|
[1]
|
Breast Cancer Committee and China Anti-Cancer Association (2025) [Chinese Clinical Practice Guideline for Genetic Testing in Advanced Breast Cancer (2025 Edition)]. Chinese Journal of Oncology, 47, 946-960.
|
|
[2]
|
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Wang, X., Xia, C., Wang, Y., Qi, Y., Qi, X., Zhao, J., et al. (2023) Landscape of Young Breast Cancer under 35 Years in China over the Past Decades: A Multicentre Retrospective Cohort Study (YBCC-Catts Study). eClinicalMedicine, 64, Article ID: 102243. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Bai, G., Zhong, X., Wu, Y., Lin, W., Zhou, S. and Zhou, P. (2025) Predicting Axillary Lymph Node Metastasis in Breast Cancer Using Ultrasound and Machine Learning with SHAP. Cancer Management and Research, 17, 2183-2197. [Google Scholar] [CrossRef]
|
|
[5]
|
Lambin, P., Rios-Velazquez, E., Leijenaar, R., Carvalho, S., van Stiphout, R.G.P.M., Granton, P., et al. (2012) Radiomics: Extracting More Information from Medical Images Using Advanced Feature Analysis. European Journal of Cancer, 48, 441-446. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
赵楠楠, 朱芸, 汤晓敏, 等. 基于瘤内及瘤周MRI影像组学列线图预测乳腺癌腋窝淋巴结转移[J]. 磁共振成像, 2023, 14(3): 81-87, 94.
|
|
[7]
|
王贇霞, 尚怡研, 郭亚欣, 等. DCE-MRI影像组学特征在预测乳腺癌腋窝淋巴结转移中的价值[J]. 磁共振成像, 2023, 14(3): 21-27.
|
|
[8]
|
汪媛媛, 余建群. 乳腺癌腋窝淋巴结转移的影像及影像组学研究进展[J]. 放射学实践, 2023, 38(5): 662-666.
|
|
[9]
|
Wei, M., Du, Y., Wu, X., Su, Q., Zhu, J., Zheng, L., et al. (2020) A Benign and Malignant Breast Tumor Classification Method via Efficiently Combining Texture and Morphological Features on Ultrasound Images. Computational and Mathematical Methods in Medicine, 2020, Article ID: 5894010. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Sha, Y., Ge, S., Wang, Y., Cai, S., Wang, C., Zhuang, H., et al. (2025) Ultrasound-Based Radiomics Combined with B3GALT4 Level to Predict Sentinel Lymph Node Metastasis in Primary Breast Cancer. Frontiers in Oncology, 15, Article 1570493. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
魏伟, 冯慧俊, 王晔, 等. 基于超声影像组学列线图预测T1期乳腺癌同侧腋窝淋巴结转移的价值[J]. 中国医学影像学杂志, 2024, 32(8): 796-802, 808.
|
|
[12]
|
Wang, Z., Zhang, H., Lin, F., Zhang, R., Ma, H., Shi, Y., et al. (2023) Intra-and Peritumoral Radiomics of Contrast-Enhanced Mammography Predicts Axillary Lymph Node Metastasis in Patients with Breast Cancer: A Multicenter Study. Academic Radiology, 30, S133-S142. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
杜瑶, 吴萌, 王玉华, 等. 基于乳腺癌原发灶瘤内及瘤周超声影像组学特征预测腋窝淋巴结转移[J]. 中国医学影像学杂志, 2025, 33(10): 1056-1062.
|
|
[14]
|
Liu, X., Li, J., He, Y., et al. (2024) Correlation between SWE Parameters and Histopathological Features and Immunohistochemical Biomarkers in Invasive Breast Cancer. Journal of Central South University. Medical Sciences, 49, 1941-1952.
|
|
[15]
|
乔江华, 朱立元, 韦伟. 数字化钼靶检查在判断乳腺癌腋窝淋巴结转移中的价值探讨[J]. 临床外科杂志, 2007(11): 751-752.
|
|
[16]
|
谢玉海, 马培旗, 王小雷, 等. 基于数字化乳腺X线影像组学预测浸润性乳腺癌腋窝淋巴结转移的多中心研究[J]. 放射学实践, 2024, 39(1): 31-36.
|
|
[17]
|
Liu, X., Ruan, Y., Cao, S., Zhao, M., Shi, Z., Jin, Y., et al. (2025) Development and Internal Validation of a Mammography-Based Model Fusing Clinical, Radiomics, and Deep Learning Models for Sentinel Lymph Node Metastasis Prediction in Breast Cancer. Frontiers in Medicine, 12, Article 1659422. [Google Scholar] [CrossRef]
|
|
[18]
|
Han, Y., Huang, M., Xie, L., Cao, Y. and Dong, Y. (2025) The Value of Intratumoral and Peritumoral Radiomics Features Based on Multiparametric MRI for Predicting Molecular Staging of Breast Cancer. Frontiers in Oncology, 15, Article 1379048. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Zhang, J., Zhang, Z., Mao, N., Zhang, H., Gao, J., Wang, B., et al. (2023) Radiomics Nomogram for Predicting Axillary Lymph Node Metastasis in Breast Cancer Based on DCE-MRI: A Multicenter Study. Journal of X-Ray Science and Technology: Clinical Applications of Diagnosis and Therapeutics, 31, 247-263. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Dong, X., Meng, J., Xing, J., Jia, S., Li, X. and Wu, S. (2025) Predicting Axillary Lymph Node Metastasis in Young Onset Breast Cancer: A Clinical-Radiomics Nomogram Based on DCE-MRI. Breast Cancer: Targets and Therapy, 17, 103-113. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Wu, P., Guo, F., Wang, J., Gao, Y., Feng, S., Chen, S., et al. (2024) Development and Validation of a Dynamic Contrast-Enhanced Magnetic Resonance Imaging-Based Habitat and Peritumoral Radiomic Model to Predict Axillary Lymph Node Metastasis in Patients with Breast Cancer: A Retrospective Study. Quantitative Imaging in Medicine and Surgery, 14, 8211-8226. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Chen, Y., Wang, L., Dong, X., Luo, R., Ge, Y., Liu, H., et al. (2023) Deep Learning Radiomics of Preoperative Breast MRI for Prediction of Axillary Lymph Node Metastasis in Breast Cancer. Journal of Digital Imaging, 36, 1323-1331. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
张舒妮, 赵楠楠, 李阳, 等. 多模态影像组学列线图术前预测乳腺浸润性导管癌腋窝淋巴结转移的价值[J]. 磁共振成像, 2024, 15(4): 78-87.
|
|
[24]
|
王文娟, 王倩倩, 郑琪, 等. 基于超声和DCE-MRI的双模态影像组学模型预测乳腺癌腋窝淋巴结转移负荷[J]. 中国超声医学杂志, 2025, 41(10): 1103-1107.
|
|
[25]
|
Guo, F., Sun, S., Deng, X., Wang, Y., Yao, W., Yue, P., et al. (2024) Predicting Axillary Lymph Node Metastasis in Breast Cancer Using a Multimodal Radiomics and Deep Learning Model. Frontiers in Immunology, 15, Article 1482020. [Google Scholar] [CrossRef] [PubMed]
|