骨骼肌萎缩的病理机制与药物防治
Pathological Mechanism and Drug Prevention and Treatment of Skeletal Muscle Atrophy
DOI: 10.12677/pi.2026.151004, PDF, HTML, XML,    国家自然科学基金支持
作者: 李雯婷, 劳嘉怡, 刘 康*:中国药科大学中药学院中药药理与中医药学系,江苏 南京
关键词: 骨骼肌萎缩病理机制药物防治Skeletal Muscle Atrophy Pathological Mechanism Drug Prevention and Treatment
摘要: 骨骼肌不仅参与机体的运动功能,还是重要的能量代谢组织,对人体自身的新陈代谢和能量转换等有着重要的调控作用,从而对人体日常的运动以及整体水平的健康产生着重要的影响。但是,在多种病理因素以及疾病的影响下,骨骼肌会发生病理的改变,导致肌肉疾病的形成,例如骨骼肌萎缩。骨骼肌萎缩不仅会影响患者正常的肢体活动从而导致患者的生活质量下降还会给社会带来巨大的负担。本文就骨骼肌萎缩的主要发病机制进行了综述并进一步概括了相关的药物防治,旨在深化对骨骼肌萎缩发病机制的认识以及为其防治提供新的理论支撑。
Abstract: Skeletal muscle not only plays a crucial role in motor activity but also serves as a vital tissue in regulating the body’s own metabolism and energy conversion, thereby influencing daily movement and overall health. However, under the influence of various pathological factors and diseases, skeletal muscle undergoes pathological changes, leading to the development of muscular diseases, such as muscle atrophy. Skeletal muscle atrophy can impair normal limb movement in patients, leading to a decline in their quality of life and placing a heavy burden on society. This article reviews several main pathogeneses of skeletal muscle atrophy and further summarizes the relevant pharmacotherapeutic approaches, aiming to expand the understanding of skeletal muscle atrophy and provide new theoretical support for its prevention and treatment.
文章引用:李雯婷, 劳嘉怡, 刘康. 骨骼肌萎缩的病理机制与药物防治[J]. 药物资讯, 2026, 15(1): 25-36. https://doi.org/10.12677/pi.2026.151004

1. 引言

骨骼肌作为人体最大的蛋白质贮库和器官,约占人体体重的40%。因此,骨骼肌在支配身体活动以及调控机体能量代谢等方面有着深远的影响,其在体温调节、全身代谢、运动和内脏保护中起着至关重要的作用[1]-[3]。但是,由于年龄的增加以及各种病理因素的影响,骨骼肌的肌肉质量和功能会逐渐下降,形成以肌纤维横截面积减少为组织病理学特征的骨骼肌萎缩[4]。骨骼肌萎缩不仅在老年人中普遍存在,而且还可能继发于周围神经损伤、癌症、糖尿病和心力衰竭等其他疾病[5] [6]。骨骼肌萎缩不仅会降低患者的生活质量,还会导致患者残疾并增加患者的死亡率,目前骨骼肌萎缩已演变为一个越来越受到重视的全球健康问题[7]。尽管当前临床上已有治疗肌肉减少、肌肉萎缩等相关疾病的药物,但这些药物大多只能缓解骨骼肌萎缩的症状却无法起到根治作用,而且多数药物的副作用比较大,其安全性仍有待证实[8]。因此,加深对骨骼肌萎缩发病机制的研究和理解将有助于发现对抗骨骼肌萎缩的新作用靶点和药物。

本文旨在总结骨骼肌萎缩的相关病理机制,并归纳当前药物治疗的研究进展,从而填补该领域理论整合的不足,为后续研究与临床实践提供理论依据。

2. 骨骼肌萎缩的病因

骨骼肌萎缩发病原因较为复杂,通常与衰老、慢性心力衰竭、肾衰竭、甲亢和糖尿病等疾病并发出现。在目前的研究中,依据发病原因,骨骼肌萎缩主要分为废用性肌萎缩、神经源性肌萎缩、代谢异常导致的肌萎缩、衰老导致的肌萎缩(即衰老导致的肌少症)以及营养不良导致的肌萎缩[9]

废用性肌萎缩主要是由于患者长时间缺乏运动与锻炼,或者由于肌肉拉伤、关节脱位、骨折、卧床休息等原因减少了对肌肉的使用,从而使肌肉质量损失,造成肌肉萎缩[10]。神经源性肌萎缩是由于周围神经系统中的神经结构发生病变而导致的肌肉萎缩,常见于肌萎缩侧索硬化症、进行性脊肌萎缩症等疾病[11]。代谢异常导致的肌萎缩则是由于机体代谢异常导致内脏脂肪过度堆积,诱发氧化应激、炎性细胞因子的大量产生、线粒体功能障碍和胰岛素抵抗,从而造成肌内脂肪积累,肌肉流失,肌肉质量降低,形成骨骼肌萎缩[12]。衰老导致的肌萎缩则是与年龄增长相关。随着年龄的增长,身体机能不可避免地衰减,与此同时肌肉结构也会发生变化比如肌肉纤维的横截面积显著减少;肌纤维丢失;肌肉纤维类型发生改变,负责高强度活动的II型纤维占比显著下降;弹性纤维系统发生改变和骨骼肌脂肪浸润逐渐增加等,从而引发肌肉质量下降,形成肌肉萎缩[13]。营养不良导致的肌萎缩则是由于摄入或吸收的蛋白质、能量和微量营养元素不足从而导致机体组成成分改变和身体细胞质量降低,进而导致肌肉萎缩[14]

3. 骨骼肌萎缩的机制

骨骼肌作为人体最大的氨基酸储存库,其肌肉质量和功能的变化反映了机体蛋白质的稳态情况[15],在正常情况下骨骼肌蛋白质的合成速度和降解速度保持着动态平衡,维持机体能量的稳定。但是当骨骼肌的微环境被破坏时,如受到外部负荷和激素信号的刺激或者肌肉的氨基酸池和能量状态发生改变,蛋白质降解的速度就会超过其合成的速度从而引发骨骼肌萎缩[16]。目前的研究发现,骨骼肌蛋白质的合成与降解主要受以下几种代谢途径与信号的调节:(1) 泛素–蛋白酶体系统(Ubiquitin-proteasome system, UPS);(2) IGF1-AKT-mTOR通路;(3) 自噬溶酶体系统(Autophagic lysosomal system, ALS);(4) 肌源性调节因子(Myogenic regulatory factors, MRFs);(5) 内质网应激(Endoplasmic reticulum stress, ER stress)和非折叠蛋白反应(Unfolded protein response, UPR) [17]

