|
[1]
|
Migdalski, A. and Jawien, A. (2021) New Insight into Biology, Molecular Diagnostics and Treatment Options of Unstable Carotid Atherosclerotic Plaque: A Narrative Review. Annals of Translational Medicine, 9, 1207-1207. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
王晓婷, 任建丽. 颈动脉斑块的三维超声研究进展[J]. 中国医学影像学杂志, 2021, 29(10): 957-960.
|
|
[3]
|
Halvorsen, B., Otterdal, K., Dahl, T.B., Skjelland, M., Gullestad, L., Øie, E., et al. (2008) Atherosclerotic Plaque Stability—What Determines the Fate of a Plaque? Progress in Cardiovascular Diseases, 51, 183-194. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Scimeca, M., Montanaro, M., Cardellini, M., Bonfiglio, R., Anemona, L., Urbano, N., et al. (2021) High Sensitivity C-Reactive Protein Increases the Risk of Carotid Plaque Instability in Male Dyslipidemic Patients. Diagnostics, 11, Article 2117. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Nardi, V., Franchi, F., Prasad, M., Fatica, E.M., Alexander, M.P., Bois, M.C., et al. (2022) Uric Acid Expression in Carotid Atherosclerotic Plaque and Serum Uric Acid Are Associated with Cerebrovascular Events. Hypertension, 79, 1814-1823. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Kanellis, J. and Kang, D. (2005) Uric Acid as a Mediator of Endothelial Dysfunction, Inflammation, and Vascular Disease. Seminars in Nephrology, 25, 39-42. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Tanase, D.M., Valasciuc, E., Anton, I., Gosav, E.M., Dima, N., Cucu, A.I., et al. (2025) Matrix Metalloproteinases: Pathophysiologic Implications and Potential Therapeutic Targets in Cardiovascular Disease. Biomolecules, 15, Article 598. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Huang, F., Wang, K. and Shen, J. (2020) Lipoprotein‐Associated Phospholipase A2: The Story Continues. Medicinal Research Reviews, 40, 79-134. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Li, J., Zhang, X., Yang, M., Yang, H., Xu, N., Fan, X., et al. (2021) DNA Methylome Profiling Reveals Epigenetic Regulation of Lipoprotein-Associated Phospholipase A2 in Human Vulnerable Atherosclerotic Plaque. Clinical Epigenetics, 13, Article No. 161. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Chiu, J. and Chien, S. (2011) Effects of Disturbed Flow on Vascular Endothelium: Pathophysiological Basis and Clinical Perspectives. Physiological Reviews, 91, 327-387. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Jackson, S.P. (2011) Arterial Thrombosis—Insidious, Unpredictable and Deadly. Nature Medicine, 17, 1423-1436. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Kohler, H.P. and Grant, P.J. (2000) Plasminogen-Activator Inhibitor Type 1 and Coronary Artery Disease. New England Journal of Medicine, 342, 1792-1801. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Owens, G.K., Kumar, M.S. and Wamhoff, B.R. (2004) Molecular Regulation of Vascular Smooth Muscle Cell Differentiation in Development and Disease. Physiological Reviews, 84, 767-801. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Hermus, L., Lefrandt, J.D., Tio, R.A., Breek, J. and Zeebregts, C.J. (2010) Carotid Plaque Formation and Serum Biomarkers. Atherosclerosis, 213, 21-29. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
刘月, 伍建林. 多模态超声技术评估颈动脉粥样硬化斑块易损性研究进展[J]. 中国介入影像与治疗学, 2024, 21(6): 374-377.
|
|
[16]
|
Kelley, N., Jeltema, D., Duan, Y. and He, Y. (2019) The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. International Journal of Molecular Sciences, 20, Article 3328. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
毛威, 潘雨晴, 商雨昕, 等. 动脉粥样硬化的炎症驱动机制及靶向治疗研究进展[J]. 心电与循环, 2025, 44(3): 233-237, 267.
|
|
[18]
|
Yang, Y., Wang, H., Kouadir, M., Song, H. and Shi, F. (2019) Recent Advances in the Mechanisms of NLRP3 Inflammasome Activation and Its Inhibitors. Cell Death & Disease, 10, Article No. 128. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
刘滢滢, 康松, 梅雪, 等. 超声造影评估易损颈动脉斑块的研究进展[J]. 血管与腔内血管外科杂志, 2023, 9(7): 836-840, 845.
|
|
[20]
|
Aarli, S.J., Thomassen, L., Waje-Andreassen, U., Logallo, N., Kvistad, C.E., Næss, H., et al. (2021) The Course of Carotid Plaque Vulnerability Assessed by Advanced Neurosonology. Frontiers in Neurology, 12, Article ID: 702657. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
杨甲, 惠品晶, 颜燕红, 等. 三维超声评估颈动脉斑块易损性的可行性[J]. 中华医学超声杂志(电子版), 2017, 14(7): 494-499.
|
|
[22]
|
朱长玉, 张珍东, 张玮, 等. 三维超声评价颈动脉斑块易损性对脑梗死诊断及预后评估的价值[J]. 心电与循环, 2021, 40(1): 40-44.
|
|
[23]
|
Szegedi, I., Szabó, D.A., Emri, M., Béresova, M., Nagy, M., Molnár, S., et al. (2024) Comparison of Pre-Mortem 2D-3D Ultrasound Examination to Post-Mortem Micro-CT of Carotid Arteries—First Experiences. Ideggyógyászati Szemle, 77, 13-20. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Zamani, M., Skagen, K., Scott, H., Lindberg, B., Russell, D. and Skjelland, M. (2019) Carotid Plaque Neovascularization Detected with Superb Microvascular Imaging Ultrasound without Using Contrast Media. Stroke, 50, 3121-3127. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Cao, J., Zeng, Y., Zhou, Y., Yao, Z., Tan, Z., Huo, G., et al. (2025) The Value of Contrast-Enhanced Ultrasound in Assessing Carotid Plaque Vulnerability and Predicting Stroke Risk. Scientific Reports, 15, Article No. 5850. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
商瑞苗, 孔敏刚. 基于超声造影定量分析评估颈动脉低回声斑块对脑梗死复发的预测价值[J]. 中华全科医学, 2025, 23(4): 640-642, 672.
