TyG指数对糖尿病肾病患者进展至终末期肾脏病风险的预测价值
Predictive Value of the Triglyceride-Glucose Index for End-Stage Renal Disease Risk in Patients with Diabetic Kidney Disease
摘要: 目的:探讨甘油三酯–葡萄糖(TyG)指数对糖尿病肾脏病(DKD)患者终末期肾脏病(ESRD)风险的预测价值。方法:采用回顾性病例对照研究设计,选取2015年1月至2025年1月就诊于重庆医科大学附属永川医院内分泌科及肾病风湿科的糖尿病肾病(DKD)患者共206例,根据ESRD(即估计肾小球滤过率小于15 mL/min/1.73m2或开始透析或肾移植)状态,分为ESRD组102例和非ESRD组104例,统计各组病例性别、年龄、糖尿病病程、体重指数(BMI)、收缩压(SBP)、舒张压(DBP)、空腹血糖(FBG)、糖化血红蛋白(HbAlc)、肾功能、血脂及尿蛋白,计算TyG指数。采用多变量二元Logistic回归模型估计比值比(OR)和95%置信区间(CI)。研究TyG指数与DKD患者ESRD之间的关系,通过受试者操作特征曲线(ROC)评估计TyG指数及其联合模型(包含eGFR、尿蛋白)对DKD患者ESRD的预测效能。结果:ESRD组的基线TyG指数显著高于非ESRD组(9.57 ± 0.58 vs 9.12 ± 0.69, P < 0.05)。Logistic回归分析显示TyG指数是DKD患者ESRD风险的独立危险因素(未调整模型OR = 2.155,95%CI 1.546~3.005,P < 0.001;完全调整的模型:OR 2.100,95%CI 1.284~3.435, P = 0.003)。ROC曲线分析结果显示,TyG指数单独诊断ESRD的AUC为0.687 (95%CI: 0.616~0.759, P = 0.000);TyG指数联合eGFR及尿蛋白的联合预测模型AUC为0.814 (95%CI: 0.757~0.872, P = 0.000),两组比较差异具有统计学意义(Z = 2.58, P = 0.004)。结论:高的TyG指数与DKD患者ESRD风险增加相关,TyG可作为ESRD风险的简易筛查指标,联合常规肾功能指标可提升其预测效能。
Abstract: Objective: To explore the predictive value of triglyceride-glucose (TyG) index for the risk of end-stage renal disease (ESRD) in patients with diabetic kidney disease (DKD). Methods: A retrospective case-control study was conducted. A total of 206 patients with diabetic kidney disease (DKD) admitted to the Department of Endocrinology and the Department of Nephrology and Rheumatology of Yongchuan Hospital Affiliated to Chongqing Medical University from January 2015 to January 2025 were enrolled. According to the status of ESRD (estimated glomerular filtration rate < 15 mL/min/1.73m2 or initiation of dialysis or renal transplantation), 102 cases were divided into ESRD group and 104 cases into non-ESRD group. The gender, age, duration of diabetes, body mass index (BMI), systolic blood pressure (SBP), diastolic blood pressure (DBP), fasting blood glucose (FBG), glycosylated hemoglobin (HbAlc), renal function, blood lipid and urine protein were recorded, and TyG index was calculated. Multivariable binary Logistic regression models were used to estimate odds ratios (OR) and 95% confidence intervals (CI). The relationship between TyG index and ESRD in DKD patients was studied, and the receiver operating characteristic curve (ROC) was used to evaluate the predictive efficacy of TyG index and its combined model (including eGFR and urinary protein) for ESRD in DKD patients. Results: The baseline TyG index in ESRD group was significantly higher than that in non-ESRD group (9.57 ± 0.58 vs 9.12 ± 0.69, P < 0.05). Logistic regression analysis showed that TyG index was an independent risk factor for ESRD in DKD patients (unadjusted model OR = 2.155, 95%CI 1.546~3.005, P < 0.001; Fully adjusted model: OR 2.100, 95%CI 1.284~3.435, P = 0.003). ROC curve analysis showed that the AUC of TyG index alone in the diagnosis of ESRD was 0.687 (95%CI: 0.616~0.759, P = 0.000). The AUC of TyG index combined with eGFR and urine protein was 0.814 (95%CI: 0.757~0.872, P = 0.000), and the difference between the two groups was statistically significant (Z = 2.58, P = 0.004). Conclusion: High TyG index is associated with an increased risk of ESRD in DKD patients. TyG can be used as a simple screening indicator for the risk of ESRD, and its predictive efficiency can be improved when combined with conventional renal function indicators.
文章引用:吴梅, 罗波伶, 谭若岚, 胡煜琳. TyG指数对糖尿病肾病患者进展至终末期肾脏病风险的预测价值[J]. 临床医学进展, 2026, 16(1): 142-150. https://doi.org/10.12677/acm.2026.161021

