|
[1]
|
Shirakawa, T., Miyawaki, A., Kawamoto, T. and Kokabu, S. (2021) Natural Compounds Attenuate Denervation-Induced Skeletal Muscle Atrophy. International Journal of Molecular Sciences, 22, Article 8310. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Jun, L., Robinson, M., Geetha, T., Broderick, T.L. and Babu, J.R. (2023) Prevalence and Mechanisms of Skeletal Muscle Atrophy in Metabolic Conditions. International Journal of Molecular Sciences, 24, Article 2973. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
丁恺志, 汪楚楚, 唐崇茂, 等. 骨骼肌萎缩机制的研究进展[J]. 江西科技师范大学学报, 2023(6): 103-108.
|
|
[4]
|
Yin, L., Li, N., Jia, W., Wang, N., Liang, M., Yang, X., et al. (2021) Skeletal Muscle Atrophy: From Mechanisms to Treatments. Pharmacological Research, 172, Article 105807. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Du, J., Wu, Q. and Bae, E.J. (2024) Epigenetics of Skeletal Muscle Atrophy. International Journal of Molecular Sciences, 25, Article 8362. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Lei, Y., Gan, M., Qiu, Y., Chen, Q., Wang, X., Liao, T., et al. (2024) The Role of Mitochondrial Dynamics and Mitophagy in Skeletal Muscle Atrophy: From Molecular Mechanisms to Therapeutic Insights. Cellular & Molecular Biology Letters, 29, Article No. 59. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Dhillon, R.J.S. and Hasni, S. (2017) Pathogenesis and Management of Sarcopenia. Clinics in Geriatric Medicine, 33, 17-26. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Dutt, V., Gupta, S., Dabur, R., Injeti, E. and Mittal, A. (2015) Skeletal Muscle Atrophy: Potential Therapeutic Agents and Their Mechanisms of Action. Pharmacological Research, 99, 86-100. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Zizzo, J. (2021) Muscle Atrophy Classification: The Need for a Pathway-Driven Approach. Current Pharmaceutical Design, 27, 3012-3019. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Howard, E.E., Pasiakos, S.M., Fussell, M.A. and Rodriguez, N.R. (2020) Skeletal Muscle Disuse Atrophy and the Rehabilitative Role of Protein in Recovery from Musculoskeletal Injury. Advances in Nutrition, 11, 989-1001. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Ehmsen, J.T. and Höke, A. (2020) Cellular and Molecular Features of Neurogenic Skeletal Muscle Atrophy. Experimental Neurology, 331, Article 113379. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Nishikawa, H., Asai, A., Fukunishi, S., Nishiguchi, S. and Higuchi, K. (2021) Metabolic Syndrome and Sarcopenia. Nutrients, 13, Article 3519. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Tieland, M., Trouwborst, I. and Clark, B.C. (2018) Skeletal Muscle Performance and Ageing. Journal of Cachexia, Sarcopenia and Muscle, 9, 3-19. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Meza-Valderrama, D., Marco, E., Dávalos-Yerovi, V., Muns, M.D., Tejero-Sánchez, M., Duarte, E., et al. (2021) Sarcopenia, Malnutrition, and Cachexia: Adapting Definitions and Terminology of Nutritional Disorders in Older People with Cancer. Nutrients, 13, Article 761. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Gallagher, H., Hendrickse, P.W., Pereira, M.G. and Bowen, T.S. (2023) Skeletal Muscle Atrophy, Regeneration, and Dysfunction in Heart Failure: Impact of Exercise Training. Journal of Sport and Health Science, 12, 557-567. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Shen, Y., Zhang, C., Dai, C., Zhang, Y., Wang, K., Gao, Z., et al. (2024) Nutritional Strategies for Muscle Atrophy: Current Evidence and Underlying Mechanisms. Molecular Nutrition & Food Research, 68, Article 2300347. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Constantin-Teodosiu, D. and Constantin, D. (2021) Molecular Mechanisms of Muscle Fatigue. International Journal of Molecular Sciences, 22, Article 11587. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Kwon, Y.T. and Ciechanover, A. (2017) The Ubiquitin Code in the Ubiquitin-Proteasome System and Autophagy. Trends in Biochemical Sciences, 42, 873-886. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Bachiller, S., Alonso-Bellido, I.M., Real, L.M., Pérez-Villegas, E.M., Venero, J.L., Deierborg, T., et al. (2020) The Ubiquitin Proteasome System in Neuromuscular Disorders: Moving Beyond Movement. International Journal of Molecular Sciences, 21, Article 6429. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Pang, X., Zhang, P., Chen, X. and Liu, W. (2023) Ubiquitin-Proteasome Pathway in Skeletal Muscle Atrophy. Frontiers in Physiology, 14, Article ID: 1289537. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Bodine, S.C. and Baehr, L.M. (2014) Skeletal Muscle Atrophy and the E3 Ubiquitin Ligases Murf1 and Mafbx/Atrogin-1. American Journal of Physiology-Endocrinology and Metabolism, 307, E469-E484. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Gumucio, J.P. and Mendias, C.L. (2013) Atrogin-1, MuRF-1, and Sarcopenia. Endocrine, 43, 12-21. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Kang, S., Lee, H., Kim, M., Lee, E., Sohn, U.D. and Kim, I. (2017) Forkhead Box O3 Plays a Role in Skeletal Muscle Atrophy through Expression of E3 Ubiquitin Ligases Murf-1 and Atrogin-1 in Cushing’s Syndrome. American Journal of Physiology-Endocrinology and Metabolism, 312, E495-E507. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Sinam, I.S., Chanda, D., Thoudam, T., Kim, M., Kim, B., Kang, H., et al. (2022) Pyruvate Dehydrogenase Kinase 4 Promotes Ubiquitin-Proteasome System‐Dependent Muscle Atrophy. Journal of Cachexia, Sarcopenia and Muscle, 13, 3122-3136. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Ostler, J.E., Maurya, S.K., Dials, J., Roof, S.R., Devor, S.T., Ziolo, M.T., et al. (2014) Effects of Insulin Resistance on Skeletal Muscle Growth and Exercise Capacity in Type 2 Diabetic Mouse Models. American Journal of Physiology-Endocrinology and Metabolism, 306, E592-E605. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Kitajima, Y., Yoshioka, K. and Suzuki, N. (2020) The Ubiquitin-Proteasome System in Regulation of the Skeletal Muscle Homeostasis and Atrophy: From Basic Science to Disorders. The Journal of Physiological Sciences, 70, Article 40. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Sartori, R., Romanello, V. and Sandri, M. (2021) Mechanisms of Muscle Atrophy and Hypertrophy: Implications in Health and Disease. Nature Communications, 12, Article No. 330. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Yoshida, T. and Delafontaine, P. (2020) Mechanisms of IGF-1-Mediated Regulation of Skeletal Muscle Hypertrophy and Atrophy. Cells, 9, Article 1970. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Zhang, H., Wang, B., Wang, X., Huang, C., Xu, S., Wang, J., et al. (2024) Handelin Alleviates Cachexia‐ and Aging‐induced Skeletal Muscle Atrophy by Improving Protein Homeostasis and Inhibiting Inflammation. Journal of Cachexia, Sarcopenia and Muscle, 15, 173-188. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Liu, G.Y. and Sabatini, D.M. (2020) mTOR at the Nexus of Nutrition, Growth, Ageing and Disease. Nature Reviews Molecular Cell Biology, 21, 183-203. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Yang, J., Liu, M., Huang, R., Zhao, L., Niu, Q., Xu, Z., et al. (2024) Loss of SELENOW Aggravates Muscle Loss with Regulation of Protein Synthesis and the Ubiquitin-Proteasome System. Science Advances, 10, eadj4122. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Tang, H., Inoki, K., Brooks, S.V., Okazawa, H., Lee, M., Wang, J., et al. (2019) Mtorc1 Underlies Age‐Related Muscle Fiber Damage and Loss by Inducing Oxidative Stress and Catabolism. Aging Cell, 18, e12943. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Zhao, Y.G., Codogno, P. and Zhang, H. (2021) Machinery, Regulation and Pathophysiological Implications of Autophagosome Maturation. Nature Reviews Molecular Cell Biology, 22, 733-750. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Yang, Z. and Klionsky, D.J. (2010) Eaten Alive: A History of Macroautophagy. Nature Cell Biology, 12, 814-822. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Leduc-Gaudet, J., Hussain, S.N.A., Barreiro, E. and Gouspillou, G. (2021) Mitochondrial Dynamics and Mitophagy in Skeletal Muscle Health and Aging. International Journal of Molecular Sciences, 22, Article 8179. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Kma, L. and Baruah, T.J. (2021) The Interplay of ROS and the PI3K/AKT Pathway in Autophagy Regulation. Biotechnology and Applied Biochemistry, 69, 248-264. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Zheng, R., Huang, S., Zhu, J., Lin, W., Xu, H. and Zheng, X. (2019) Leucine Attenuates Muscle Atrophy and Autophagosome Formation by Activating PI3K/AKT/mTOR Signaling Pathway in Rotator Cuff Tears. Cell and Tissue Research, 378, 113-125. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Stouth, D.W., vanLieshout, T.L., Mikhail, A.I., Ng, S.Y., Raziee, R., Edgett, B.A., et al. (2023) CARM1 Drives Mitophagy and Autophagy Flux during Fasting-Induced Skeletal Muscle Atrophy. Autophagy, 20, 1247-1269. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Buckingham, M. and Rigby, P.W.J. (2014) Gene Regulatory Networks and Transcriptional Mechanisms That Control Myogenesis. Developmental Cell, 28, 225-238. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Hernández-Hernández, J.M., García-González, E.G., Brun, C.E. and Rudnicki, M.A. (2017) The Myogenic Regulatory Factors, Determinants of Muscle Development, Cell Identity and Regeneration. Seminars in Cell & Developmental Biology, 72, 10-18. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Jiang, X., Ji, S., Yuan, F., Li, T., Cui, S., Wang, W., et al. (2023) Pyruvate Dehydrogenase B Regulates Myogenic Differentiation via the FoxP1-Arih2 Axis. Journal of Cachexia, Sarcopenia and Muscle, 14, 606-621. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Zhang, K., Li, J., Xu, J., Shen, Z., Lin, Y., Zhao, C., et al. (2024) RBP4 Promotes Denervation‐Induced Muscle Atrophy through Stra6‐Dependent Pathway. Journal of Cachexia, Sarcopenia and Muscle, 15, 1601-1615. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Celik, C., Lee, S.Y.T., Yap, W.S. and Thibault, G. (2023) Endoplasmic Reticulum Stress and Lipids in Health and Diseases. Progress in Lipid Research, 89, Article 101198. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Ji, Y., Jiang, Q., Chen, B., Chen, X., Li, A., Shen, D., et al. (2025) Endoplasmic Reticulum Stress and Unfolded Protein Response: Roles in Skeletal Muscle Atrophy. Biochemical Pharmacology, 234, Article 116799. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Ghemrawi, R. and Khair, M. (2020) Endoplasmic Reticulum Stress and Unfolded Protein Response in Neurodegenerative Diseases. International Journal of Molecular Sciences, 21, Article 6127. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Roy, A. and Kumar, A. (2019) ER Stress and Unfolded Protein Response in Cancer Cachexia. Cancers, 11, Article 1929. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Cho, M., Lee, S. and Song, S. (2022) A Review of Sarcopenia Pathophysiology, Diagnosis, Treatment and Future Direction. Journal of Korean Medical Science, 37, e146. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Ali, S. and Garcia, J.M. (2014) Sarcopenia, Cachexia and Aging: Diagnosis, Mechanisms and Therapeutic Options—A Mini-Review. Gerontology, 60, 294-305. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Kim, J.W., Kim, R., Choi, H., Lee, S. and Bae, G. (2021) Understanding of Sarcopenia: From Definition to Therapeutic Strategies. Archives of Pharmacal Research, 44, 876-889. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Sakuma, K., Hamada, K., Yamaguchi, A. and Aoi, W. (2023) Current Nutritional and Pharmacological Approaches for Attenuating Sarcopenia. Cells, 12, Article 2422. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Kline, W.O., Panaro, F.J., Yang, H. and Bodine, S.C. (2007) Rapamycin Inhibits the Growth and Muscle-Sparing Effects of Clenbuterol. Journal of Applied Physiology, 102, 740-747. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Chen, L., Zhang, H., Chi, M., Yang, Q. and Guo, C. (2021) Drugs for the Treatment of Muscle Atrophy. In: Cseri, J., Ed., Background and Management of Muscular Atrophy, IntechOpen. [Google Scholar] [CrossRef]
|
|
[53]
|