3.1. 泛素–蛋白酶体系统

UPS是一种选择性蛋白水解系统,主要由泛素、泛素激活酶(Ubiquitin-activating enzyme, E1)、泛素结合酶(Ubiquitin-conjugating enzyme, E2)、泛素连接酶(Ubiquitin-ligase enzyme, E3)及26S蛋白酶体组成。泛素化主要是由E1、E2和E3这三种酶协同作用所介导:E1消耗ATP,将泛素C端腺苷化使其激活,活化的泛素通过硫酯键转移到E2,E3随后识别底物并将泛素从E2转移至底物上,最后形成的特异性泛素化底物被26S蛋白酶识别并降解为小肽和氨基酸,这种蛋白质降解过程对维持蛋白质稳态至关重要[4] [18] [19]

在泛素化过程中,E3在泛素介导的蛋白质降解级联反应中起着关键作用,决定了UPS的特异性和速率[20]。肌肉特异性环指蛋白1 (Muscle ring-finger protein-1, MuRF-1)和肌肉萎缩盒F基因(Muscle atrophy F-box, MAFbx或Atrogin-1)是两种关键的肌肉特异性E3酶,能够介导底物蛋白如肌球蛋白重链、肌动蛋白和FoxO (Forkhead box protein, FOX)转录因子等蛋白的多泛素化修饰,从而标记这些蛋白并引导其被26S蛋白酶体识别和降解[21] [22]。自2001年发现以来,MuRF-1和Atrogin-1已被证明是调控骨骼肌萎缩的关键蛋白,在多种病理状态和生理条件诱导的肌肉萎缩过程中,这两种E3酶的表达均呈现显著上调[20]。有研究[23]通过免疫组织化学分析发现,与空白组大鼠相比,注射了促肾上腺皮质激素的大鼠肌肉中MuRF-1和Atrogin-1的表达显著升高。Sinam等人[24]以不同浓度的地塞米松处理C2C12细胞24 h后,Western Blot检测显示该细胞MuRF-1、Atrogin-1表达较空白组均升高。研究表明db/db小鼠在糖尿病前期即出现肌肉重量下降、最大跑速降低,且随高血糖加重而恶化,同时MuRF-1和Atrogin-1表达均显著升高[25]。泛素蛋白酶体广泛参与了不同病因(如衰老、废用、恶病质)导致的骨骼肌萎缩,引起骨骼肌收缩蛋白降解和肌纤维萎缩,但在不同病因的肌萎缩中,激活泛素蛋白酶体的上游驱动因素以及作用范围和强度不同,如衰老型以内环境稳态失衡为主,多局限于骨骼肌[26],而癌症恶病质型则以氧化应激、炎症因子风暴为主,呈现全身性和高强度,进程更快。

3.2. IGF1-AKT-mTOR通路

胰岛素样生长因子(Insulin like growth factor 1, IGF1)是维持机体和肌肉生长的有效合成代谢因子,IGF1与其特异性受体结合,使下游磷酸化信号通路逐级被激活,从而正向或负向调节蛋白质、酶或转录因子,进而调节蛋白质的合成与降解[27]。然后,IGF1通过介导磷脂酰肌醇-3-激酶(Phosphoinositide 3-Kinase, PI3K)的磷酸化激活其活性,进而促使下游的蛋白激酶B (Protein kinase B, AKT)发生磷酸化并被激活[28]。Zhang H等人[29]发现在注射过TNF-α的小鼠胫骨前肌中IGF1的mRNA水平显著下降,并且在体外实验中发现经TNF-α处理后的C2C12中p-AKT的蛋白表达水平与空白组相比也显著下降。

此信号转导途径中影响蛋白质合成的关键枢纽,即哺乳动物雷帕霉素靶蛋白(Mammalian target of rapamycin, mTOR)受到激素、细胞因子、营养物质和ATP/AMP比率等多种因素的影响。mTOR通过磷酸化激活真核翻译起始因子4E结合蛋白1 (eIF4E-binding protein 1, 4E-BP1)和p70核糖体蛋白S6激酶(p70 ribosomal protein S6 kinase, p70S6K)来促进蛋白质合成[30],在磷酸化状态下,4E-BP1与真核起始因子4E (eukaryotic initiation factor 4E, eIF4E)的亲和力降低,从而使eIF4E能够与真核起始因子4G (eukaryotic translation initiation factor 4G, eIF4G)结合形成关键的翻译起始复合物,开始蛋白质的翻译过程;而磷酸化的p70S6K通过激活40S核糖体亚基的一个组成部分核糖体蛋白S6 (Ribosomal protein S6, RPS6)来促进蛋白质合成[28]。Yang JC等人[31]通过给小鼠注射地塞米松建立肌肉萎缩模型,Western Blot结果显示与正常组小鼠相比,地塞米松处理组小鼠的腓肠肌组织中p-mTOR、p-4EBP1和p-p70S6K等蛋白的表达均呈现明显下调趋势。此外,AKT也能够调节FOXO1或FOXO3a信号通路。活化的FOXO可以移位到细胞核,促进MuRF-1和Atrogin-1的转录,从而通过MuRF-1和Atrogin-1促进骨骼肌的蛋白降解,而AKT可使FOXO发生磷酸化而失活[2]。IGF1-AKT-mTOR通路在不同的骨骼肌萎缩疾病中活性均有所下降,导致蛋白合成受阻,抗萎缩能力下降。需要注意的是,非AKT依赖性的mTOR激活,则可能导致肌萎缩。例如对于衰老相关的肌萎缩,持续的mTOR复合(mTORC1)活化则可通过激活STAT3/GDF15 (growth differentiation factor 15)信号通路引发肌纤维线粒体功能障碍与氧化应激,与此同时,AKT对FOXO的抑制作用降低,最终导致肌萎缩[32]

3.3. 自噬溶酶体途径

ALS是一种溶酶体介导的降解系统,通过去除异常的蛋白质聚集体、受损的细胞器和入侵的病原体等以维持正常的细胞功能和稳态[33]。在不同的肌萎缩病理条件下,ALS会从保护性降解转向破坏性降解,直接靶向降解肌动蛋白、肌球蛋白等收缩蛋白,导致肌纤维横截面积减小,成为萎缩发生的重要通路,而在恶病质中ALS呈现无差别、高强度的过度激活状态。自噬体的形成及其内容物的降解涉及几个步骤,包括起始、隔离膜形成、自噬体形成、自噬体与溶酶体融合、自噬体降解。在多种应激条件下(如营养缺乏、低氧以及病原体侵袭等)自噬就会被启动,UNC-51样激酶1 (UNC-51-like Kinase 1, ULK1)和PI3K复合物的激活对于自噬体的启动至关重要。自噬体膜的伸长和成熟依赖于两个泛素样偶联系统,即自噬相关蛋白12 (Autophagy-related gene 12, ATG12)和微管相关蛋白轻链3 (Microtubule-associated protein 1 light chain 3, LC3)偶联系统[34] [35]。ATG12与自噬相关蛋白5 (Autophagy-related gene 5, ATG5)结合形成的复合物激活LC3并促进LC3复合物的组装。LC3复合物将自噬蛋白募集到自噬细胞的外膜上,与同型融合和蛋白质分选复合体(Homotypic fusion and protein sorting complex, HOPS)等蛋白相互作用,促进自噬体与溶酶体的融合,导致内容物的降解[36]

