents; nevertheless, high recurrence rates continue to pose a major clinical challenge. This review systematically summarizes the epidemiological features, molecular mechanisms, clinical manifestations, diagnostic criteria, and recent advances in the management of keloids, aiming to provide a theoretical foundation and future directions for clinical practice and research.
文章引用:包金丹, 金升元. 瘢痕疙瘩的发病机制、临床特征及治疗进展综述[J]. 临床个性化医学, 2026, 5(1): 272-279. https://doi.org/10.12677/jcpm.2026.51040

1. 引言

瘢痕疙瘩(Keloids)是一种常见的皮肤纤维增生性疾病,通常发生在创伤、手术或皮肤炎症后的愈合过程中,表现为皮肤组织的过度修复[1]。其发病机制复杂,涉及多个因素的相互作用,包括遗传易感性、局部慢性炎症反应、细胞外基质的异常代谢以及成纤维细胞的活化等[2] [3]。近年来,随着分子生物学、免疫学和遗传学研究的深入,瘢痕疙瘩的病理机制逐渐被揭示,尤其是对成纤维细胞异常增殖、细胞外基质代谢紊乱以及炎症因子网络调控的研究取得了显著进展[4]。然而,尽管取得了显著进展,瘢痕疙瘩的确切病因仍未完全明了。

临床上,瘢痕疙瘩表现为超出创伤边界的隆起性瘢痕,通常伴随瘙痒、疼痛及功能障碍等症状,严重影响患者的外貌和生活质量[5]。值得注意的是,瘢痕疙瘩的临床表现具有明显的异质性,不同患者的瘢痕形态、症状严重程度及治疗反应存在显著差异,这增加了临床管理的复杂性。瘢痕疙瘩的治疗方法众多,包括手术切除、激光治疗、糖皮质激素注射、放射治疗以及最新的生物制剂等,然而,瘢痕疙瘩的复发率较高,且不同患者对治疗的反应存在显著差异,如何制定个性化的治疗方案依然是临床上的一个重大挑战[6]

本文将详细探讨瘢痕疙瘩的发病机制、临床特征、最新的治疗进展,并讨论个性化治疗的前景,旨在为临床治疗提供新的思路,并为未来的研究方向提供指导。

2. 瘢痕疙瘩的发病机制

瘢痕疙瘩的形成过程是一个异常的伤口愈合反应,其核心机制涉及成纤维细胞的异常增殖与细胞外基质的沉积[7]。成纤维细胞过度增殖、胶原合成失控以及基质金属蛋白酶(MMPs)与其抑制因子(TIMPs)之间的不平衡是瘢痕疙瘩形成的主要因素[8]。此外,瘢痕疙瘩还受到遗传、免疫和炎症等多种因素的影响。以下是瘢痕疙瘩的主要发病机制:

2.1. 成纤维细胞与细胞外基质代谢紊乱

在正常的伤口愈合过程中,成纤维细胞通过增殖和胶原合成修复受损组织。然而,瘢痕疙瘩中,成纤维细胞的增殖及胶原合成过程失控,导致过度的纤维化反应。转化生长因子-β (TGF-β)是纤维化过程中起关键作用的因子之一。TGF-β通过激活Smad信号通路及非Smad通路(如MAPK和PI3K/Akt通路),促进成纤维细胞增殖、迁移并增强胶原合成,尤其是I型和III型胶原的过度表达,这在瘢痕疙瘩的形成中起到核心作用[9] [10]

除TGF-β外,其他信号通路如PI3K/Akt、Wnt/β-catenin等也在瘢痕疙瘩的形成中发挥作用。PI3K/Akt通路通过调节细胞增殖及抗凋亡过程,促进成纤维细胞在瘢痕组织中的积聚,而该通路的异常激活与Bcl-2家族蛋白的上调密切相关,进一步抑制了细胞凋亡[11]。而Wnt/β-catenin通路的激活则增强了纤维化过程,这些通路相互作用,共同推动了瘢痕组织的形成[12]

