|
[1]
|
Khalil, H. (2017) Diabetes Microvascular Complications—A Clinical Update. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 11, S133-S139. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
刘明珠, 管怀进. 糖尿病前期和糖尿病视网膜病变临床前期的视网膜改变[J]. 眼科学报, 2023, 38(6): 454-460+489.
|
|
[3]
|
Al-Namaeh, M. (2022) Common Causes of Visual Impairment in the Elderly. Medical Hypothesis Discovery and Innovation in Ophthalmology, 10, 191-200. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Teo, Z.L., Tham, Y., Yu, M., Chee, M.L., Rim, T.H., Cheung, N., et al. (2021) Global Prevalence of Diabetic Retinopathy and Projection of Burden through 2045: Systematic Review and Meta-Analysis. Ophthalmology, 128, 1580-1591. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Song, P., Yu, J., Chan, K.Y., Theodoratou, E. and Rudan, I. (2018) Prevalence, Risk Factors and Burden of Diabetic Retinopathy in China: A Systematic Review and Meta-Analysis. Journal of Global Health, 8, Article 010803. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Zhang, Y., Shi, J., Peng, Y., Zhao, Z., Zheng, Q., Wang, Z., et al. (2020) Artificial Intelligence-Enabled Screening for Diabetic Retinopathy: A Real-World, Multicenter and Prospective Study. BMJ Open Diabetes Research & Care, 8, e001596. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Seo, H., Park, S.J. and Song, M. (2025) Diabetic Retinopathy (DR): Mechanisms, Current Therapies, and Emerging Strategies. Cells, 14, Article 376. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
徐荣锦, 刘洪涛, 李明波. 糖尿病视网膜病变的发病机制及炎症因素的研究现状[J]. 中国临床药理学杂志, 2025, 41(12): 1789-1794.
|
|
[9]
|
Chawla, S., Trehan, S., Chawla, A., Jaggi, S., Chawla, R., Kumar, V., et al. (2021) Relationship between Diabetic Retinopathy Microalbuminuria and Other Modifiable Risk Factors. Primary Care Diabetes, 15, 567-570. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Alshahrani, A.M., Alshahrani, A.M., Al-Boqami, B.A.H., Alqahtani, A.A., Alzahrani, B., Bassi, Y., et al. (2024) Prevalence and Predictors of Diabetic Retinopathy in Saudi Arabia: Insights from a Systematic Review and Meta-Analysis. Biomolecules, 14, Article 1486. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Cui, X., Wen, D., Xiao, J. and Li, X. (2025) The Causal Relationship and Association between Biomarkers, Dietary Intake, and Diabetic Retinopathy: Insights from Mendelian Randomization and Cross-Sectional Study. Diabetes & Metabolism Journal, 49, 1087-1105. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Liu, Y., Wang, M., Morris, A.D., Doney, A.S.F., Leese, G.P., Pearson, E.R., et al. (2013) Glycemic Exposure and Blood Pressure Influencing Progression and Remission of Diabetic Retinopathy: A Longitudinal Cohort Study in GoDARTS. Diabetes Care, 36, 3979-3984. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Xiao, B., Duan, F., Gu, X., Zuo, J., Chan, V.F., Virgili, G., et al. (2025) Differences in Prevalence and Risk Factors of Diabetic Retinopathy among Rural and Urban Residents with Diabetes in South China: A Cross-Sectional Study. BMJ Open, 15, e092526. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Zhang, D., Zhang, Y., Kang, J. and Li, X. (2024) Nonlinear Relationship between Diabetes Mellitus Duration and Diabetic Retinopathy. Scientific Reports, 14, Article No. 30223. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Perais, J., Agarwal, R., Evans, J.R., Loveman, E., Colquitt, J.L., Owens, D., et al. (2023) Prognostic Factors for the Development and Progression of Proliferative Diabetic Retinopathy in People with Diabetic Retinopathy. Cochrane Database of Systematic Reviews, 2023, CD013775. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Su, Z., Wu, Z., Liang, X., Xie, M., Xie, J., Li, H., et al. (2023) Diabetic Retinopathy Risk in Patients with Unhealthy Lifestyle: A Mendelian Randomization Study. Frontiers in Endocrinology, 13, Article 1087965. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Gverović Antunica, A., Znaor, L., Ivanković, M., Puzović, V., Marković, I. and Kaštelan, S. (2023) Vitamin D and Diabetic Retinopathy. International Journal of Molecular Sciences, 24, Article 12014. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Bulu, A. and Keser, S. (2025) The Relationship between Pan-Immune Inflammation Value and Different Stages of Diabetic Retinopathy in Patients with Type 2 Diabetes Mellitus: A Prospective Cross-Sectional Study. BMC Endocrine Disorders, 25, Article No. 184. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
帅雨杏, 神雪薇, 王婧怡, 等. 2024临床预测模型开发逐步指南解读[J]. 中国循证医学杂志, 2025, 25(10): 1226-1232.