PI3K/AKT/mTOR通路不仅可以对蛋白质的合成有影响,对ALS也有一定的调节作用。Zheng R等人[37]通过建立冈上肌腱切除模型诱导大鼠肌肉萎缩,HE结果显示PI3K抑制剂组和mTOR抑制剂组的肌肉炎症浸润面积、脂肪堆积、肌肉纤维化和纤维横截面积明显增加,并且透射电镜观察显示这两组伴有更多的自噬体和自噬溶酶体,同时Western blot检测发现LC3II蛋白表达水平显著上调。螯合体1 (Sequestosome 1, p62)是一种关键的自噬接头蛋白,其作用主要是识别受损细胞器和异常蛋白质聚集体并将其递送至自噬体进行降解,对ALS的调节有着重要的影响。蛋白质精氨酸甲基转移酶(Coactivator associated arginine methyltransferase 1)是调控骨骼肌稳态的关键因子,参与肌纤维类型转换、线粒体形态维持及神经肌肉接头稳定性。Stouth DW等人[38]发现与野生型小鼠相比,CARM1敲除组小鼠肌肉中p62和LC3II的蛋白表达显著上升并且异常线粒体的数目更多,自噬流受阻。

3.4. 肌源性调节因子

MRFs是由四种肌肉特异性转录因子组成的蛋白家族,它们共同调控骨骼肌的发育、分化和再生过程。这四种核心成员主要包括肌源性分化1 (Myogenic differentiation 1, MyoD1)、生肌因子5 (Myogenic Factor 5, Myf5)、肌原性调节因子4 (Muscle regulatory factor 4, MRF4)和肌细胞生成素(Myogenin, MyoG)。它们作用于肌肉谱系发育中的多个环节:MyoD和Myf5激活肌前体细胞的增殖,MyoG和MRF4上调细胞周期抑制因子促使细胞永久退出细胞周期,为分化做准备。所有MRFs调节肌节蛋白和激活肌肉特异性基因来促进肌管形成与肌节组装,MyoD和Mrf4持续表达以维持肌纤维表型,介导损伤后再生和修复损伤[39] [40]

研究[41]发现siRNA转染敲低C2C12和HSkMC细胞中的丙酮酸脱氢酶E1亚基β基因后,Myf5、MyoD、MyoG和MyHC (myosin heavy chain, MyHC)的mRNA表达水平显著降低。而且Western blot的结果显示,MyoD、MyoG和MyHC的蛋白表达也明显下降。Zhang K等人[42]发现在视黄醇结合蛋白4基因敲除小鼠中,Atrogin-1和MuRF-1的mRNA表达水平显著降低同时MyoD和MyoG的mRNA表达水平显著增加,伴随分子水平变化的是肌纤维横截面积增加,脂肪浸润面积减少。在不同的病因中MRFs的表达也有所不同。例如在衰老导致的骨骼肌萎缩中,MRFs为渐进性持续下调,在废用性肌萎缩中MRFs为先升后降的可逆变化,而恶病质为显著且不可逆的全面抑制。

3.5. 内质网应激和非折叠蛋白反应

内质网(endoplasmic reticulum, ER)是最大的细胞器,是合成分泌蛋白和膜结合蛋白的主要位点。它与其他各种细胞器接触并参与许多细胞途径的调节,包括蛋白质合成、蛋白质质量和脂质合成[43]。ER内的蛋白质平衡由UPR控制,该反应调节细胞蛋白质折叠以维持分泌功能。ER中错误折叠或未折叠蛋白质的积累导致ER stress,从而激活UPR。越来越多的证据强调ER stress会导致蛋白质合成失调和肌肉降解,这与骨骼肌萎缩密切相关[44]

骨骼肌细胞含有称为肌浆网(滑面内质网的一种形式)的特殊内质网结构,由广泛的小管网络组成。这种膜结合的细胞器负责调节钙的释放进入细胞质以触发肌肉收缩。UPR主要受三种类型的蛋白调节,即蛋白激酶 RNA样内质网激酶(protein kinase RNA-like endoplasmic reticulum kinase, PERK)、肌醇需要酶1α (Inositol-requiring enzyme 1α, IRE1α)和激活转录因子(Activating Transcription Factor, ATF) [45]。在炎症、氧化应激等刺激下,ER发生应激反应,进而激活三条关键的UPR信号通路,包括PERK-eIF2α-ATF4、IRE1α-XBP1以及ATF6通路。这些通路的激活一方面抑制蛋白质合成,另一方面促进UPS及ALS介导的蛋白质降解,最终引起肌纤维萎缩,甚至诱发细胞凋亡[44]。有研究表明[46]在肿瘤恶病质、脓毒症、去神经等模型中,PERK-eIF2α-ATF4与IRE1-XBP1信号可上调MuRF1、Atrogin-1等E3连接酶,从而引发骨骼肌萎缩。ER和ER stress在骨骼肌萎缩相关疾病中作为蛋白稳态失衡的核心响应通路,调控萎缩进程,但由于诱发不同骨骼肌萎缩的病因不同,ER和ER stress在不同病因导致的萎缩中又有着差异,譬如衰老以内质网功能衰退为核心,废用肌萎缩中以力学信号缺失为诱因等,最终导致UPR通路的激活分支、作用强度和组织效应不尽相同。

除了上述五方面机制以外,骨骼肌萎缩的其他机制还包括钙离子依赖性蛋白降解、骨骼肌细胞凋亡等。

4. 骨骼肌萎缩的药物治疗

目前针对骨骼肌萎缩的治疗,主要分为非药物性的治疗和药物性的治疗。非药物性的治疗主要通过运动训练(抗阻训练、有氧运动),物理治疗(按摩、热疗/冷疗和超声波治疗)和营养干预(高蛋白饮食、维生素D和抗氧化营养素的补充)来增强肌肉质量、改善肌肉收缩功能并延缓肌肉萎缩的进一步发展。药物性治疗根据骨骼肌萎缩发病机制的不同,主要是通过促进肌肉蛋白质合成,抑制肌肉萎缩信号通路和改善肌肉收缩功能等途径来缓解肌肉萎缩的症状从而延缓萎缩的发展进程[47]