在瘢痕疙瘩中,胶原合成与降解的平衡被打破。MMPs (基质金属蛋白酶)和TIMPs (基质金属蛋白酶抑制因子)的不平衡导致胶原合成过度且胶原降解不足,其中MMP-1和MMP-2的活性被抑制,而TIMP-1的表达显著增加,从而使得瘢痕组织更加坚硬,纤维结构不稳定[13] [14]。这种代谢紊乱不仅影响组织重塑,还可能导致慢性炎症状态的持续存在。

2.2. 炎症反应与免疫调节失衡

炎症反应是瘢痕疙瘩发病机制中的重要环节。在瘢痕疙瘩形成过程中,慢性炎症状态通过促进纤维细胞增殖、胶原合成以及局部免疫细胞浸润加剧了病理过程。细胞因子在瘢痕疙瘩的形成中发挥着至关重要的作用,尤其是白细胞介素(IL-6)、肿瘤坏死因子-α (TNF-α)及TGF-β等促炎因子的增高,这些因子通过相互作用形成炎症回路,进一步刺激成纤维细胞的活化[15]。例如,IL-6不仅促进成纤维细胞产生更多细胞外基质成分,还通过抑制其凋亡导致瘢痕疙瘩的持续发展;而TNF-α则通过激活NF-κB通路放大炎症信号,加剧局部纤维化进程[16] [17]

免疫系统的失调不仅导致局部炎症反应加剧,还可能影响瘢痕组织的退化和重塑。研究表明,免疫细胞的功能失衡、抗纤维化机制的缺失,以及纤维化相关免疫因子的过度表达,都在瘢痕疙瘩的形成中起到了促进作用。特别是Th2型免疫反应的偏倚,导致IL-4和IL-13等细胞因子的过度分泌,进一步驱动成纤维细胞活化和胶原沉积[18] [19]

2.3. 遗传易感性与家族聚集性

瘢痕疙瘩具有明显的遗传易感性。多项研究发现,瘢痕疙瘩在某些家庭中有较高的发病率,提示其可能存在遗传背景。具体来说,TGF-β通路中的基因变异,如TGF-β1、TGF-β受体的基因多态性与瘢痕疙瘩的发病风险密切相关[9] [20]。此外,某些特定的基因突变可能使得成纤维细胞对生长因子的敏感性增加,进而导致纤维化过程的异常加剧。例如,涉及胶原合成和降解的基因(如COL1A1、MMP1和TIMP1)的多态性也被发现与瘢痕疙瘩的易感性相关[8]

尽管如此,瘢痕疙瘩的遗传机制依然不完全明确,可能涉及多基因协同作用和环境因素的共同影响。因此,未来的研究需要继续深入探讨这些遗传机制,并通过全基因组关联研究(GWAS)等技术寻找更多的致病基因,以期揭示瘢痕疙瘩的遗传基础并为早期干预提供依据。

3. 瘢痕疙瘩的临床特征与诊断

3.1. 典型临床特征

瘢痕疙瘩通常表现为超出原伤口边界的隆起性病变,常伴有红色或紫色的颜色变化。瘢痕疙瘩的质地坚硬,表面光滑,并常伴随明显的症状,如疼痛、瘙痒或功能障碍[21] [22]。由于瘢痕疙瘩不具有自限性,其生长速度往往较快,且随着时间的推移,瘢痕的体积和硬度会持续增加,甚至可能扩展到原伤口的范围之外。流行病学研究显示,瘢痕疙瘩表现出与肿瘤相似的生物学特征,如不受控的增殖、缺乏自发消退、高复发率,提示其可能具有类似肿瘤的生物学行为[22]。瘢痕疙瘩常见于胸部、肩部、耳垂等张力较大的部位,尤其在深色皮肤的人群中,发病率显著增高[23]

除了外部症状,瘢痕疙瘩还可能引发患者的心理困扰,尤其是当瘢痕发生在暴露部位时。患者常常因外观问题而产生自卑感,甚至出现焦虑、抑郁等心理健康问题。因此,瘢痕疙瘩不仅是一个皮肤问题,更是一个多学科综合问题,涉及皮肤科、整形外科、心理学等领域的共同管理[24]

