|
[1]
|
Weber-Wulff, D., Anohina-Naumeca, A., Bjelobaba, S., Foltýnek, T., Guerrero-Dib, J., Popoola, O., et al. (2023) Testing of Detection Tools for AI-Generated Text. International Journal for Educational Integrity, 19, 1-39. [Google Scholar] [CrossRef]
|
|
[2]
|
Najjar, A.A., Ashqar, H.I., Darwish, O.A., et al. (2025) Detecting AI-Generated Text in Educational Content: Leveraging Machine Learning and Explainable AI for Academic Integrity. arXiv:2501.03203.
|
|
[3]
|
Zhou, Y., He, B. and Sun, L. (2024) Humanizing Machine-Generated Content: Evading AI-Text Detection through Adversarial Attack. arXiv:2404.01907.
|
|
[4]
|
Yadagiri, A., Shree, L., Parween, S., et al. (2024) Detecting AI-Generated Text with Pre-Trained Models Using Linguistic Features. Proceedings of the 21st International Conference on Natural Language Processing (ICON), Chennai, 15-18 December 2024, 188-196.
|
|
[5]
|
He, P., Liu, X., Gao, J., et al. (2021) DeBERTa: Decoding-Enhanced BERT with Disentangled Attention. Proceedings of the International Conference on Learning Representations, Vienna, 3-7 May 2021, 1-17.
|
|
[6]
|
Clark, K., Luong, M.T., Le, Q.V., et al. (2020) Electra: Pre-Training Text Encoders as Discriminators Rather Than Generators. arXiv:2003.10555.
|
|
[7]
|
Zhang, Z., Qin, W. and Plummer, B. (2024) Machine-Generated Text Localization. Findings of the Association for Computational Linguistics ACL 2024, Bangkok, 11-16 August 2024, 8357-8371. [Google Scholar] [CrossRef]
|
|
[8]
|
Kadhim, A.K., Jiao, L., Shafik, R., et al. (2025) Adversarial Attacks on AI-Generated Text Detection Models: A Token Probability-Based Approach Using Embeddings. arXiv:2501.18998.
|
|
[9]
|
Zeng, C., Tang, S., Chen, Y., et al. (2025) Human Texts Are Outliers: Detecting LLM-Generated Texts via Out-of-Distribution Detection. arXiv:2510.08602.
|
|
[10]
|
Tao, Z., Li, Z., Chen, R., et al. (2024) Unveiling Large Language Models Generated Texts: A Multi-Level Fine-Grained Detection Framework. arXiv:2410.14231.
|
|
[11]
|
Li, Y., Li, Q., Cui, L., Bi, W., Wang, Z., Wang, L., et al. (2024) MAGE: Machine-Generated Text Detection in the Wild. Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics, 1, 36-53. [Google Scholar] [CrossRef]
|
|
[12]
|
Macko, D., Moro, R., Uchendu, A., Lucas, J., Yamashita, M., Pikuliak, M., et al. (2023) Multitude: Large-Scale Multilingual Machine-Generated Text Detection Benchmark. Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, Singapore, 6-10 December 2023, 9960-9987. [Google Scholar] [CrossRef]
|
|
[13]
|
Dugan, L., Hwang, A., Trhlík, F., Zhu, A., Ludan, J.M., Xu, H., et al. (2024) RAID: A Shared Benchmark for Robust Evaluation of Machine-Generated Text Detectors. Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics, 1, 12463-12492. [Google Scholar] [CrossRef]
|
|
[14]
|
Huang, Y., Cao, J., Luo, H., Guan, X., Liu, B. (2025) MAGRET: Machine-Generated Text Detection with Rewritten Texts. Proceedings of the 31st International Conference on Computational Linguistics, Abu Dhabi, 19-24 January 2025, 8336-8346.