4.1. 西药治疗骨骼肌萎缩的研究进展

当前,临床上多采用西药治疗骨骼肌萎缩。雄性激素受体调节剂是缓解肌肉减少症的常用策略之一,其核心是激活雄激素受体以促进肌发生与蛋白质合成。睾酮和选择性雄激素受体调节可激活该受体[48],其中睾酮虽已用于治疗肌肉萎缩,但风险或大于益处,存在血栓并发症、睡眠呼吸暂停、前列腺癌等相关风险;选择性雄激素受体调节剂在癌症恶病质、老年性肌少症等慢性病相关肌萎缩中具有临床前机制研究支持,但其临床验证、长期安全性评估仍是未来研究的重点。肌肉生长抑制素会减弱卫星细胞增殖、抑制肌肉分化,其抑制剂可通过直接结合受体减弱二者相互作用[49],目前针对脊髓性肌萎缩症的新药Apitegromab在III期临床试验中取得显著成果。β肾上腺素能激动剂的合成代谢特性可减轻肌肉或肌纤维萎缩,还能增强肌肉萎缩后的修复与功能恢复[50],传统的该类激动剂(克伦特罗、福莫特罗)因心血管和脱敏问题,基本退出骨骼肌萎缩适应证的系统开发,新一代产品(GRK2偏向性激动剂、非cAMP依赖性激动剂)成为研究热点,目前处于临床前研究阶段。糖皮质激素及衍生物小剂量短期服用可维持肌膜修复、抗炎与促再生,但长期或高剂量会引发副作用(如生长抑制、代谢紊乱)。目前临床不再将糖皮质激素本身视作“治疗骨骼肌萎缩”的药物,而是利用其抗炎和膜稳定效应,或开发“解离型”衍生物以保留益处的同时最大程度减少副作用。抗炎抗氧化调节剂与线粒体保护剂在细胞和动物层面已反复验证,具有协同抑制蛋白降解、恢复线粒体动力学的双重优势,这一双重优势为老年肌少症、癌性恶液质及术后肌萎缩提供新的药物干预策略。表1列举了一些治疗骨骼肌萎缩的药物。

Table 1. Western medicine for the treatment of skeletal muscle atrophy

1. 治疗骨骼肌萎缩的西药

类别

代表性药物

治疗机制

参考文献

β肾上腺素能激动剂

克仑特罗

激活Akt-mTOR信号通路

[51]

福莫特罗

上调PGC-1α和线粒体DNA的含量

[52]

雄激素受体调节剂

睾酮

激活PI3K/AKT信号通路

[53]

Enobosarm

上调MyoG、MyoD和MyH的表达

[54]

诺龙

抑制Smad2/3通路和上调PGC-1α表达

[55]

肌肉生长抑制素抑制剂

YK-11

上调MyoG、Mfy5和MyoD的表达

[56]

Bimagrumab

抑制Smad2/3通路和MuRF1、Atrogin-1的表达

[57]

ACE-083

下调MuRF1和Atrogin-1的表达

[58]

糖皮质激素及衍生物

泼尼松

激活IGF1/PI3K通路

[59]

地夫可特

减轻炎性细胞浸润和胶原纤维聚集

[60]

抗炎抗氧化调节剂

塞来昔布

下调COX-2,减少IL-6、TNF-α等炎性因子释放

[61]

二甲双胍

激活AMPK,抑制NF-κB与NLRP3炎症小体

[62]

巴瑞替尼

抑制JAK-STAT炎症信号轴

[63] [64]

线粒体保护剂

MitoQ

线粒体靶向抗氧化,降低MuRF-1、Atrogin-1的表达

[65]

SS-31

抑制mtROS的产生和caspase-3的表达

[66]

4.2. 中药治疗骨骼肌萎缩的研究进展

西药在临床上治疗骨骼肌萎缩时往往伴随明显副作用(库欣综合征、免疫抑制、过敏反应等),基于此研究人员开始将探索方向转向天然产物。近年来,中药凭借多靶点作用、整体调节机制及副作用小等特点,受到研究人员的广泛关注,在骨骼肌萎缩的治疗领域也逐渐显现出独特的应用优势[3]

4.2.1. 中医治疗骨骼肌萎缩的研究

在中医中,骨骼肌萎缩并未明确讨论为一种独立的疾病,但其临床表现通常被纳入更广泛的类别,如“卫证”、“虚证”、“肉痹证”和“骨痹证”。卫证的临床症状最早见于《黄帝内经》,其中注明:“卫者虚弱,虚弱者由运动引起”。卫证主要影响四肢的肌肉和骨骼,五脏(藏府器官)的病变可能导致卫证[67]

中医强调整体观和辨证论治,旨在增强元气、活血祛瘀、疏通经络、强健脾肾。中医治疗不仅可以缓解肌肉减少症的症状,还可以调节内部环境,改善疾病的基本病理状态。现代研究证实,草药制剂、针灸、太极拳和八段锦可调节多种分子途径,包括mTOR、PI3K/Akt和AMPK信号传导,促进蛋白质合成,减少肌肉炎症,改善线粒体功能,调节肠道微生物群,增强神经肌肉功能连接。这些干预措施具有多靶点和多层次的治疗优势[68]

4.2.2. 中药研究现状

从中医角度来看,肌少症往往与脾气虚、肾阳虚有关。四君子汤由人参、白术、茯苓和炙甘草组成,主要用于治疗脾胃气虚证。治疗的原则主要是益气健脾,可以改善疲劳,调节肌肉生成,抑制肌肉萎缩,改善线粒体功能。补中益气汤传统上用于治疗气虚症状,如疲劳、疲倦和食欲不振。其治疗作用归因于对抗氧化系统的调节,从而减少线粒体氧化应激损伤,缓解肌肉无力,增强身体健康和认知功能。健脾补肾汤以党参健脾胃、补骨脂补肝肾,具有健脾补肾功效,其可通过促进蛋白合成,抑制蛋白降解和改善能量与线粒体代谢三重机制,延缓骨骼肌萎缩。调补肺肾三方可改善慢性阻塞性肺疾病大鼠股四头肌病理损伤并减轻炎症反应。中药复方已从经验使用迈入临床循证阶段,在老年肌少症、透析合并肌肉丢失等人群中有改善握力、步速与肌肉量的作用且安全性良好。当前最大任务是扩大样本、统一终点和标准化制剂。现有研究表明,中药单体可通过激活抗炎通路、增强机体抗氧化能力、修复并优化线粒体数量与功能等多种途径,提升肌肉质量,有效缓解骨骼肌萎缩。目前已有临床前实验数据证明中药单体(姜黄素、白术内酯Ⅰ、淫羊藿苷、葛根素、川芎嗪等)能够缓解骨骼肌萎缩,在改善肌肉量、肌力、功能及降低炎症方面有一定的疗效,且安全性优于激素,后续研究的主要方向是扩大临床样本规模,获得更有权威的临床样本数据支持。表2表3列举了一些治疗骨骼肌萎缩的中药复方和中药单体。

Table 2. Traditional Chinese medicine compound prescriptions for the treatment of skeletal muscle atrophy

2. 治疗骨骼肌萎缩的中药复方

复方名称

治疗机制

参考文献

健脾补肾汤

抑制Myostatin/Atrogin-1信号通路

[69]

补中益气汤

抑制JNK/c-JUN信号通路,下调Atrogin-1、Murf-1的表达

[70]

四君子汤

降低TNF-α、IL-6等炎症因子的水平

[71]