3.2. 诊断标准与检查

瘢痕疙瘩的诊断主要依靠病史和临床体征,特别是在早期阶段,诊断通常依赖于医师的临床经验。然而,随着医学影像技术的发展,影像学检查(如超声检查、CT扫描)和组织学检查(如皮肤活检)已成为辅助诊断的重要工具。高频超声能够评估瘢痕的厚度、内部回声及血流情况,有助于鉴别瘢痕疙瘩与增生性瘢痕;而CT或MRI则在深部瘢痕或复杂病例中提供更详细的解剖信息[25]

组织病理学检查是确诊瘢痕疙瘩的重要方法,特征性表现为成纤维细胞过度增生、胶原纤维异常沉积以及特有的α-SMA+表型变化[26]。此外,免疫组化和分子生物学技术,如单细胞测序、基因表达谱分析等,能够为临床提供更为详细的分子机制信息,帮助更精确地判断瘢痕疙瘩的发生过程,并为靶向治疗的研发提供理论支持。例如,单细胞测序研究发现,瘢痕疙瘩中成纤维细胞亚群占主导,且胰岛素样生长因子结合蛋白6 (IGFBP6)和肿瘤坏死因子α诱导蛋白6 (TNFAIP6)的表达显著低于增生性瘢痕,这为分子诊断提供了新靶点[27]

4. 瘢痕疙瘩的治疗进展

4.1. 局部治疗

局部治疗包括糖皮质激素注射、硅胶贴片、5-氟尿嘧啶(5-FU)注射等。其中,糖皮质激素注射(如曲安奈德)被广泛应用于临床,主要通过减少成纤维细胞增殖和胶原合成,从而减轻瘢痕的硬度和体积[28] [29]。然而,长期使用糖皮质激素可能导致皮肤萎缩、色素沉着等副作用,因此需要谨慎使用,并建议联合其他治疗以降低副作用风险。硅胶贴片的作用机制是通过封闭瘢痕组织,减少水分蒸发并减轻机械压力,从而帮助瘢痕的软化与平复,且副作用较小,适合长期使用。近年来,5-FU注射因其能够抑制成纤维细胞增殖和胶原沉积,常与糖皮质激素联用以增强疗效,并减少复发率[30]

4.2. 物理治疗

物理治疗包括激光治疗、冷冻疗法、放射治疗等。脉冲染料激光(PDL)通过破坏瘢痕内的微血管,减少血供,进而改善瘢痕的红斑与硬度[31]。点阵激光(如CO2激光)通过局灶性热损伤刺激胶原重塑,促进正常皮肤的再生[32]。此外,非剥脱点阵激光(如1565 nm铒玻璃激光)也被证明能够改善瘢痕质地和弹性,且恢复期较短。冷冻疗法通过液氮的低温效应破坏瘢痕组织,适用于小型瘢痕的治疗,但可能引起色素异常或复发[33]。放射治疗(如浅层X射线治疗)可作为术后辅助手段,通过抑制成纤维细胞活性降低复发率,尽管其潜在的致癌风险限制了广泛应用。因此,放射治疗通常仅用于顽固性瘢痕疙瘩,并在严格评估获益与风险后使用。

4.3. 手术治疗

手术切除是治疗大型或顽固性瘢痕疙瘩的常用方法,但单纯切除的复发率较高,通常需要结合其他治疗方式如术后激光治疗、糖皮质激素注射等以降低复发风险[34]。精细的手术技巧、皮瓣移植以及皮肤减张缝合等技术的应用有助于减少切口张力,从而降低复发率。近年来,术中联合应用5-FU或博来霉素等药物也显示出良好的协同效果,能够进一步抑制成纤维细胞活性和胶原沉积[35]。然而,手术治疗的挑战在于平衡疗效与美观需求,尤其对于耳部、胸骨前区等高复发部位,需个体化制定手术方案。