1. 引言

糖尿病全球患病率持续处于高水平,且呈现逐步上升的趋势。2021年,国际糖尿病联合会(IDF)报告称,约有5.366亿成年人受到糖尿病的影响,使医疗保健支出达到9660亿美元,预计至2045年这一数字将超过1054亿美元[1]。其中,值得注意的是,糖尿病肾脏病(DKD)是糖尿病主要微血管并发症之一,是全球慢性肾脏病的主要原因,也是导致终末期肾脏病(ESRD)的首要原因[2]。DKD所致的ESRD导致患者死亡率上升[3],并使患者健康相关生活质量明显下降[4],而且给患者及社会带来沉重的经济负担[5]

胰岛素抵抗(IR)的特征是组织对胰岛素敏感性下降,是T2DM的一个突出特征,并与多种临床状况有关,包括认知障碍[6] [7]、非酒精性脂肪性肝病[8]、心血管事件[9]和CKD [10]。既往的数据表明,IR对肾脏功能的许多方面都有影响,如肾脏血流动力学、足细胞活力和肾小管功能[11]。此外,IR引起管球反馈减弱、促进肾小球系膜扩张、肾小球肥大及肾脏纤维化,从而导致高血压和蛋白尿发展,并加速CKD的进展[12]。因此,获得IR对于预测T2DM相关肾脏并发症的发生和进展可能是重要的。

最近,甘油三酯葡萄糖指数(TyG)最早是在2008年提出的[13],研究发现TyG指数与HOMA-IR有良好的相关性,使它们成为评估IR的可靠指标[14] [15]。因此,TyG指数被认为是IR的一个简单而有希望的替代指标。以往大多数临床资料显示,TyG指数与T2DM [16]-[18]和糖尿病大血管或微血管[19] [20]并发症的发生有关。此外,在一项横断面研究揭示了TyG指数与DKD的发生存在剂量依赖关系,TyG指数每增加一个单位DKD的风险增加了1.94倍[21]。另外,在一项前瞻性研究中,发现色素上皮衍生因子在TyG指数发挥着介导作用,导致T2DM患者CKD进展[22]。此外,在另一项研究中,不仅发现TyG指数与ESRD的风险呈显著相关,还发现体重指数(BMI)与ESRD之间约有40%的关联是通过TyG指数介导的[23]

然而,关于DKD患者TyG指数与ESRD风险之间关系的研究很少。因此,本研究的目的是探讨DKD患者基线TyG指数与ESRD风险之间的关系,并评估其预测价值。

2. 资料与方法

2.1. 研究对象

选取2015年1月至2025年1月就诊于重庆医科大学附属永川医院内分泌科及肾病风湿科住院的206糖尿病肾脏病患者为研究对象,纳入标准:1) 年龄在18~80岁之间;2) 确诊为DKD (参照糖尿病肾脏疾病临床诊疗中国指南2021),研究对象均为2型糖尿病患者;3) 临床资料完整。排除标准:1) 确诊为1型糖尿病或其他特殊类型糖尿病;2) 糖尿病酮症酸中毒、高渗血糖昏迷等急性并发症患者;3) 基线时接受过大手术或严重创伤患者。