调补肺肾三方

抑制TNF-α、IL-1的释放和NF-κB的激活

[72]

Table 3. Traditional Chinese medicine monomers for the treatment of skeletal muscle atrophy

3. 治疗骨骼肌萎缩的中药单体

类别

代表性单体

治疗机制

参考文献

皂苷类

黄芪甲苷

抑制氧化应激和炎症反应

[73]

生物碱

小檗碱

激活AMPK/SIRT1/PGC-1α通路

[74]

萜类

丹参酮

调节线粒体功能障碍,抑制炎症因子的释放

[75]

人参皂苷

激活Akt/mTOR/FOXO3通路

[76]

多糖类

黄精多糖

激活PI3K/Akt/mTOR信号通路

[77]

黄酮类

黄芩苷

抑制TNF-α、IL-6的释放和NF-κB的激活,下调Atrogin-1、Murf-1的表达

[78]

葛根素

激活Akt/mTOR信号通路,下调Atrogin-1、Murf-1、LC3II、p62的表达

[79]

柚皮苷

激活PI3K/AKT/Nrf2通路减少氧化应激

[80]

内酯类

白术内酯

抑制炎症因子的释放,激活PI3K/Akt/mTOR信号通路

[81]

5. 展望

骨骼肌萎缩的发病过程是比较复杂的,目前临床针对骨骼肌萎缩的治疗策略大多是从单一靶点切入,难以彻底阻断病程,存在治标不治本的局限。随着研究的深入,发现其发病机制已从单一靶点深入到多靶点、多信号通路交叉阶段。这一转变不仅提示未来药物研发需突破单一靶点思路,转向多靶点、多途径的联合治疗策略,更为中医药发挥多成分、多靶点、整体调节的优势提供了新的研究方向,最终助力实现延缓肌肉萎缩进展、恢复肌肉功能、改善患者预后的目标。