4.4. 新兴治疗

随着对瘢痕疙瘩分子机制的深入理解,靶向治疗和基因治疗成为治疗研究的新方向。例如,TGF-β是纤维化进程的核心驱动因子,其抑制剂如广谱抗纤维化药物吡非尼酮在临床前研究中已证实能有效抑制成纤维细胞增殖、胶原合成及TGF-β1表达;近期一项II期临床试验初步评估了局部外用吡非尼酮凝胶治疗增生性瘢痕和瘢痕疙瘩的安全性与有效性,结果显示其在改善瘢痕硬度、高度及患者症状方面具有潜力,为局部靶向治疗提供了新思路,而针对TGF-β受体或下游Smad蛋白的小分子抑制剂也处于临床前开发阶段[36]。基于瘢痕疙瘩中Th2免疫偏倚的发现,IL-4/IL-13通路成为关键靶点,度普利尤单抗(抗IL-4Rα单抗)已在多项个案报告和小型病例系列中用于治疗顽固性、弥漫性瘢痕疙瘩,显示出可减轻瘙痒、疼痛并使瘢痕平坦化的效果[37]。此外,针对其他炎症因子的治疗如托珠单抗(抗IL-6受体单抗)在体外和动物模型中能有效抑制成纤维细胞活化和胶原产生,针对TNF-α的抑制剂(如英夫利西单抗)也有个案报道显示其对伴有显著炎症的瘢痕疙瘩有效,这些疗法通常用于传统治疗无效的病例,其长期疗效和安全性需进一步评估。基因治疗方面,siRNA技术和CRISPR-Cas9基因编辑技术可以靶向沉默COL1A1、TGF-β1等相关基因,siRNA旨在靶向沉默COL1A1、TGF-β1、CTGF等致病基因的表达,在体外和动物模型中已证实能特异性降低靶基因水平并减轻纤维化,但其临床应用的关键挑战在于开发能高效穿透致密瘢痕组织的安全递送系统(如纳米颗粒)。CRISPR-Cas9理论上可对纤维化易感性基因进行永久性修正,目前已在细胞和动物模型中通过敲低TGF-β受体Ⅰ型(TGFBRI)或HIF-1α基因成功抑制纤维化表型,然而该技术面临脱靶效应、免疫原性、递送安全性与伦理等重大挑战,尚属远期展望。表观遗传调节剂,如组蛋白去乙酰化酶抑制剂(伏立诺他)和DNA甲基转移酶抑制剂,可通过改变染色质结构调控纤维化基因表达,体外研究显示其能逆转成纤维细胞异常活化,但由于全身应用毒性较大,开发局部制剂是其未来主要方向[38] [39]。干细胞疗法(如脂肪来源间充质干细胞)通过旁分泌作用调节微环境,促进组织修复和抗纤维化,已在动物模型中取得积极结果,但其在人类中的安全性和有效性仍需进一步验证。

5. 预防与护理

5.1. 高风险人群的预防措施

瘢痕疙瘩的高风险人群主要包括有家族史的患者、深色皮肤类型的人群、以及既往有瘢痕疙瘩病史的人。针对这些高风险人群,应采取一系列的预防措施。例如,避免不必要的创伤或手术,采取精细的手术技术,减少皮肤损伤的范围。术后可使用硅胶贴片或压力疗法来防止瘢痕疙瘩的发生[40]。此外,对于已知高风险患者,可在伤口愈合后尽早开始局部药物治疗,如糖皮质激素注射或外用药物(如咪喹莫特),以抑制成纤维细胞过度增殖和胶原沉积。

5.2. 术后护理与瘢痕管理

术后护理是瘢痕疙瘩管理的关键。伤口愈合初期应保持创口清洁干燥,避免感染。因为感染可能加剧炎症反应,促进瘢痕形成。术后早期可以使用硅胶贴片、凝胶、压力疗法等进行综合管理。压力疗法是另一种有效手段,尤其适用于大面积瘢痕,需持续使用数月以达到最佳效果。通过持续的治疗和干预,可以有效减少瘢痕的增生,并促进瘢痕的软化。近年来,放射治疗也被用于顽固性瘢痕疙瘩的辅助治疗,但需谨慎评估其长期安全性[41]

5.3. 患者教育与心理支持

瘢痕疙瘩的患者常因外貌问题而产生心理困扰。患者教育应重点解释瘢痕疙瘩的发病机制、治疗方法和预期效果,帮助患者建立合理的治疗期望。同时,应指导患者避免搔抓或摩擦瘢痕,以免刺激其进一步增生。心理支持和社会支持也是瘢痕疙瘩治疗过程中不可忽视的一部分,尤其对于外露部位瘢痕的患者。鼓励患者坚持长期随访和治疗,因为瘢痕疙瘩复发率较高,需通过持续干预维持效果。通过多学科协作(如皮肤科、整形外科、心理科),可为患者提供更全面的照护[42]