|
|
[20]
|
谷鸿秋, 周支瑞, 章仲恒, 等. 临床预测模型: 基本概念、应用场景及研究思路[J]. 中国循证心血管医学杂志, 2018, 10(12): 1454-1456+1462.
|
|
[21]
|
Gao, J.J., Liu, H., Zhang, T.Y., et al. (2025) A Simple and Accessible Diabetic Retinopathy Risk Prediction Model: Establishment and Validation in a Hospital-Based Cohort of Type 2 Diabetes Patients. Diabetes Research and Clinical Practice, 224, Article 112211. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Guo, H., Han, F., Qu, J., Pan, C., Sun, B. and Chen, L. (2024) Scoring and Validation of a Simple Model for Predicting Diabetic Retinopathy in Patients with Type 2 Diabetes Based on a Meta-Analysis Approach of 21 Cohorts. Annals of Medicine, 56, Article No. 2413920. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Zhu, C., Zhu, J., Wang, L., Xiong, S., Zou, Y., Huang, J., et al. (2023) Development and Validation of a Risk Prediction Model for Diabetic Retinopathy in Type 2 Diabetic Patients. Scientific Reports, 13, Article No. 5034. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Li, Y., Hu, B., Lu, L., Li, Y., Caika, S., Song, Z., et al. (2024) Development and External Validation of a Predictive Model for Type 2 Diabetic Retinopathy. Scientific Reports, 14, Article No. 16741. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
刘乙君, 王彦, 赵英, 等. 山西省2型糖尿病患者非增殖性糖尿病视网膜病变现况调查及预测模型的构建[J]. 中华糖尿病杂志, 2023, 15(7): 622-629.
|
|
[26]
|
Yang, J. and Jiang, S. (2022) Development and Validation of a Model That Predicts the Risk of Diabetic Retinopathy in Type 2 Diabetes Mellitus Patients. Acta Diabetologica, 60, 43-51. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Bajwa, J., Munir, U., Nori, A. and Williams, B. (2021) Artificial Intelligence in Healthcare: Transforming the Practice of Medicine. Future Healthcare Journal, 8, e188-e194. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Maleki Varnosfaderani, S. and Forouzanfar, M. (2024) The Role of AI in Hospitals and Clinics: Transforming Healthcare in the 21st Century. Bioengineering, 11, Article 337. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
王瑞松, 王胜男, 石铁流. 深度学习在生物医学领域中的应用简介[J]. 中国科学:生命科学, 2025, 55(6): 1268-1287.
|
|
[30]
|
Murali, N. and Forster, S. (2018) Re: Lee et al.: Machine Learning Has Arrived! (Ophthalmology. 2017; 124: 1726-1728). Ophthalmology, 125, e85. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Bhaskaranand, M., Ramachandra, C., Bhat, S., Cuadros, J., Nittala, M.G., Sadda, S., et al. (2016) Automated Diabetic Retinopathy Screening and Monitoring Using Retinal Fundus Image Analysis. Journal of Diabetes Science and Technology, 10, 254-261. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Gulshan, V., Peng, L., Coram, M., Stumpe, M.C., Wu, D., Narayanaswamy, A., et al. (2016) Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. Journal of the American Medical Association, 316, 2402-2410. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Rajesh, A.E., Davidson, O.Q., Lee, C.S. and Lee, A.Y. (2023) Artificial Intelligence and Diabetic Retinopathy: AI Framework, Prospective Studies, Head-to-Head Validation, and Cost-Effectiveness. Diabetes Care, 46, 1728-1739. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Heydon, P., Egan, C., Bolter, L., Chambers, R., Anderson, J., Aldington, S., et al. (2021) Prospective Evaluation of an Artificial Intelligence-Enabled Algorithm for Automated Diabetic Retinopathy Screening of 30,000 Patients. British Journal of Ophthalmology, 105, 723-728. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Shah, P., Mishra, D., Shanmugam, M., Doshi, B., Jayaraj, H. and Ramanjulu, R. (2020) Validation of Deep Convolutional Neural Network-Based Algorithm for Detection of Diabetic Retinopathy—Artificial Intelligence versus Clinician for Screening. Indian Journal of Ophthalmology, 68, 398-405. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Limwattanayingyong, J., Nganthavee, V., Seresirikachorn, K., Singalavanija, T., Soonthornworasiri, N., Ruamviboonsuk, V., et al. (2020) Longitudinal Screening for Diabetic Retinopathy in a Nationwide Screening Program: Comparing Deep Learning and Human Graders. Journal of Diabetes Research, 2020, Article 8839376. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
吴娜, 刘昊楠, 李博宇, 等. 糖尿病视网膜病变危险因素及人工智能辅助DR筛查的应用价值[J]. 中国老年学杂志, 2025, 45(1): 61-65.