基金项目

国家自然科学基金项目(No. 82174009)。

NOTES

*通讯作者。

参考文献

[1] Shirakawa, T., Miyawaki, A., Kawamoto, T. and Kokabu, S. (2021) Natural Compounds Attenuate Denervation-Induced Skeletal Muscle Atrophy. International Journal of Molecular Sciences, 22, Article 8310. [Google Scholar] [CrossRef] [PubMed]
[2] Jun, L., Robinson, M., Geetha, T., Broderick, T.L. and Babu, J.R. (2023) Prevalence and Mechanisms of Skeletal Muscle Atrophy in Metabolic Conditions. International Journal of Molecular Sciences, 24, Article 2973. [Google Scholar] [CrossRef] [PubMed]
[3] 丁恺志, 汪楚楚, 唐崇茂, 等. 骨骼肌萎缩机制的研究进展[J]. 江西科技师范大学学报, 2023(6): 103-108.
[4] Yin, L., Li, N., Jia, W., Wang, N., Liang, M., Yang, X., et al. (2021) Skeletal Muscle Atrophy: From Mechanisms to Treatments. Pharmacological Research, 172, Article 105807. [Google Scholar] [CrossRef] [PubMed]
[5] Du, J., Wu, Q. and Bae, E.J. (2024) Epigenetics of Skeletal Muscle Atrophy. International Journal of Molecular Sciences, 25, Article 8362. [Google Scholar] [CrossRef] [PubMed]
[6] Lei, Y., Gan, M., Qiu, Y., Chen, Q., Wang, X., Liao, T., et al. (2024) The Role of Mitochondrial Dynamics and Mitophagy in Skeletal Muscle Atrophy: From Molecular Mechanisms to Therapeutic Insights. Cellular & Molecular Biology Letters, 29, Article No. 59. [Google Scholar] [CrossRef] [PubMed]
[7] Dhillon, R.J.S. and Hasni, S. (2017) Pathogenesis and Management of Sarcopenia. Clinics in Geriatric Medicine, 33, 17-26. [Google Scholar] [CrossRef] [PubMed]
[8] Dutt, V., Gupta, S., Dabur, R., Injeti, E. and Mittal, A. (2015) Skeletal Muscle Atrophy: Potential Therapeutic Agents and Their Mechanisms of Action. Pharmacological Research, 99, 86-100. [Google Scholar] [CrossRef] [PubMed]
[9] Zizzo, J. (2021) Muscle Atrophy Classification: The Need for a Pathway-Driven Approach. Current Pharmaceutical Design, 27, 3012-3019. [Google Scholar] [CrossRef] [PubMed]
[10] Howard, E.E., Pasiakos, S.M., Fussell, M.A. and Rodriguez, N.R. (2020) Skeletal Muscle Disuse Atrophy and the Rehabilitative Role of Protein in Recovery from Musculoskeletal Injury. Advances in Nutrition, 11, 989-1001. [Google Scholar] [CrossRef] [PubMed]
[11] Ehmsen, J.T. and Höke, A. (2020) Cellular and Molecular Features of Neurogenic Skeletal Muscle Atrophy. Experimental Neurology, 331, Article 113379. [Google Scholar] [CrossRef] [PubMed]
[12] Nishikawa, H., Asai, A., Fukunishi, S., Nishiguchi, S. and Higuchi, K. (2021) Metabolic Syndrome and Sarcopenia. Nutrients, 13, Article 3519. [Google Scholar] [CrossRef] [PubMed]
[13] Tieland, M., Trouwborst, I. and Clark, B.C. (2018) Skeletal Muscle Performance and Ageing. Journal of Cachexia, Sarcopenia and Muscle, 9, 3-19. [Google Scholar] [CrossRef] [PubMed]
[14] Meza-Valderrama, D., Marco, E., Dávalos-Yerovi, V., Muns, M.D., Tejero-Sánchez, M., Duarte, E., et al. (2021) Sarcopenia, Malnutrition, and Cachexia: Adapting Definitions and Terminology of Nutritional Disorders in Older People with Cancer. Nutrients, 13, Article 761. [Google Scholar] [CrossRef] [PubMed]
[15] Gallagher, H., Hendrickse, P.W., Pereira, M.G. and Bowen, T.S. (2023) Skeletal Muscle Atrophy, Regeneration, and Dysfunction in Heart Failure: Impact of Exercise Training. Journal of Sport and Health Science, 12, 557-567. [Google Scholar] [CrossRef] [PubMed]
[16] Shen, Y., Zhang, C., Dai, C., Zhang, Y., Wang, K., Gao, Z., et al. (2024) Nutritional Strategies for Muscle Atrophy: Current Evidence and Underlying Mechanisms. Molecular Nutrition & Food Research, 68, Article 2300347. [Google Scholar] [CrossRef] [PubMed]
[17] Constantin-Teodosiu, D. and Constantin, D. (2021) Molecular Mechanisms of Muscle Fatigue. International Journal of Molecular Sciences, 22, Article 11587. [Google Scholar] [CrossRef] [PubMed]
[18] Kwon, Y.T. and Ciechanover, A. (2017) The Ubiquitin Code in the Ubiquitin-Proteasome System and Autophagy. Trends in Biochemical Sciences, 42, 873-886. [Google Scholar] [CrossRef] [PubMed]
[19] Bachiller, S., Alonso-Bellido, I.M., Real, L.M., Pérez-Villegas, E.M., Venero, J.L., Deierborg, T., et al. (2020) The Ubiquitin Proteasome System in Neuromuscular Disorders: Moving Beyond Movement. International Journal of Molecular Sciences, 21, Article 6429. [Google Scholar] [CrossRef] [PubMed]
[20] Pang, X., Zhang, P., Chen, X. and Liu, W. (2023) Ubiquitin-Proteasome Pathway in Skeletal Muscle Atrophy. Frontiers in Physiology, 14, Article ID: 1289537. [Google Scholar] [CrossRef] [PubMed]
[21] Bodine, S.C. and Baehr, L.M. (2014) Skeletal Muscle Atrophy and the E3 Ubiquitin Ligases Murf1 and Mafbx/Atrogin-1. American Journal of Physiology-Endocrinology and Metabolism, 307, E469-E484. [Google Scholar] [CrossRef] [PubMed]
[22] Gumucio, J.P. and Mendias, C.L. (2013) Atrogin-1, MuRF-1, and Sarcopenia. Endocrine, 43, 12-21. [Google Scholar] [CrossRef] [PubMed]
[23] Kang, S., Lee, H., Kim, M., Lee, E., Sohn, U.D. and Kim, I. (2017) Forkhead Box O3 Plays a Role in Skeletal Muscle Atrophy through Expression of E3 Ubiquitin Ligases Murf-1 and Atrogin-1 in Cushing’s Syndrome. American Journal of Physiology-Endocrinology and Metabolism, 312, E495-E507. [Google Scholar] [CrossRef] [PubMed]
[24] Sinam, I.S., Chanda, D., Thoudam, T., Kim, M., Kim, B., Kang, H., et al. (2022) Pyruvate Dehydrogenase Kinase 4 Promotes Ubiquitin-Proteasome System‐Dependent Muscle Atrophy. Journal of Cachexia, Sarcopenia and Muscle, 13, 3122-3136. [Google Scholar] [CrossRef] [PubMed]
[25] Ostler, J.E., Maurya, S.K., Dials, J., Roof, S.R., Devor, S.T., Ziolo, M.T., et al. (2014) Effects of Insulin Resistance on Skeletal Muscle Growth and Exercise Capacity in Type 2 Diabetic Mouse Models. American Journal of Physiology-Endocrinology and Metabolism, 306, E592-E605. [Google Scholar] [CrossRef] [PubMed]
[26] Kitajima, Y., Yoshioka, K. and Suzuki, N. (2020) The Ubiquitin-Proteasome System in Regulation of the Skeletal Muscle Homeostasis and Atrophy: From Basic Science to Disorders. The Journal of Physiological Sciences, 70, Article 40. [Google Scholar] [CrossRef] [PubMed]
[27] Sartori, R., Romanello, V. and Sandri, M. (2021) Mechanisms of Muscle Atrophy and Hypertrophy: Implications in Health and Disease. Nature Communications, 12, Article No. 330. [Google Scholar] [CrossRef] [PubMed]
[28] Yoshida, T. and Delafontaine, P. (2020) Mechanisms of IGF-1-Mediated Regulation of Skeletal Muscle Hypertrophy and Atrophy. Cells, 9, Article 1970. [Google Scholar] [CrossRef] [PubMed]