6. 结论

瘢痕疙瘩是一种多因素引起的皮肤纤维增生性疾病,其发病机制复杂,涉及遗传、免疫、炎症等多个因素。尽管当前治疗手段多样,包括手术、激光、药物和放射疗法等,但尚无根治方法,这凸显了该疾病的顽固性和治疗挑战。通过对现有文献的综合分析,我们发现瘢痕疙瘩的发病机制涉及遗传、炎症、细胞因子网络和细胞外基质重塑等多因素相互作用,这解释了为何单一疗法往往效果有限[43]

未来的研究应进一步深入分子机制,开发个性化、靶向性的治疗策略,并结合多学科的协作,以提高治疗效果并改善患者的生活质量。特别是整合多组学技术和动物模型,深入探索分子机制,以开发更精准的靶向治疗。同时,临床实践需结合多学科协作,如皮肤科、整形外科和病理学,优化患者的综合管理方案。个体化治疗策略的制定,需基于患者的具体情况,如瘢痕类型、位置和既往治疗反应,以提高疗效并改善生活质量。总体而言,瘢痕疙瘩的研究正朝着更系统、更个性化的方向发展,有望在未来实现更好的临床结局。

NOTES

*通讯作者。

参考文献

[1] Chen, Z., Gao, Z., Xia, L., Wang, X., Lu, L. and Wu, X. (2021) Dysregulation of DPP4-CXCL12 Balance by TGF-β1/Smad Pathway Promotes CXCR4+ Inflammatory Cell Infiltration in Keloid Scars. Journal of Inflammation Research, 14, 4169-4180. [Google Scholar] [CrossRef] [PubMed]
[2] Li, Z., Zhang, C., Zhang, Q., Dong, Y., Sha, X., Jiang, M., et al. (2023) Identification of a Potential Bioinformatics-Based Biomarker in Keloids and Its Correlation with Immune Infiltration. European Journal of Medical Research, 28, Article No. 476. [Google Scholar] [CrossRef] [PubMed]
[3] Ponasenko, A.V., Tsepokina, A.V., Khutornaya, M.V., Sinitsky, M.Y. and Barbarash, O.L. (2022) IL18-Family Genes Polymorphism Is Associated with the Risk of Myocardial Infarction and IL18 Concentration in Patients with Coronary Artery Disease. Immunological Investigations, 51, 802-816. [Google Scholar] [CrossRef] [PubMed]
[4] Wang, Y., Chen, Y., Wu, J. and Shi, X. (2024) BMP1 Promotes Keloid by Inducing Fibroblast Inflammation and Fibrogenesis. Journal of Cellular Biochemistry, 125, e30609. [Google Scholar] [CrossRef] [PubMed]
[5] Kim, M., Mirsky, N., Spielman, A., Mathew, P., Yechieli, R., Tang, J.C., et al. (2022) Evaluating Symptomatic and Psychosocial Well-Being after Keloid Treatment with SCAR-Q. Aesthetic Surgery Journal, 42, NP416-NP422. [Google Scholar] [CrossRef] [PubMed]
[6] Song, H., Liu, T., Wang, W., Pang, H., Zhou, Z., Lv, Y., et al. (2019) Tension Enhances Cell Proliferation and Collagen Synthesis by Upregulating Expressions of Integrin αvβ3 in Human Keloid-Derived Mesenchymal Stem Cells. Life Sciences, 219, 272-282. [Google Scholar] [CrossRef] [PubMed]
[7] Zhang, G., Liu, Z., Li, Z. and Xu, Y. (2024) Future Directions about Keloid Scars Based on Pathogenesis and Therapies. Clinical, Cosmetic and Investigational Dermatology, 17, 2391-2408. [Google Scholar] [CrossRef] [PubMed]
[8] Wang, Y., Zheng, L., Zhang, L., Tai, Y., Lin, X. and Cai, Z. (2024) Roles of MMP-2 and MMP-9 and Their Associated Molecules in the Pathogenesis of Keloids: A Comprehensive Review. Frontiers in Pharmacology, 15, Article 1444653. [Google Scholar] [CrossRef] [PubMed]
[9] Bai, R., Hao, L., Zhou, G., Fu, Q., Zhang, P., Lin, P., et al. (2024) The Mechanism of TGF-β Mediating BRD4/STAT3 Signaling Pathway to Promote Fibroblast Proliferation and Thus Promote Keloid Progression. Heliyon, 10, e38188. [Google Scholar] [CrossRef] [PubMed]
[10] Shi, C.K., Zhao, Y.P., Ge, P., et al. (2019) Therapeutic Effect of Interleukin-10 in Keloid Fibroblasts by Suppression of TGF-β/Smad Pathway. European Review for Medical and Pharmacological Sciences, 23, 9085-9092.