|
|
[15]
|
He, X., Shen, X., Chen, Z., Backes, M. and Zhang, Y. (2024) MGTbench: Benchmarking Machine-Generated Text Detection. Proceedings of the 2024 on ACM SIGSAC Conference on Computer and Communications Security, Salt Lake City, 14-18 October 2024, 2251-2265. [Google Scholar] [CrossRef]
|
|
[16]
|
Wang, Y., Mansurov, J., Ivanov, P., Su, J., Shelmanov, A., Tsvigun, A., et al. (2024) M4GT-Bench: Evaluation Benchmark for Black-Box Machine-Generated Text Detection. Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics, 1, 3964-3992. [Google Scholar] [CrossRef]
|
|
[17]
|
Wang, Y., Mansurov, J., Ivanov, P., Su, J., Shelmanov, A., Tsvigun, A., et al. (2024) M4: Multi-Generator, Multi-Domain, and Multi-Lingual Black-Box Machine-Generated Text Detection. Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers), St. Julian’s, 17-22 March 2024, 1369-1407. [Google Scholar] [CrossRef]
|
|
[18]
|
Macko, D., Kopál, J., Moro, R. and Srba, I. (2025) Multisocial: Multilingual Benchmark of Machine-Generated Text Detection of Social-Media Texts. Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Vienna, 27 July-1 August 2025, 727-752. [Google Scholar] [CrossRef]
|
|
[19]
|
Gehrmann, S., Strobelt, H. and Rush, A. (2019) GLTR: Statistical Detection and Visualization of Generated Text. Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, Florence, 28 July-2 August 2019, 111-116. [Google Scholar] [CrossRef]
|
|
[20]
|
Zellers, R., Holtzman, A., Rashkin, H., et al. (2019) Defending against Neural Fake News. Proceedings of the 33rd International Conference on Neural Information, Vancouver, 8-14 December 2019, 9051-9062.
|
|
[21]
|
Mitchell, E., Lee, Y., Khazatsky, A., et al. (2023) DetectGPT: Zero-Shot Machine-Generated Text Detection Using Probability Curvature. Proceedings of the 40th International Conference on Machine Learning, Honolulu, 23-29 July 2023, 24950-24962.
|
|
[22]
|
Bao, G., Zhao, Y., Teng, Z., et al. (2024) Fast-DetectGPT: Efficient Zero-Shot Detection of Machine-Generated Text via Conditional Probability Curvature. Proceedings of the Twelfth International Conference on Learning Representations, Vienna, May 2024, 1-9.
|
|
[23]
|
Venkatraman, S., Uchendu, A. and Lee, D. (2024) GPT-Who: An Information Density-Based Machine-Generated Text Detector. Findings of the Association for Computational Linguistics: NAACL 2024, Mexico, 16-21 June 2024, 103-115. [Google Scholar] [CrossRef]
|
|
[24]
|
Ippolito, D., Duckworth, D., Callison-Burch, C. and Eck, D. (2020) Automatic Detection of Generated Text Is Easiest When Humans Are Fooled. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, 5-10 July 2020, 1808-1822. [Google Scholar] [CrossRef]
|
|
[25]
|
Welleck, S., Kulikov, I., Roller, S., et al. (2019) Neural Text Generation with Unlikelihood Training. arXiv:1908.04319.
|
|
[26]
|
Megías, A.J.G., Ureña-López, L.A. and Martínez-Cámara, E. (2024) The Influence of the Perplexity Score in the Detection of Machine-Generated Texts. Proceedings of the First International Conference on Natural Language Processing and Artificial Intelligence for Cyber Security, Lancaster, 29-30 July 2024, 80-85.
|
|
[27]
|
Holtzman, A., Buys, J., Du, L., et al. (2020) The Curious Case of Neural Text Degeneration. Proceedings of the International Conference on Learning Representations (ICLR), April 2020.
|
|
[28]
|
Uchendu, A., Le, T., Shu, K. and Lee, D. (2020) Authorship Attribution for Neural Text Generation. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), Online, 16-20 November 2020, 8384-8395. [Google Scholar] [CrossRef]
|
|
[29]
|
He, P., Liu, X., Gao, J., et al. (2020) DeBERTa: Decoding-Enhanced BERT with Disentangled Attention. arXiv:2006.03654.