[29] Zhang, H., Wang, B., Wang, X., Huang, C., Xu, S., Wang, J., et al. (2024) Handelin Alleviates Cachexia‐ and Aging‐induced Skeletal Muscle Atrophy by Improving Protein Homeostasis and Inhibiting Inflammation. Journal of Cachexia, Sarcopenia and Muscle, 15, 173-188. [Google Scholar] [CrossRef] [PubMed]
[30] Liu, G.Y. and Sabatini, D.M. (2020) mTOR at the Nexus of Nutrition, Growth, Ageing and Disease. Nature Reviews Molecular Cell Biology, 21, 183-203. [Google Scholar] [CrossRef] [PubMed]
[31] Yang, J., Liu, M., Huang, R., Zhao, L., Niu, Q., Xu, Z., et al. (2024) Loss of SELENOW Aggravates Muscle Loss with Regulation of Protein Synthesis and the Ubiquitin-Proteasome System. Science Advances, 10, eadj4122. [Google Scholar] [CrossRef] [PubMed]
[32] Tang, H., Inoki, K., Brooks, S.V., Okazawa, H., Lee, M., Wang, J., et al. (2019) Mtorc1 Underlies Age‐Related Muscle Fiber Damage and Loss by Inducing Oxidative Stress and Catabolism. Aging Cell, 18, e12943. [Google Scholar] [CrossRef] [PubMed]
[33] Zhao, Y.G., Codogno, P. and Zhang, H. (2021) Machinery, Regulation and Pathophysiological Implications of Autophagosome Maturation. Nature Reviews Molecular Cell Biology, 22, 733-750. [Google Scholar] [CrossRef] [PubMed]
[34] Yang, Z. and Klionsky, D.J. (2010) Eaten Alive: A History of Macroautophagy. Nature Cell Biology, 12, 814-822. [Google Scholar] [CrossRef] [PubMed]
[35] Leduc-Gaudet, J., Hussain, S.N.A., Barreiro, E. and Gouspillou, G. (2021) Mitochondrial Dynamics and Mitophagy in Skeletal Muscle Health and Aging. International Journal of Molecular Sciences, 22, Article 8179. [Google Scholar] [CrossRef] [PubMed]
[36] Kma, L. and Baruah, T.J. (2021) The Interplay of ROS and the PI3K/AKT Pathway in Autophagy Regulation. Biotechnology and Applied Biochemistry, 69, 248-264. [Google Scholar] [CrossRef] [PubMed]
[37] Zheng, R., Huang, S., Zhu, J., Lin, W., Xu, H. and Zheng, X. (2019) Leucine Attenuates Muscle Atrophy and Autophagosome Formation by Activating PI3K/AKT/mTOR Signaling Pathway in Rotator Cuff Tears. Cell and Tissue Research, 378, 113-125. [Google Scholar] [CrossRef] [PubMed]
[38] Stouth, D.W., vanLieshout, T.L., Mikhail, A.I., Ng, S.Y., Raziee, R., Edgett, B.A., et al. (2023) CARM1 Drives Mitophagy and Autophagy Flux during Fasting-Induced Skeletal Muscle Atrophy. Autophagy, 20, 1247-1269. [Google Scholar] [CrossRef] [PubMed]
[39] Buckingham, M. and Rigby, P.W.J. (2014) Gene Regulatory Networks and Transcriptional Mechanisms That Control Myogenesis. Developmental Cell, 28, 225-238. [Google Scholar] [CrossRef] [PubMed]
[40] Hernández-Hernández, J.M., García-González, E.G., Brun, C.E. and Rudnicki, M.A. (2017) The Myogenic Regulatory Factors, Determinants of Muscle Development, Cell Identity and Regeneration. Seminars in Cell & Developmental Biology, 72, 10-18. [Google Scholar] [CrossRef] [PubMed]
[41] Jiang, X., Ji, S., Yuan, F., Li, T., Cui, S., Wang, W., et al. (2023) Pyruvate Dehydrogenase B Regulates Myogenic Differentiation via the FoxP1-Arih2 Axis. Journal of Cachexia, Sarcopenia and Muscle, 14, 606-621. [Google Scholar] [CrossRef] [PubMed]
[42] Zhang, K., Li, J., Xu, J., Shen, Z., Lin, Y., Zhao, C., et al. (2024) RBP4 Promotes Denervation‐Induced Muscle Atrophy through Stra6‐Dependent Pathway. Journal of Cachexia, Sarcopenia and Muscle, 15, 1601-1615. [Google Scholar] [CrossRef] [PubMed]
[43] Celik, C., Lee, S.Y.T., Yap, W.S. and Thibault, G. (2023) Endoplasmic Reticulum Stress and Lipids in Health and Diseases. Progress in Lipid Research, 89, Article 101198. [Google Scholar] [CrossRef] [PubMed]
[44] Ji, Y., Jiang, Q., Chen, B., Chen, X., Li, A., Shen, D., et al. (2025) Endoplasmic Reticulum Stress and Unfolded Protein Response: Roles in Skeletal Muscle Atrophy. Biochemical Pharmacology, 234, Article 116799. [Google Scholar] [CrossRef] [PubMed]
[45] Ghemrawi, R. and Khair, M. (2020) Endoplasmic Reticulum Stress and Unfolded Protein Response in Neurodegenerative Diseases. International Journal of Molecular Sciences, 21, Article 6127. [Google Scholar] [CrossRef] [PubMed]
[46] Roy, A. and Kumar, A. (2019) ER Stress and Unfolded Protein Response in Cancer Cachexia. Cancers, 11, Article 1929. [Google Scholar] [CrossRef] [PubMed]
[47] Cho, M., Lee, S. and Song, S. (2022) A Review of Sarcopenia Pathophysiology, Diagnosis, Treatment and Future Direction. Journal of Korean Medical Science, 37, e146. [Google Scholar] [CrossRef] [PubMed]
[48] Ali, S. and Garcia, J.M. (2014) Sarcopenia, Cachexia and Aging: Diagnosis, Mechanisms and Therapeutic Options—A Mini-Review. Gerontology, 60, 294-305. [Google Scholar] [CrossRef] [PubMed]
[49] Kim, J.W., Kim, R., Choi, H., Lee, S. and Bae, G. (2021) Understanding of Sarcopenia: From Definition to Therapeutic Strategies. Archives of Pharmacal Research, 44, 876-889. [Google Scholar] [CrossRef] [PubMed]
[50] Sakuma, K., Hamada, K., Yamaguchi, A. and Aoi, W. (2023) Current Nutritional and Pharmacological Approaches for Attenuating Sarcopenia. Cells, 12, Article 2422. [Google Scholar] [CrossRef] [PubMed]
[51] Kline, W.O., Panaro, F.J., Yang, H. and Bodine, S.C. (2007) Rapamycin Inhibits the Growth and Muscle-Sparing Effects of Clenbuterol. Journal of Applied Physiology, 102, 740-747. [Google Scholar] [CrossRef] [PubMed]
[52] Chen, L., Zhang, H., Chi, M., Yang, Q. and Guo, C. (2021) Drugs for the Treatment of Muscle Atrophy. In: Cseri, J., Ed., Background and Management of Muscular Atrophy, IntechOpen. [Google Scholar] [CrossRef
[53] Deane, C.S., Hughes, D.C., Sculthorpe, N., Lewis, M.P., Stewart, C.E. and Sharples, A.P. (2013) Impaired Hypertrophy in Myoblasts Is Improved with Testosterone Administration. The Journal of Steroid Biochemistry and Molecular Biology, 138, 152-161. [Google Scholar] [CrossRef] [PubMed]
[54] Leciejewska, N., Kołodziejski, P.A., Sassek, M., Nogowski, L., Małek, E. and Pruszyńska-Oszmałek, E. (2022) Ostarine-Induced Myogenic Differentiation in C2C12, L6, and Rat Muscles. International Journal of Molecular Sciences, 23, Article 4404. [Google Scholar] [CrossRef] [PubMed]
[55] Wu, Y., Zhao, J., Zhao, W., Pan, J., Bauman, W.A. and Cardozo, C.P. (2012) Nandrolone Normalizes Determinants of Muscle Mass and Fiber Type after Spinal Cord Injury. Journal of Neurotrauma, 29, 1663-1675. [Google Scholar] [CrossRef] [PubMed]