[11] Pu, X., Cao, X., Liu, H., Huang, W., Zhang, L. and Jiang, T. (2023) Isorhamnetin Attenuates the Proliferation, Invasion, Migration and Fibrosis of Keloid Fibroblasts by Targeting S1PR1. Experimental and Therapeutic Medicine, 26, Article No. 310. [Google Scholar] [CrossRef] [PubMed]
[12] Li, Z., Liang, L., Li, K. and Yang, B. (2025) Scutellarin Attenuates Keloid Fibroblast Progression by Targeting EGFR/PI3K/AKT Signaling: An Integrated Network Pharmacology and in Vitro Experimental Study. Toxicology and Applied Pharmacology, 505, Article 117564. [Google Scholar] [CrossRef
[13] Liu, X., Wang, S., Wu, S., Hao, Q., Li, Y., Guo, Z., et al. (2018) Exosomes Secreted by Adipose-Derived Mesenchymal Stem Cells Regulate Type I Collagen Metabolism in Fibroblasts from Women with Stress Urinary Incontinence. Stem Cell Research & Therapy, 9, Article No. 159. [Google Scholar] [CrossRef] [PubMed]
[14] Hosseini, A., Kumar, S., Hedin, K. and Raeeszadeh-Sarmazdeh, M. (2023) Engineering Minimal Tissue Inhibitors of Metalloproteinase Targeting MMPs via Gene Shuffling and Yeast Surface Display. Protein Science, 32, e4795. [Google Scholar] [CrossRef] [PubMed]
[15] Li, Q., Cheng, F., Zhou, K., Fang, L., Wu, J., Xia, Q., et al. (2021) Increased Sensitivity to TNF‑α Promotes Keloid Fibroblast Hyperproliferation by Activating the NF‑κB, JNK and P38 MAPK Pathways. Experimental and Therapeutic Medicine, 21, Article No. 502. [Google Scholar] [CrossRef] [PubMed]
[16] Abdu Allah, A.M.K., Mohammed, K.I., Farag, A.G.A., Hagag, M.M., Essam, M. and Tayel, N.R. (2019) Interleukin-6 Serum Level and Gene Polymorphism in Keloid Patients. Cellular and Molecular Biology, 65, 43-48. [Google Scholar] [CrossRef
[17] Nangole, F.W., Ouyang, K., Anzala, O., Ogengo, J. and Agak, G.W. (2021) Multiple Cytokines Elevated in Patients with Keloids: Is It an Indication of Auto-Inflammatory Disease? Journal of Inflammation Research, 14, 2465-2470. [Google Scholar] [CrossRef] [PubMed]
[18] Jia, F., Zhao, Q., Shi, P., Liu, H. and Zhang, F. (2022) Dupilumab: Advances in the Off-Label Usage of IL4/IL13 Antagonist in Dermatoses. Dermatologic Therapy, 35, e15924. [Google Scholar] [CrossRef] [PubMed]
[19] D’Arcy, Q., Gharaee-Kermani, M., Zhilin-Roth, A. and Macoska, J.A. (2022) The IL-4/IL-13 Signaling Axis Promotes Prostatic Fibrosis. PLOS ONE, 17, e0275064. [Google Scholar] [CrossRef] [PubMed]
[20] Qin, H., Zhang, L., Li, M., Liu, Y., Sun, S., Nie, W., et al. (2022) EGR1/NOX4 Pathway Regulates Oxidative Stress and Further Facilitates Fibrosis Progression in Keloids Responses to TGF-β1. Journal of Dermatological Science, 108, 138-145. [Google Scholar] [CrossRef] [PubMed]
[21] Delaleu, J., Charvet, E. and Petit, A. (2023) Keloid Disease: Review with Clinical Atlas. Part I: Definitions, History, Epidemiology, Clinics and Diagnosis. Annales de Dermatologie et de Vénéréologie, 150, 3-15. [Google Scholar] [CrossRef] [PubMed]