Deane, C.S., Hughes, D.C., Sculthorpe, N., Lewis, M.P., Stewart, C.E. and Sharples, A.P. (2013) Impaired Hypertrophy in Myoblasts Is Improved with Testosterone Administration. The Journal of Steroid Biochemistry and Molecular Biology, 138, 152-161. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Leciejewska, N., Kołodziejski, P.A., Sassek, M., Nogowski, L., Małek, E. and Pruszyńska-Oszmałek, E. (2022) Ostarine-Induced Myogenic Differentiation in C2C12, L6, and Rat Muscles. International Journal of Molecular Sciences, 23, Article 4404. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Wu, Y., Zhao, J., Zhao, W., Pan, J., Bauman, W.A. and Cardozo, C.P. (2012) Nandrolone Normalizes Determinants of Muscle Mass and Fiber Type after Spinal Cord Injury. Journal of Neurotrauma, 29, 1663-1675. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Kanno, Y., Ota, R., Someya, K., Kusakabe, T., Kato, K. and Inouye, Y. (2013) Selective Androgen Receptor Modulator, YK11, Regulates Myogenic Differentiation of C2C12 Myoblasts by Follistatin Expression. Biological and Pharmaceutical Bulletin, 36, 1460-1465. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Rodgers, B.D. and Ward, C.W. (2022) Myostatin/Activin Receptor Ligands in Muscle and the Development Status of Attenuating Drugs. Endocrine Reviews, 43, 329-365. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Pearsall, R.S., Davies, M.V., Cannell, M., Li, J., Widrick, J., Mulivor, A.W., et al. (2019) Follistatin-Based Ligand Trap ACE-083 Induces Localized Hypertrophy of Skeletal Muscle with Functional Improvement in Models of Neuromuscular Disease. Scientific Reports, 9, Article No. 11392. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Salamone, I.M., Quattrocelli, M., Barefield, D.Y., Page, P.G., Tahtah, I., Hadhazy, M., et al. (2022) Intermittent Glucocorticoid Treatment Enhances Skeletal Muscle Performance through Sexually Dimorphic Mechanisms. Journal of Clinical Investigation, 132, e149828. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
杨晓, 张欢, 张朝晖, 等. 地夫可特改善杜氏肌营养不良症小鼠运动能力及减轻肌肉炎症损伤[J]. 实用医学杂志, 2023, 39(13): 1614-1619+1626.
|
|
[61]
|
Zhang, L., Li, M., Wang, W., Yu, W., Liu, H., Wang, K., et al. (2022) Celecoxib Alleviates Denervation-Induced Muscle Atrophy by Suppressing Inflammation and Oxidative Stress and Improving Microcirculation. Biochemical Pharmacology, 203, Article 115186. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Shang, R. and Miao, J. (2023) Mechanisms and Effects of Metformin on Skeletal Muscle Disorders. Frontiers in Neurology, 14, Article ID: 1275266. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Collotta, D., Hull, W., Mastrocola, R., Chiazza, F., Cento, A.S., Murphy, C., et al. (2020) Baricitinib Counteracts Metaflammation, Thus Protecting against Diet-Induced Metabolic Abnormalities in Mice. Molecular Metabolism, 39, Article 101009. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Chen, Z., Li, B., Zhan, R., Rao, L. and Bursac, N. (2021) Exercise Mimetics and JAK Inhibition Attenuate IFN-γ-Induced Wasting in Engineered Human Skeletal Muscle. Science Advances, 7, eabd9502. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Pin, F., Huot, J.R. and Bonetto, A. (2022) The Mitochondria-Targeting Agent MitoQ Improves Muscle Atrophy, Weakness and Oxidative Metabolism in C26 Tumor-Bearing Mice. Frontiers in Cell and Developmental Biology, 10, Article ID: 861622. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Min, K., Smuder, A.J., Kwon, O., Kavazis, A.N., Szeto, H.H. and Powers, S.K. (2011) Mitochondrial-Targeted Antioxidants Protect Skeletal Muscle against Immobilization-Induced Muscle Atrophy. Journal of Applied Physiology, 111, 1459-1466. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Yao, J. and Xia, S. (2025) Exploring the Role of Traditional Chinese Medicine in Sarcopenia: Mechanisms and Therapeutic Advances. Frontiers in Pharmacology, 16, Article ID: 1541373. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
何盼, 陈磊, 连让平, 等. 中医药防治肌少症的研究进展[J]. 中草药, 2025, 56(10): 3729-3738.
|
|
[69]
|
韩子秋, 肖益添, 吴谦, 等. 补肾健脾方调节Myostatin/Atrogin-1通路拮抗大鼠骨骼肌蛋白降解的研究[J]. 时珍国医国药, 2020, 31(7): 1598-1600.