|
|
[38]
|
Ruamviboonsuk, P., Tiwari, R., Sayres, R., Nganthavee, V., Hemarat, K., Kongprayoon, A., et al. (2022) Real-Time Diabetic Retinopathy Screening by Deep Learning in a Multisite National Screening Programme: A Prospective Interventional Cohort Study. The Lancet Digital Health, 4, e235-e244. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
郑武, 阮坤炜, 吴天添, 等. 人工智能糖尿病视网膜病变筛查系统与眼科医师诊断结果的一致性分析[J]. 眼科新进展, 2020, 40(12): 1170-1173.
|
|
[40]
|
李政章, 顾建芬, 梁伟, 等. 人工智能读片对评估糖尿病视网膜病变及预测慢性并发症的价值分析[J]. 中国糖尿病杂志, 2022, 30(11): 817-820.
|
|
[41]
|
王曼丽, 李博, 张瑞瑞, 等. 免散瞳眼底照相联合人工智能糖尿病视网膜病变筛查系统在内分泌科的应用价值[J]. 中国糖尿病杂志, 2022, 30(11): 808-811.
|
|
[42]
|
Dow, E.R., Khan, N.C., Chen, K.M., Mishra, K., Perera, C., Narala, R., et al. (2023) Artificial Intelligence-Human Hybrid Workflow Enhances Teleophthalmology for the Detection of Diabetic Retinopathy. Ophthalmology Science, 3, Article 100330. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Tao, T., Liu, K., Yang, L., Liu, R., Xu, Y., Xu, Y., et al. (2025) Predicting Diabetic Retinopathy Based on Biomarkers: Classification and Regression Tree Models. Diabetes Research and Clinical Practice, 222, Article 112091. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Jiang, W. and Li, Z. (2024) Comparison of Machine Learning Algorithms and Nomogram Construction for Diabetic Retinopathy Prediction in Type 2 Diabetes Mellitus Patients. Ophthalmic Research, 67, 537-548. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Li, W., Song, Y., Chen, K., Ying, J., Zheng, Z., Qiao, S., et al. (2021) Predictive Model and Risk Analysis for Diabetic Retinopathy Using Machine Learning: A Retrospective Cohort Study in China. BMJ Open, 11, e050989. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
陈铭海, 白芳, 陶海. 多模态数据融合技术及其在眼科领域的应用研究进展[J]. 眼科新进展, 2024, 44(3): 248-252.
|
|
[47]
|
Most, J.A., Walker, E.H., Mehta, N.N., Nagel, I.D., Chen, J.S., Russell, J.F., et al. (2025) Can Multimodal Large Language Models Diagnose Diabetic Retinopathy from Fundus Photos? A Quantitative Evaluation. Ophthalmology Science, 6, Article 100911. [Google Scholar] [CrossRef]
|
|
[48]
|
Hsu, M.Y., Chiou, J.Y., Liu, J.T., et al. (2021) Deep Learning for Automated Diabetic Retinopathy Screening Fused with Heterogeneous Data from EHRs Can Lead to Earlier Referral Decisions. Translational Vision Science & Technology, 10, Article 18. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Sandhu, H.S., Elmogy, M., Taher Sharafeldeen, A., Elsharkawy, M., El-Adawy, N., Eltanboly, A., et al. (2020) Automated Diagnosis of Diabetic Retinopathy Using Clinical Biomarkers, Optical Coherence Tomography, and Optical Coherence Tomography Angiography. American Journal of Ophthalmology, 216, 201-206. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Li, X., Wen, X., Shang, X., Liu, J., Zhang, L., Cui, Y., et al. (2024) Identification of Diabetic Retinopathy Classification Using Machine Learning Algorithms on Clinical Data and Optical Coherence Tomography Angiography. Eye, 38, 2813-2821. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Duggal, M., Chauhan, A., Gupta, V., Kankaria, A., Budhija, D., Verma, P., et al. (2025) Real-World Evaluation of Ai-Driven Diabetic Retinopathy Screening in Public Health Settings: Validation and Implementation Study. JMIR Medical Informatics, 13, e67529. [Google Scholar] [CrossRef]
|
|
[52]
|
Ruamviboonsuk, P., Chantra, S., Seresirikachorn, K., Ruamviboonsuk, V. and Sangroongruangsri, S. (2021) Economic Evaluations of Artificial Intelligence in Ophthalmology. Asia-Pacific Journal of Ophthalmology, 10, 307-316. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Xie, Y., Nguyen, Q.D., Hamzah, H., Lim, G., Bellemo, V., Gunasekeran, D.V., et al. (2020) Artificial Intelligence for Teleophthalmology-Based Diabetic Retinopathy Screening in a National Programme: An Economic Analysis Modelling Study. The Lancet Digital Health, 2, e240-e249. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
范家伟, 张如如, 陆萌, 等. 深度学习方法在糖尿病视网膜病变诊断中的应用[J]. 自动化学报, 2021, 47(5): 985-1004.