[22] Tan, S., Khumalo, N. and Bayat, A. (2019) Understanding Keloid Pathobiology from a Quasi-Neoplastic Perspective: Less of a Scar and More of a Chronic Inflammatory Disease with Cancer-Like Tendencies. Frontiers in Immunology, 10, Article 1810. [Google Scholar] [CrossRef] [PubMed]
[23] Hellwege, J.N., Russell, S.B., Williams, S.M., Edwards, T.L. and Velez Edwards, D.R. (2018) Gene-Based Evaluation of Low-Frequency Variation and Genetically-Predicted Gene Expression Impacting Risk of Keloid Formation. Annals of Human Genetics, 82, 206-215. [Google Scholar] [CrossRef] [PubMed]
[24] Huang, Y., Xu, S., Wu, Y., Gu, Z., Dong, C., Zhang, L., et al. (2025) Coping Tendencies Play Partial Mediating Role between Social Support and Anxiety/Depression among Chinese Keloid Patients. Frontiers in Psychiatry, 16, Article 1543484. [Google Scholar] [CrossRef
[25] Li, S., Lei, J., Wang, Y.H., et al. (2022) Rare Giant Corneal Keloid Presenting 26 Years after Trauma: A Case Report. World Journal of Clinical Cases, 10, 9776-9782. [Google Scholar] [CrossRef] [PubMed]
[26] Limandjaja, G.C., Niessen, F.B., Scheper, R.J. and Gibbs, S. (2020) The Keloid Disorder: Heterogeneity, Histopathology, Mechanisms and Models. Frontiers in Cell and Developmental Biology, 8, Article 360. [Google Scholar] [CrossRef] [PubMed]
[27] Zhong, C., Shi, K., Li, P., Qiu, X., Wu, X., Chen, S., et al. (2024) Single-Cell Sequencing Analysis and Bulk-Seq Identify IGFBP6 and TNFAIP6 as Novel Differential Diagnosis Markers for Postburn Pathological Scarring. Burns, 50, Article 107255. [Google Scholar] [CrossRef] [PubMed]
[28] Mavilakandy, A.K., Vayalapra, S., Minty, I., Parekh, J.N., Charles, W.N. and Khajuria, A. (2024) Comparing Combination Triamcinolone Acetonide and 5-Fluorouracil with Monotherapy Triamcinolone Acetonide or 5-Fluorouracil in the Treatment of Hypertrophic Scars: A Systematic Review and Meta-Analysis. Plastic & Reconstructive Surgery, 153, 1318-1330. [Google Scholar] [CrossRef] [PubMed]
[29] Hietanen, K.E., Järvinen, T.A., Huhtala, H., et al. (2019) Treatment of Keloid Scars with Intralesional Triamcinolone and 5-Fluorouracil Injections—A Randomized Controlled Trial. Journal of Plastic, Reconstructive & Aesthetic Surgery, 72, 4-11. [Google Scholar] [CrossRef] [PubMed]
[30] Park, J. and Kim, Y.C. (2020) Topical Delivery of 5-Fluorouracil-Loaded Carboxymethyl Chitosan Nanoparticles Using Microneedles for Keloid Treatment. Drug Delivery and Translational Research, 11, 205-213. [Google Scholar] [CrossRef] [PubMed]
[31] Haji Mohammadi, A., Seirafianpour, F., Khosravi, M., Jafarzadeh, A., Neshastesaz Kashi, H., Baradaran, H., et al. (2025) A Systematic Review of Comparative Clinical Trials on the Efficacy, Safety, and Patient Satisfaction of Ablative and Non-Ablative Laser Therapies for Atrophic, Hypertrophic, and Keloid Scars. Lasers in Medical Science, 40, Article No. 280. [Google Scholar] [CrossRef] [PubMed]
[32] Scarcella, G., Pieri, L. and Fusco, I. (2022) Skin Fractional Scar Treatment with a New Carbon Dioxide Scanner: Histological and Clinical Evaluation. Photobiomodulation, Photomedicine, and Laser Surgery, 40, 424-432. [Google Scholar] [CrossRef] [PubMed]