|
|
[27]
|
赵聪聪, 李烨, 张乐, 等. 超声评估颈动脉斑块易损性的研究进展[J]. 中南医学科学杂志, 2024, 52(3): 492-495.
|
|
[28]
|
张广俊, 黄圣奇, 宋秀莲. 超声微血管成像与超声造影评价颈动脉斑块内新生血管的比较[J]. 中国超声医学杂志, 2019, 3(12): 1066-1069.
|
|
[29]
|
魏小雨, 杨力, 王雪, 等. SMI和超声造影在颈动脉斑块内新生血管的比较分析[J]. 中国超声医学杂志, 2018, 34(4): 307-309.
|
|
[30]
|
Sun, Y., Xu, L., Jiang, Y., Ma, M., Wang, X. and Xing, Y. (2020) Significance of High Resolution MRI in the Identification of Carotid Plaque. Experimental and Therapeutic Medicine, 20, 3653-3660. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
陈怡, 沈竹静, 管晓军, 等. 颈动脉易损斑块与脑小血管病关联性的影像学研究进展[J]. 国际医学放射学杂志, 2025, 48(5): 555-560.
|
|
[32]
|
Martinez, E., Martorell, J. and Riambau, V. (2020) Review of Serum Biomarkers in Carotid Atherosclerosis. Journal of Vascular Surgery, 71, 329-341. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Rajab, I.M., Hart, P.C. and Potempa, L.A. (2020) How C-Reactive Protein Structural Isoforms with Distinctive Bioactivities Affect Disease Progression. Frontiers in Immunology, 11, Article ID: 2126. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Ridker, P.M., Bhatt, D.L., Pradhan, A.D., Glynn, R.J., MacFadyen, J.G. and Nissen, S.E. (2023) Inflammation and Cholesterol as Predictors of Cardiovascular Events among Patients Receiving Statin Therapy: A Collaborative Analysis of Three Randomised Trials. The Lancet, 401, 1293-1301. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Ridker, P.M. (2025) hsCRP, High-Risk Plaque, and Pan-Coronary Atherosclerosis: Implications for Patient Care during Acute Myocardial Infarction. JACC: Cardiovascular Interventions, 18, 1229-1231. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Tikhonoff, V., Casiglia, E., Spinella, P., Barbagallo, C.M., Bombelli, M., Cicero, A.F.G., et al. (2021) Identification of a Plausible Serum Uric Acid Cut-Off Value as Prognostic Marker of Stroke: The Uric Acid Right for Heart Health (URRAH) Study. Journal of Human Hypertension, 36, 976-982. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Huang, R., Sun, Y., Liu, R., Zhu, B., Zhang, H. and Wu, H. (2024) Zexieyin Formula Alleviates Atherosclerosis by Inhibiting the MAPK/NF-κB Signaling Pathway in APOE−/− Mice to Attenuate Vascular Inflammation and Increase Plaque Stability. Journal of Ethnopharmacology, 327, Article 117969. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Sun, S., Liu, F., Fan, F., Chen, N., Pan, X., Wei, Z., et al. (2023) Exploring the Mechanism of Atherosclerosis and the Intervention of Traditional Chinese Medicine Combined with Mesenchymal Stem Cells Based on Inflammatory Targets. Heliyon, 9, e22005. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
张清, 李俊明. 基质金属蛋白酶-2和基质金属蛋白酶-9在动脉粥样硬化中的研究进展[J]. 中国现代医生, 2024, 62(8): 108-113.
|
|
[40]
|
李朝, 刘亚卫, 王丹丹, 等. 血清炎症标记物与颈动脉不稳定斑块的研究进展[J]. 医学理论与实践, 2021, 34(1): 20-22.
|
|
[41]
|
Alic, L., Dendinovic, K. and Papac-Milicevic, N. (2024) The Complement System in Lipid-Mediated Pathologies. Frontiers in Immunology, 15, Article ID: 1511886. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Si, W., He, P., Wang, Y., Fu, Y., Li, X., Lin, X., et al. (2018) Complement Complex C5b-9 Levels Are Associated with the Clinical Outcomes of Acute Ischemic Stroke and Carotid Plaque Stability. Translational Stroke Research, 10, 279-286. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Cao, J.J., Arnold, A.M., Manolio, T.A., Polak, J.F., Psaty, B.M., Hirsch, C.H., et al. (2007) Association of Carotid Artery Intima-Media Thickness, Plaques, and C-Reactive Protein with Future Cardiovascular Disease and All-Cause Mortality: The Cardiovascular Health Study. Circulation, 116, 32-38. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
蔡秋琼, 陈明, 江怡, 等. 超声造影参数、血清学相关指标及二者结合对脑卒中的诊断价值研究[J]. 医学研究杂志, 2018, 47(1): 159-164.
|
|
[45]
|
宝波, 徐世亮, 张植兰. 三维超声灰阶中位数联合同型半胱氨酸及脂蛋白a评估缺血性脑卒中风险[J]. 中国超声医学杂志, 2023, 39(4): 361-364.
|
|
[46]
|
廖晶威, 许佳恒, 何毅, 等. 三维超声联合Lp-PLA2与Resistin评估脑梗死患者颈动脉斑块稳定性[J]. 中国超声医学杂志, 2025, 41(1): 8-12.
|