|
[1]
|
Chen, Z., Gao, Z., Xia, L., Wang, X., Lu, L. and Wu, X. (2021) Dysregulation of DPP4-CXCL12 Balance by TGF-β1/Smad Pathway Promotes CXCR4+ Inflammatory Cell Infiltration in Keloid Scars. Journal of Inflammation Research, 14, 4169-4180. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Li, Z., Zhang, C., Zhang, Q., Dong, Y., Sha, X., Jiang, M., et al. (2023) Identification of a Potential Bioinformatics-Based Biomarker in Keloids and Its Correlation with Immune Infiltration. European Journal of Medical Research, 28, Article No. 476. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Ponasenko, A.V., Tsepokina, A.V., Khutornaya, M.V., Sinitsky, M.Y. and Barbarash, O.L. (2022) IL18-Family Genes Polymorphism Is Associated with the Risk of Myocardial Infarction and IL18 Concentration in Patients with Coronary Artery Disease. Immunological Investigations, 51, 802-816. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Wang, Y., Chen, Y., Wu, J. and Shi, X. (2024) BMP1 Promotes Keloid by Inducing Fibroblast Inflammation and Fibrogenesis. Journal of Cellular Biochemistry, 125, e30609. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Kim, M., Mirsky, N., Spielman, A., Mathew, P., Yechieli, R., Tang, J.C., et al. (2022) Evaluating Symptomatic and Psychosocial Well-Being after Keloid Treatment with SCAR-Q. Aesthetic Surgery Journal, 42, NP416-NP422. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Song, H., Liu, T., Wang, W., Pang, H., Zhou, Z., Lv, Y., et al. (2019) Tension Enhances Cell Proliferation and Collagen Synthesis by Upregulating Expressions of Integrin αvβ3 in Human Keloid-Derived Mesenchymal Stem Cells. Life Sciences, 219, 272-282. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Zhang, G., Liu, Z., Li, Z. and Xu, Y. (2024) Future Directions about Keloid Scars Based on Pathogenesis and Therapies. Clinical, Cosmetic and Investigational Dermatology, 17, 2391-2408. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Wang, Y., Zheng, L., Zhang, L., Tai, Y., Lin, X. and Cai, Z. (2024) Roles of MMP-2 and MMP-9 and Their Associated Molecules in the Pathogenesis of Keloids: A Comprehensive Review. Frontiers in Pharmacology, 15, Article 1444653. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Bai, R., Hao, L., Zhou, G., Fu, Q., Zhang, P., Lin, P., et al. (2024) The Mechanism of TGF-β Mediating BRD4/STAT3 Signaling Pathway to Promote Fibroblast Proliferation and Thus Promote Keloid Progression. Heliyon, 10, e38188. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Shi, C.K., Zhao, Y.P., Ge, P., et al. (2019) Therapeutic Effect of Interleukin-10 in Keloid Fibroblasts by Suppression of TGF-β/Smad Pathway. European Review for Medical and Pharmacological Sciences, 23, 9085-9092.
|
|
[11]
|
Pu, X., Cao, X., Liu, H., Huang, W., Zhang, L. and Jiang, T. (2023) Isorhamnetin Attenuates the Proliferation, Invasion, Migration and Fibrosis of Keloid Fibroblasts by Targeting S1PR1. Experimental and Therapeutic Medicine, 26, Article No. 310. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Li, Z., Liang, L., Li, K. and Yang, B. (2025) Scutellarin Attenuates Keloid Fibroblast Progression by Targeting EGFR/PI3K/AKT Signaling: An Integrated Network Pharmacology and in Vitro Experimental Study. Toxicology and Applied Pharmacology, 505, Article 117564. [Google Scholar] [CrossRef]
|
|
[13]
|
Liu, X., Wang, S., Wu, S., Hao, Q., Li, Y., Guo, Z., et al. (2018) Exosomes Secreted by Adipose-Derived Mesenchymal Stem Cells Regulate Type I Collagen Metabolism in Fibroblasts from Women with Stress Urinary Incontinence. Stem Cell Research & Therapy, 9, Article No. 159. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Hosseini, A., Kumar, S., Hedin, K. and Raeeszadeh-Sarmazdeh, M. (2023) Engineering Minimal Tissue Inhibitors of Metalloproteinase Targeting MMPs via Gene Shuffling and Yeast Surface Display. Protein Science, 32, e4795. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Li, Q., Cheng, F., Zhou, K., Fang, L., Wu, J., Xia, Q., et al. (2021) Increased Sensitivity to TNF‑α Promotes Keloid Fibroblast Hyperproliferation by Activating the NF‑κB, JNK and P38 MAPK Pathways. Experimental and Therapeutic Medicine, 21, Article No. 502. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Abdu Allah, A.M.K., Mohammed, K.I., Farag, A.G.A., Hagag, M.M., Essam, M. and Tayel, N.R. (2019) Interleukin-6 Serum Level and Gene Polymorphism in Keloid Patients. Cellular and Molecular Biology, 65, 43-48. [Google Scholar] [CrossRef]