[33] Zeng, Q., Wu, Q., Deng, L., Hong, L., Li, R. and Chen, A. (2024) Enhancement of Facial Rejuvenation through a Combination of 1565 Nm Non-Ablative Fractional Laser with 30% Supramolecular Salicylic Acid. Journal of Visualized Experiments, 211, e66336. [Google Scholar] [CrossRef] [PubMed]
[34] Santos-Alves, A., Franco-de Sá, C., Soares, P., Saraiva, D., Casalta-Lopes, J. and Horta, R. (2025) Using Adjuvant Radiotherapy for Keloid Scars: A Patient and Observer Assessment Study. Cirugía y Cirujanos (English Edition), 93, 413-418. [Google Scholar] [CrossRef
[35] Saleem, S., Neema Asghar, M.e., Umer, A., Ahmed, S., Adeel, M.U., Khan, H., et al. (2025) Comparing the Effect of Intralesional 5-Fluorouracil (5-FU) Alone versus Intralesional 5-FU Combined with Triamcinolone Acetonide for Keloid Treatment. Cureus, 17, e84635. [Google Scholar] [CrossRef] [PubMed]
[36] Zhu, H.Y., Bai, W.D., Li, C., et al. (2016) Knockdown of lncRNA-ATB Suppresses Autocrine Secretion of TGF-β2 by Targeting ZNF217 via miR-200c in Keloid Fibroblasts. Scientific Reports, 6, Article No. 24728. [Google Scholar] [CrossRef] [PubMed]
[37] Luk, K., Fakhoury, J. and Ozog, D. (2022) Nonresponse and Progression of Diffuse Keloids to Dupilumab Therapy. Journal of Drugs in Dermatology, 21, 197-199. [Google Scholar] [CrossRef] [PubMed]
[38] Liu, Z., Xian, L., Li, J., Zheng, S. and Xie, H. (2024) Single-Cell RNA Sequencing Analysis Reveals the Role of TXNDC5 in Keloid Formation. Cytojournal, 21, Article 40. [Google Scholar] [CrossRef] [PubMed]
[39] Tam, A., Leclair, P., Li, L.V., Yang, C.X., Li, X., Witzigmann, D., et al. (2021) FAM13A as Potential Therapeutic Target in Modulating TGF-β-Induced Airway Tissue Remodeling in COPD. American Journal of Physiology-Lung Cellular and Molecular Physiology, 321, L377-L391. [Google Scholar] [CrossRef] [PubMed]
[40] Frech, F.S., Hernandez, L., Urbonas, R., Zaken, G.A., Dreyfuss, I. and Nouri, K. (2023) Hypertrophic Scars and Keloids: Advances in Treatment and Review of Established Therapies. American Journal of Clinical Dermatology, 24, 225-245. [Google Scholar] [CrossRef] [PubMed]
[41] Renz, P., Hasan, S., Gresswell, S., Hajjar, R.T., Trombetta, M. and Fontanesi, J. (2018) Dose Effect in Adjuvant Radiation Therapy for the Treatment of Resected Keloids. International Journal of Radiation Oncology, Biology, Physics, 102, 149-154. [Google Scholar] [CrossRef] [PubMed]
[42] Zhan, Y., Tong, Y., Wu, X., Wang, Z. and Zhang, G. (2025) Association between Keloid and Mental Disorders: Perspective from Genetic Evidence. Annals of General Psychiatry, 24, Article No. 42. [Google Scholar] [CrossRef] [PubMed]
[43] Liu, S., Yang, H., Song, J., Zhang, Y., Abualhssain, A.T.H. and Yang, B. (2022) Keloid: Genetic Susceptibility and Contributions of Genetics and Epigenetics to Its Pathogenesis. Experimental Dermatology, 31, 1665-1675. [Google Scholar] [CrossRef] [PubMed]