[56] Kanno, Y., Ota, R., Someya, K., Kusakabe, T., Kato, K. and Inouye, Y. (2013) Selective Androgen Receptor Modulator, YK11, Regulates Myogenic Differentiation of C2C12 Myoblasts by Follistatin Expression. Biological and Pharmaceutical Bulletin, 36, 1460-1465. [Google Scholar] [CrossRef] [PubMed]
[57] Rodgers, B.D. and Ward, C.W. (2022) Myostatin/Activin Receptor Ligands in Muscle and the Development Status of Attenuating Drugs. Endocrine Reviews, 43, 329-365. [Google Scholar] [CrossRef] [PubMed]
[58] Pearsall, R.S., Davies, M.V., Cannell, M., Li, J., Widrick, J., Mulivor, A.W., et al. (2019) Follistatin-Based Ligand Trap ACE-083 Induces Localized Hypertrophy of Skeletal Muscle with Functional Improvement in Models of Neuromuscular Disease. Scientific Reports, 9, Article No. 11392. [Google Scholar] [CrossRef] [PubMed]
[59] Salamone, I.M., Quattrocelli, M., Barefield, D.Y., Page, P.G., Tahtah, I., Hadhazy, M., et al. (2022) Intermittent Glucocorticoid Treatment Enhances Skeletal Muscle Performance through Sexually Dimorphic Mechanisms. Journal of Clinical Investigation, 132, e149828. [Google Scholar] [CrossRef] [PubMed]
[60] 杨晓, 张欢, 张朝晖, 等. 地夫可特改善杜氏肌营养不良症小鼠运动能力及减轻肌肉炎症损伤[J]. 实用医学杂志, 2023, 39(13): 1614-1619+1626.
[61] Zhang, L., Li, M., Wang, W., Yu, W., Liu, H., Wang, K., et al. (2022) Celecoxib Alleviates Denervation-Induced Muscle Atrophy by Suppressing Inflammation and Oxidative Stress and Improving Microcirculation. Biochemical Pharmacology, 203, Article 115186. [Google Scholar] [CrossRef] [PubMed]
[62] Shang, R. and Miao, J. (2023) Mechanisms and Effects of Metformin on Skeletal Muscle Disorders. Frontiers in Neurology, 14, Article ID: 1275266. [Google Scholar] [CrossRef] [PubMed]
[63] Collotta, D., Hull, W., Mastrocola, R., Chiazza, F., Cento, A.S., Murphy, C., et al. (2020) Baricitinib Counteracts Metaflammation, Thus Protecting against Diet-Induced Metabolic Abnormalities in Mice. Molecular Metabolism, 39, Article 101009. [Google Scholar] [CrossRef] [PubMed]
[64] Chen, Z., Li, B., Zhan, R., Rao, L. and Bursac, N. (2021) Exercise Mimetics and JAK Inhibition Attenuate IFN-γ-Induced Wasting in Engineered Human Skeletal Muscle. Science Advances, 7, eabd9502. [Google Scholar] [CrossRef] [PubMed]
[65] Pin, F., Huot, J.R. and Bonetto, A. (2022) The Mitochondria-Targeting Agent MitoQ Improves Muscle Atrophy, Weakness and Oxidative Metabolism in C26 Tumor-Bearing Mice. Frontiers in Cell and Developmental Biology, 10, Article ID: 861622. [Google Scholar] [CrossRef] [PubMed]
[66] Min, K., Smuder, A.J., Kwon, O., Kavazis, A.N., Szeto, H.H. and Powers, S.K. (2011) Mitochondrial-Targeted Antioxidants Protect Skeletal Muscle against Immobilization-Induced Muscle Atrophy. Journal of Applied Physiology, 111, 1459-1466. [Google Scholar] [CrossRef] [PubMed]
[67] Yao, J. and Xia, S. (2025) Exploring the Role of Traditional Chinese Medicine in Sarcopenia: Mechanisms and Therapeutic Advances. Frontiers in Pharmacology, 16, Article ID: 1541373. [Google Scholar] [CrossRef] [PubMed]
[68] 何盼, 陈磊, 连让平, 等. 中医药防治肌少症的研究进展[J]. 中草药, 2025, 56(10): 3729-3738.
[69] 韩子秋, 肖益添, 吴谦, 等. 补肾健脾方调节Myostatin/Atrogin-1通路拮抗大鼠骨骼肌蛋白降解的研究[J]. 时珍国医国药, 2020, 31(7): 1598-1600.
[70] Li, J., Zhang, Y., Su, Z., He, T., Chen, Z., Pan, Z., et al. (2025) Bu-zhong-yi-qi Decoction Regulates JNK/c-JUN Signaling Pathway to Improve Skeletal Muscle Atrophy Caused by Cancer Cachexia. Journal of Ethnopharmacology, 351, Article 120078. [Google Scholar] [CrossRef] [PubMed]
[71] 梁芳, 李朝衡, 孙珏, 等. 四君子汤对肺癌恶病质小鼠骨骼肌萎缩及部分炎症细胞因子的影响[J]. 辽宁中医杂志, 2012, 39(7): 1263-1265.
[72] 范正媛, 韩迪, 李亚, 等. 调补肺肾三法对慢性阻塞性肺疾病大鼠肾损伤的影响[J]. 中国病理生理杂志, 2024, 40(9): 1688-1699.
[73] Liu, H., Wang, K., Shang, T., Cai, Z., Lu, C., Shen, M., et al. (2025) Astragaloside IV Improves Muscle Atrophy by Modulating the Activity of UPS and ALP via Suppressing Oxidative Stress and Inflammation in Denervated Mice. Molecular Neurobiology, 62, 4689-4704. [Google Scholar] [CrossRef] [PubMed]
[74] Yu, Y., Zhao, Y., Teng, F., Li, J., Guan, Y., Xu, J., et al. (2018) Berberine Improves Cognitive Deficiency and Muscular Dysfunction via Activation of the AMPK/SIRT1/PGC-1a Pathway in Skeletal Muscle from Naturally Aging Rats. The Journal of nutrition, health and aging, 22, 710-717. [Google Scholar] [CrossRef] [PubMed]
[75] Han, D., Chen, Y., Zhao, K., Li, H., Chen, X., Zhu, G., et al. (2024) Tanshinone IIA Alleviates Inflammation-Induced Skeletal Muscle Atrophy by Regulating Mitochondrial Dysfunction. Archives of Biochemistry and Biophysics, 762, Article 110215. [Google Scholar] [CrossRef] [PubMed]
[76] Ding, K., Jiang, W., Zhangwang, J., Wang, Y., Zhang, J. and Lei, M. (2023) The Potential of Traditional Herbal Active Ingredients in the Treatment of Sarcopenia Animal Models: Focus on Therapeutic Effects and Mechanisms. Naunyn-Schmiedebergs Archives of Pharmacology, 396, 3483-3501. [Google Scholar] [CrossRef] [PubMed]
[77] Li, Y., Liu, Z., Yan, H., Zhou, T., Zheng, L., Wen, F., et al. (2025) Polygonatum Sibiricum Polysaccharide Ameliorates Skeletal Muscle Aging and Mitochondrial Dysfunction via PI3K/AKT/mTOR Signaling Pathway. Phytomedicine, 136, Article 156316. [Google Scholar] [CrossRef] [PubMed]
[78] Li, B., Wan, L., Li, Y., Yu, Q., Chen, P., Gan, R., et al. (2014) Baicalin, a Component of Scutellaria Baicalensis, Alleviates Anorexia and Inhibits Skeletal Muscle Atrophy in Experimental Cancer Cachexia. Tumor Biology, 35, 12415-12425. [Google Scholar] [CrossRef] [PubMed]
[79] Yin, L., Chen, X., Li, N., Jia, W., Wang, N., Hou, B., et al. (2021) Puerarin Ameliorates Skeletal Muscle Wasting and Fiber Type Transformation in STZ-Induced Type 1 Diabetic Rats. Biomedicine & Pharmacotherapy, 133, Article 110977. [Google Scholar] [CrossRef] [PubMed]
[80] Huang, M., Yan, Y., Deng, Z., Zhou, L., She, M., Yang, Y., et al. (2023) Saikosaponin a and D Attenuate Skeletal Muscle Atrophy in Chronic Kidney Disease by Reducing Oxidative Stress through Activation of PI3K/AKT/NRF2 Pathway. Phytomedicine, 114, Article 154766. [Google Scholar] [CrossRef] [PubMed]
[81] Wang, M., Hu, R., Wang, Y., Liu, L., You, H., Zhang, J., et al. (2019) Atractylenolide III Attenuates Muscle Wasting in Chronic Kidney Disease via the Oxidative Stress-Mediated PI3K/AKT/mTOR Pathway. Oxidative Medicine and Cellular Longevity, 2019, 1-16. [Google Scholar] [CrossRef] [PubMed]