|
|
[55]
|
Rudin, C. and Radin, J. (2019) Why Are We Using Black Box Models in AI When We Don’t Need To? A Lesson from an Explainable AI Competition. Harvard Data Science Review, 1, 1-9. [Google Scholar] [CrossRef]
|
|
[56]
|
Evans, N.G., Wenner, D.M., Cohen, I.G., Purves, D., Chiang, M.F., Ting, D.S.W., et al. (2022) Emerging Ethical Considerations for the Use of Artificial Intelligence in Ophthalmology. Ophthalmology Science, 2, Article 100141. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Cross, J.L., Choma, M.A. and Onofrey, J.A. (2024) Bias in Medical AI: Implications for Clinical Decision-Making. PLOS Digital Health, 3, e0000651. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Xu, X., Zhang, M., Huang, S., Li, X., Kui, X. and Liu, J. (2024) The Application of Artificial Intelligence in Diabetic Retinopathy: Progress and Prospects. Frontiers in Cell and Developmental Biology, 12, Article 1473176. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Sheng, B., Chen, X., Li, T., Ma, T., Yang, Y., Bi, L., et al. (2022) An Overview of Artificial Intelligence in Diabetic Retinopathy and Other Ocular Diseases. Frontiers in Public Health, 10, Article 971943. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
孙石磊, 李明, 刘静, 等. 深度学习在糖尿病视网膜病变分类领域的研究进展[J]. 计算机工程与应用, 2024, 60(8): 16-30.
|
|
[61]
|
Grzybowski, A., Singhanetr, P., Nanegrungsunk, O. and Ruamviboonsuk, P. (2023) Artificial Intelligence for Diabetic Retinopathy Screening Using Color Retinal Photographs: From Development to Deployment. Ophthalmology and Therapy, 12, 1419-1437. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Kong, M. and Song, S.J. (2024) Artificial Intelligence Applications in Diabetic Retinopathy: What We Have Now and What to Expect in the Future. Endocrinology and Metabolism, 39, 416-424. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Lee, A.Y., Yanagihara, R.T., Lee, C.S., Blazes, M., Jung, H.C., Chee, Y.E., et al. (2021) Multicenter, Head-to-Head, Real-World Validation Study of Seven Automated Artificial Intelligence Diabetic Retinopathy Screening Systems. Diabetes Care, 44, 1168-1175. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Fuller, S.D., Hu, J., Liu, J.C., Gibson, E., Gregory, M., Kuo, J., et al. (2022) Five-Year Cost-Effectiveness Modeling of Primary Care-Based, Nonmydriatic Automated Retinal Image Analysis Screening among Low-Income Patients with Diabetes. Journal of Diabetes Science and Technology, 16, 415-427. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Tao, Y., Xiong, M., Peng, Y., Yao, L., Zhu, H., Zhou, Q., et al. (2025) Machine Learning-Based Identification and Validation of Immune-Related Biomarkers for Early Diagnosis and Targeted Therapy in Diabetic Retinopathy. Gene, 934, Article 149015. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Trotta, M.C., Gesualdo, C., Platania, C.B.M., De Robertis, D., Giordano, M., Simonelli, F., et al. (2021) Circulating miRNAs in Diabetic Retinopathy Patients: Prognostic Markers or Pharmacological Targets? Biochemical Pharmacology, 186, Article 114473. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Naaz, S., Kamran, H., Hussain, S.J., et al. (2025) FedGAN: Federated Diabetic Retinopathy Image Generation. PLOS ONE, 20, e0326579.
|
|
[68]
|
Lee, G.H. and Shin, S. (2020) Federated Learning on Clinical Benchmark Data: Performance Assessment. Journal of Medical Internet Research, 22, e20891. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Ikram, A. and Imran, A. (2025) ResViT FusionNet Model: An Explainable AI-Driven Approach for Automated Grading of Diabetic Retinopathy in Retinal Images. Computers in Biology and Medicine, 186, Article 109656. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
刘哲宇, 陈雪霞, 冯耀清, 等. 糖尿病病人视网膜病变风险预测模型研究进展[J]. 护理研究, 2025, 39(13): 2316-2320.
|