|
|
[30]
|
Kuznetsov, K., Tulchinskii, E., Kushnareva, L., Magai, G., Barannikov, S., Nikolenko, S., et al. (2024) Robust AI-Generated Text Detection by Restricted Embeddings. Findings of the Association for Computational Linguistics: EMNLP 2024, Miami, 12-16 November 2024, 17036-17055. [Google Scholar] [CrossRef]
|
|
[31]
|
Zhi, L., Fang, L. and Cai, M. (2025) Efficient AI-Generated Text Detection Based on Contrastively Enhanced Hybrid Features and Support Vector Machine. 2025 2nd International Conference on Intelligent Perception and Pattern Recognition (IPPR), Chongqing, 15-17 August 2025, 386-391. [Google Scholar] [CrossRef]
|
|
[32]
|
Hao, W., Li, R., Zhao, W., Yang, J. and Mao, C. (2025) Learning to Rewrite: Generalized LLM-Generated Text Detection. Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Vienna, Vienna, 27 July-1 August 2025, 6421-6434. [Google Scholar] [CrossRef]
|
|
[33]
|
Jiao, K., Wang, Q., Zhang, L., Guo, Z. and Mao, Z. (2025) M-Rangedetector: Enhancing Generalization in Machine-Generated Text Detection through Multi-Range Attention Masks. Findings of the Association for Computational Linguistics: ACL 2025, Vienna, 27 July-1 August 2025, 8971-8983. [Google Scholar] [CrossRef]
|
|
[34]
|
Guo, Z. and Yu, S. (2023) AuthentiGPT: Detecting Machine-Generated Text via Black-Box Language Models Denoising. arXiv:2311.07700.
|
|
[35]
|
Pu, X., Zhang, J., Han, X., Tsvetkov, Y. and He, T. (2023) On the Zero-Shot Generalization of Machine-Generated Text Detectors. Findings of the Association for Computational Linguistics: EMNLP 2023, Singapore, 6-10 December 2023, 4799-4808. [Google Scholar] [CrossRef]
|
|
[36]
|
Sadiq, S., Aljrees, T. and Ullah, S. (2023) Deepfake Detection on Social Media: Leveraging Deep Learning and Fasttext Embeddings for Identifying Machine-Generated Tweets. IEEE Access, 11, 95008-95021. [Google Scholar] [CrossRef]
|
|
[37]
|
Yan, J., Zhao, W. and Guo, H. (2025) A Lightweight Detector: Zero-Shot Detection of Machine-Generated Text with Once Call. 2025 5th International Conference on Artificial Intelligence, Big Data and Algorithms (CAIBDA), Beijing, 20-22 June 2025, 1331-1334. [Google Scholar] [CrossRef]
|
|
[38]
|
Hans, A., Schwarzschild, A., Cherepanova, V., et al. (2024) Spotting LLMs with Binoculars: Zero-Shot Detection of Machine-Generated Text. arXiv:2401.12070.
|
|
[39]
|
Feng, W., Guo, X., He, Y., Huang, H., Ma, C., Zhang, S., et al. (2024) Detective: Detecting AI-Generated Text via Multi-Level Contrastive Learning. Advances in Neural Information Processing Systems, 37, 88320-88347. [Google Scholar] [CrossRef]
|
|
[40]
|
Fu, Y., Xiong, D. and Dong, Y. (2024) Watermarking Conditional Text Generation for AI Detection: Unveiling Challenges and a Semantic-Aware Watermark Remedy. Proceedings of the AAAI Conference on Artificial Intelligence, 38, 18003-18011. [Google Scholar] [CrossRef]
|
|
[41]
|
Yang, X., Chen, K., Zhang, W., et al. (2023) Watermarking Text Generated by Black-Box Language Models. arXiv:2305.08883.