|
|
[70]
|
Li, J., Zhang, Y., Su, Z., He, T., Chen, Z., Pan, Z., et al. (2025) Bu-zhong-yi-qi Decoction Regulates JNK/c-JUN Signaling Pathway to Improve Skeletal Muscle Atrophy Caused by Cancer Cachexia. Journal of Ethnopharmacology, 351, Article 120078. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
梁芳, 李朝衡, 孙珏, 等. 四君子汤对肺癌恶病质小鼠骨骼肌萎缩及部分炎症细胞因子的影响[J]. 辽宁中医杂志, 2012, 39(7): 1263-1265.
|
|
[72]
|
范正媛, 韩迪, 李亚, 等. 调补肺肾三法对慢性阻塞性肺疾病大鼠肾损伤的影响[J]. 中国病理生理杂志, 2024, 40(9): 1688-1699.
|
|
[73]
|
Liu, H., Wang, K., Shang, T., Cai, Z., Lu, C., Shen, M., et al. (2025) Astragaloside IV Improves Muscle Atrophy by Modulating the Activity of UPS and ALP via Suppressing Oxidative Stress and Inflammation in Denervated Mice. Molecular Neurobiology, 62, 4689-4704. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Yu, Y., Zhao, Y., Teng, F., Li, J., Guan, Y., Xu, J., et al. (2018) Berberine Improves Cognitive Deficiency and Muscular Dysfunction via Activation of the AMPK/SIRT1/PGC-1a Pathway in Skeletal Muscle from Naturally Aging Rats. The Journal of nutrition, health and aging, 22, 710-717. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Han, D., Chen, Y., Zhao, K., Li, H., Chen, X., Zhu, G., et al. (2024) Tanshinone IIA Alleviates Inflammation-Induced Skeletal Muscle Atrophy by Regulating Mitochondrial Dysfunction. Archives of Biochemistry and Biophysics, 762, Article 110215. [Google Scholar] [CrossRef] [PubMed]
|
|
[76]
|
Ding, K., Jiang, W., Zhangwang, J., Wang, Y., Zhang, J. and Lei, M. (2023) The Potential of Traditional Herbal Active Ingredients in the Treatment of Sarcopenia Animal Models: Focus on Therapeutic Effects and Mechanisms. Naunyn-Schmiedeberg’s Archives of Pharmacology, 396, 3483-3501. [Google Scholar] [CrossRef] [PubMed]
|
|
[77]
|
Li, Y., Liu, Z., Yan, H., Zhou, T., Zheng, L., Wen, F., et al. (2025) Polygonatum Sibiricum Polysaccharide Ameliorates Skeletal Muscle Aging and Mitochondrial Dysfunction via PI3K/AKT/mTOR Signaling Pathway. Phytomedicine, 136, Article 156316. [Google Scholar] [CrossRef] [PubMed]
|
|
[78]
|
Li, B., Wan, L., Li, Y., Yu, Q., Chen, P., Gan, R., et al. (2014) Baicalin, a Component of Scutellaria Baicalensis, Alleviates Anorexia and Inhibits Skeletal Muscle Atrophy in Experimental Cancer Cachexia. Tumor Biology, 35, 12415-12425. [Google Scholar] [CrossRef] [PubMed]
|
|
[79]
|
Yin, L., Chen, X., Li, N., Jia, W., Wang, N., Hou, B., et al. (2021) Puerarin Ameliorates Skeletal Muscle Wasting and Fiber Type Transformation in STZ-Induced Type 1 Diabetic Rats. Biomedicine & Pharmacotherapy, 133, Article 110977. [Google Scholar] [CrossRef] [PubMed]
|
|
[80]
|
Huang, M., Yan, Y., Deng, Z., Zhou, L., She, M., Yang, Y., et al. (2023) Saikosaponin a and D Attenuate Skeletal Muscle Atrophy in Chronic Kidney Disease by Reducing Oxidative Stress through Activation of PI3K/AKT/NRF2 Pathway. Phytomedicine, 114, Article 154766. [Google Scholar] [CrossRef] [PubMed]
|
|
[81]
|
Wang, M., Hu, R., Wang, Y., Liu, L., You, H., Zhang, J., et al. (2019) Atractylenolide III Attenuates Muscle Wasting in Chronic Kidney Disease via the Oxidative Stress-Mediated PI3K/AKT/mTOR Pathway. Oxidative Medicine and Cellular Longevity, 2019, 1-16. [Google Scholar] [CrossRef] [PubMed]
|