|
|
[17]
|
Nangole, F.W., Ouyang, K., Anzala, O., Ogengo, J. and Agak, G.W. (2021) Multiple Cytokines Elevated in Patients with Keloids: Is It an Indication of Auto-Inflammatory Disease? Journal of Inflammation Research, 14, 2465-2470. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Jia, F., Zhao, Q., Shi, P., Liu, H. and Zhang, F. (2022) Dupilumab: Advances in the Off-Label Usage of IL4/IL13 Antagonist in Dermatoses. Dermatologic Therapy, 35, e15924. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
D’Arcy, Q., Gharaee-Kermani, M., Zhilin-Roth, A. and Macoska, J.A. (2022) The IL-4/IL-13 Signaling Axis Promotes Prostatic Fibrosis. PLOS ONE, 17, e0275064. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Qin, H., Zhang, L., Li, M., Liu, Y., Sun, S., Nie, W., et al. (2022) EGR1/NOX4 Pathway Regulates Oxidative Stress and Further Facilitates Fibrosis Progression in Keloids Responses to TGF-β1. Journal of Dermatological Science, 108, 138-145. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Delaleu, J., Charvet, E. and Petit, A. (2023) Keloid Disease: Review with Clinical Atlas. Part I: Definitions, History, Epidemiology, Clinics and Diagnosis. Annales de Dermatologie et de Vénéréologie, 150, 3-15. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Tan, S., Khumalo, N. and Bayat, A. (2019) Understanding Keloid Pathobiology from a Quasi-Neoplastic Perspective: Less of a Scar and More of a Chronic Inflammatory Disease with Cancer-Like Tendencies. Frontiers in Immunology, 10, Article 1810. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Hellwege, J.N., Russell, S.B., Williams, S.M., Edwards, T.L. and Velez Edwards, D.R. (2018) Gene-Based Evaluation of Low-Frequency Variation and Genetically-Predicted Gene Expression Impacting Risk of Keloid Formation. Annals of Human Genetics, 82, 206-215. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Huang, Y., Xu, S., Wu, Y., Gu, Z., Dong, C., Zhang, L., et al. (2025) Coping Tendencies Play Partial Mediating Role between Social Support and Anxiety/Depression among Chinese Keloid Patients. Frontiers in Psychiatry, 16, Article 1543484. [Google Scholar] [CrossRef]
|
|
[25]
|
Li, S., Lei, J., Wang, Y.H., et al. (2022) Rare Giant Corneal Keloid Presenting 26 Years after Trauma: A Case Report. World Journal of Clinical Cases, 10, 9776-9782. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Limandjaja, G.C., Niessen, F.B., Scheper, R.J. and Gibbs, S. (2020) The Keloid Disorder: Heterogeneity, Histopathology, Mechanisms and Models. Frontiers in Cell and Developmental Biology, 8, Article 360. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Zhong, C., Shi, K., Li, P., Qiu, X., Wu, X., Chen, S., et al. (2024) Single-Cell Sequencing Analysis and Bulk-Seq Identify IGFBP6 and TNFAIP6 as Novel Differential Diagnosis Markers for Postburn Pathological Scarring. Burns, 50, Article 107255. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Mavilakandy, A.K., Vayalapra, S., Minty, I., Parekh, J.N., Charles, W.N. and Khajuria, A. (2024) Comparing Combination Triamcinolone Acetonide and 5-Fluorouracil with Monotherapy Triamcinolone Acetonide or 5-Fluorouracil in the Treatment of Hypertrophic Scars: A Systematic Review and Meta-Analysis. Plastic & Reconstructive Surgery, 153, 1318-1330. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Hietanen, K.E., Järvinen, T.A., Huhtala, H., et al. (2019) Treatment of Keloid Scars with Intralesional Triamcinolone and 5-Fluorouracil Injections—A Randomized Controlled Trial. Journal of Plastic, Reconstructive & Aesthetic Surgery, 72, 4-11. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Park, J. and Kim, Y.C. (2020) Topical Delivery of 5-Fluorouracil-Loaded Carboxymethyl Chitosan Nanoparticles Using Microneedles for Keloid Treatment. Drug Delivery and Translational Research, 11, 205-213. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Haji Mohammadi, A., Seirafianpour, F., Khosravi, M., Jafarzadeh, A., Neshastesaz Kashi, H., Baradaran, H., et al. (2025) A Systematic Review of Comparative Clinical Trials on the Efficacy, Safety, and Patient Satisfaction of Ablative and Non-Ablative Laser Therapies for Atrophic, Hypertrophic, and Keloid Scars. Lasers in Medical Science, 40, Article No. 280. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Scarcella, G., Pieri, L. and Fusco, I. (2022) Skin Fractional Scar Treatment with a New Carbon Dioxide Scanner: Histological and Clinical Evaluation. Photobiomodulation, Photomedicine, and Laser Surgery, 40, 424-432. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Zeng, Q., Wu, Q., Deng, L., Hong, L., Li, R. and Chen, A. (2024) Enhancement of Facial Rejuvenation through a Combination of 1565 Nm Non-Ablative Fractional Laser with 30% Supramolecular Salicylic Acid. Journal of Visualized Experiments, 211, e66336. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Santos-Alves, A., Franco-de Sá, C., Soares, P., Saraiva, D., Casalta-Lopes, J. and Horta, R. (2025) Using Adjuvant Radiotherapy for Keloid Scars: A Patient and Observer Assessment Study. Cirugía y Cirujanos (English Edition), 93, 413-418. [Google Scholar] [CrossRef]
|
|
[35]
|
Saleem, S., Neema Asghar, M.e., Umer, A., Ahmed, S., Adeel, M.U., Khan, H., et al. (2025) Comparing the Effect of Intralesional 5-Fluorouracil (5-FU) Alone versus Intralesional 5-FU Combined with Triamcinolone Acetonide for Keloid Treatment. Cureus, 17, e84635. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Zhu, H.Y., Bai, W.D., Li, C., et al. (2016) Knockdown of lncRNA-ATB Suppresses Autocrine Secretion of TGF-β2 by Targeting ZNF217 via miR-200c in Keloid Fibroblasts. Scientific Reports, 6, Article No. 24728. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Luk, K., Fakhoury, J. and Ozog, D. (2022) Nonresponse and Progression of Diffuse Keloids to Dupilumab Therapy. Journal of Drugs in Dermatology, 21, 197-199. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Liu, Z., Xian, L., Li, J., Zheng, S. and Xie, H. (2024) Single-Cell RNA Sequencing Analysis Reveals the Role of TXNDC5 in Keloid Formation. Cytojournal, 21, Article 40. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Tam, A., Leclair, P., Li, L.V., Yang, C.X., Li, X., Witzigmann, D., et al. (2021) FAM13A as Potential Therapeutic Target in Modulating TGF-β-Induced Airway Tissue Remodeling in COPD. American Journal of Physiology-Lung Cellular and Molecular Physiology, 321, L377-L391. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Frech, F.S., Hernandez, L., Urbonas, R., Zaken, G.A., Dreyfuss, I. and Nouri, K. (2023) Hypertrophic Scars and Keloids: Advances in Treatment and Review of Established Therapies. American Journal of Clinical Dermatology, 24, 225-245. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Renz, P., Hasan, S., Gresswell, S., Hajjar, R.T., Trombetta, M. and Fontanesi, J. (2018) Dose Effect in Adjuvant Radiation Therapy for the Treatment of Resected Keloids. International Journal of Radiation Oncology, Biology, Physics, 102, 149-154. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Zhan, Y., Tong, Y., Wu, X., Wang, Z. and Zhang, G. (2025) Association between Keloid and Mental Disorders: Perspective from Genetic Evidence. Annals of General Psychiatry, 24, Article No. 42. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Liu, S., Yang, H., Song, J., Zhang, Y., Abualhssain, A.T.H. and Yang, B. (2022) Keloid: Genetic Susceptibility and Contributions of Genetics and Epigenetics to Its Pathogenesis. Experimental Dermatology, 31, 1665-1675. [Google Scholar] [CrossRef] [PubMed]
|