|
|
[42]
|
Hou, A., Zhang, J., He, T., Wang, Y., Chuang, Y., Wang, H., et al. (2024) Semstamp: A Semantic Watermark with Paraphrastic Robustness for Text Generation. Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), Mexico, 16-21 June 2024, 4067-4082. [Google Scholar] [CrossRef]
|
|
[43]
|
Piet, J., Sitawarin, C., Fang, V., Mu, N. and Wagner, D. (2025) Markmywords: Analyzing and Evaluating Language Model Watermarks. 2025 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML), Copenhagen, 9-11 April 2025, 68-91. [Google Scholar] [CrossRef]
|
|
[44]
|
Huang, B., Su, D., Sun, F., Cao, Q., Shen, H. and Cheng, X. (2025) Low-Entropy Watermark Detection via Bayes’ Rule Derived Detector. Findings of the Association for Computational Linguistics: ACL 2025, Vienna, 27 July-1 August 2025, 14330-14344. [Google Scholar] [CrossRef]
|
|
[45]
|
Xu, Y., Liu, A., Hu, X., et al. (2025) Mark Your LLM: Detecting the Misuse of Open-Source Large Language Models via Watermarking. arXiv:2503.04636.
|
|
[46]
|
Wang, L., Yang, W., Chen, D., et al. (2023) Towards Codable Watermarking for Injecting Multi-Bits Information to LLMs. arXiv:2307.15992.
|
|
[47]
|
Zhao, N., Chen, K., Zhang, W. and Yu, N. (2025) Performance-Lossless Black-Box Model Watermarking. IEEE Transactions on Dependable and Secure Computing, 1-17. [Google Scholar] [CrossRef]
|
|
[48]
|
Macko, D., Moro, R., Uchendu, A., Srba, I., Lucas, J.S., Yamashita, M., et al. (2024) Authorship Obfuscation in Multilingual Machine-Generated Text Detection. Findings of the Association for Computational Linguistics: EMNLP 2024, Miami, 12-16 November 2024, 6348-6368. [Google Scholar] [CrossRef]
|
|
[49]
|
Koike, R., Kaneko, M. and Okazaki, N. (2024) Outfox: LLM-Generated Essay Detection through In-Context Learning with Adversarially Generated Examples. Proceedings of the AAAI Conference on Artificial Intelligence, 38, 21258-21266. [Google Scholar] [CrossRef]
|
|
[50]
|
Przybyła, P., McGill, E. and Saggion, H. (2025) Attacking Misinformation Detection Using Adversarial Examples Generated by Language Models. Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, Suzhou, 4-9 November 2025, 27614-27630. [Google Scholar] [CrossRef]
|
|
[51]
|
Teja, L.S., Yadagiri, A., Chunka, C., et al. (2025) Fine-Grained Detection of AI-Generated Text Using Sentence-Level Seg-Mentation. arXiv:2509.17830.
|
|
[52]
|
Jiang, L., Wu, D. and Zheng, X. (2025) Sendetex: Sentence-Level AI-Generated Text Detection for Human-AI Hybrid Content via Style and Context Fusion. Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, Suzhou, 4-9 November 2025, 5287-5302. [Google Scholar] [CrossRef]
|
|
[53]
|
Corizzo, R. and Leal-Arenas, S. (2023) One-GPT: A One-Class Deep Fusion Model for Machine-Generated Text Detection. 2023 IEEE International Conference on Big Data (BigData), Sorrento, 15-18 December 2023, 5743-5752. [Google Scholar] [CrossRef]
|
|
[54]
|
Li, X., Yin, Z., Tan, H., Jing, S., Su, D., Cheng, Y., et al. (2025) PRDetect: Perturbation-Robust LLM-Generated Text Detection Based on Syntax Tree. Findings of the Association for Computational Linguistics: NAACL 2025, Albuquerque, 29 April-4 May 2025, 8290-8301. [Google Scholar] [CrossRef]
|
|
[55]
|
Bethany, M., Wherry, B., Bethany, E., et al. (2024) Deciphering Textual Authenticity: A Generalized Strategy through the Lens of Large Language Semantics for Detecting Human vs. Machine-Generated Text. 33rd USENIX Security Symposium (USENIX Security 24), Philadelphia, 14-16 August 2024, 5805-5822.
|
|
[56]
|
Wang, P., Li, L., Ren, K., Jiang, B., Zhang, D. and Qiu, X. (2023) SeqxGPT: Sentence-Level AI-Generated Text Detection. Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, Singapore, 6-10 December 2023, 1144-1156. [Google Scholar] [CrossRef]
|