2.2. 临床资料收集

采集研究对象的基本资料,包括性别、年龄、糖尿病病程、体重指数(BMI)、收缩压(SBP)、舒张压(DBP)、平均动脉压(MAP)、高脂血症、高血压、贫血、糖尿病视网膜病变(DN)、吸烟状况以及胰岛素和肾素–血管紧张素–醛固酮系统(RAAS)抑制剂的治疗情况。在禁食8~12小时后,于住院的第二天早上采集静脉血样本。实验室指标:白细胞(WBC)、血红蛋白(HGB)、血清白蛋白(ALB)、血清尿酸、血清肌酐(Scr)、血尿素氮(BUN)、甘油三酯(TG)、高密度脂蛋白胆固醇(HDL-C)、低密度脂蛋白胆固醇(LDL-C)、总胆固醇(TC)、空腹血糖(FBG)、糖化血红蛋白(HbA1c)和尿蛋白水平(0~4+)。eGFR计算是通过CKD-EPI公式[24]得出,TyG指数计算公式为ln[空腹TG (mg/dL) × FBG (mg/dL)/2] [25]

2.3. 统计学方法

采用SPSS 27.0 软件处理数据。计量资料用均数 ± 标准差或中位数(四分位数)表示,并使用独立样本T检验或Mann-Whitney U检验进行比较。计量资料以百分位数表示,采用卡方检验、Fisher精确检验。采用多变量二元Logistic回归模型,以确定在糖尿病肾病患者中TyG指数与ESRD风险之间的关联。结果以比值比(OR)和95%置信区间(95%CI)表示。绘制受试者操作特征曲线(receiver operating characteristic curve,ROC曲线)并计算曲线下面积(area under the curve, AUC),对TyG的诊断价值进行分析,并进行诊断的敏感度、特异度和临界值(Cut-off值)。为进一步比较TyG指数单独应用与其联合eGFR和尿蛋白所构建模型的预测差异,采用Medcalc 22.0软件进行DeLong非参数检验。以P < 0.05作为检验水准。

3. 结果

3.1. 基线临床特征

ESRD组与非ESRD组相比,糖尿病持续时间较长,高血压、贫血及RAAS抑制剂治疗的患病率高,有较高的BMI、SBP、DBP、MAP、Scr、TG、LDL-C、TC、FBG、尿蛋白,Hb、eGFR水平低。且ESRD的患者的TyG指数明显高于非ESRD的患者(9.12 ± 0.69 vs,9.57 ± 0.58),差异有统计学意义(P < 0.05),见表1

Table 1. Comparison of general data between the ESRD group and the non-ESRD group

1. ESRD组与非ESRD组之间一般资料组间比较

变量

N

ALL

206

非ESRD

104

ESRD

102

P值

年龄(年)

60 (51, 68)

62 (53, 70)

58 (50, 66)

0.16

性别(n, %)

0.566

113 (55%)

55 (53%)

58 (57%)

93 (45%)

49 (47%)

44 (43%)

DM病程(年)

10 (6, 13)

10 (6, 11)

11 (7, 14)

0.025

DM病程(年) (n, %)

0.011

≥10

117 (57%)

50 (48%)

67 (66%)

<10

89 (43%)

54 (52%)

35 (34%)

BMI (kg/m2)

24.16 ± 3.3

23.7 ± 3.5

24.6 ± 2.9

0.059

BMI (kg/m2) (n, %)

0.012

≥24

105 (51%)

44 (42%)

61 (61%)

<24

101 (49%)

60 (58%)

41 (39%)

吸烟(n, %)

59 (28%)

30 (29%)

29 (28%)

0.808

SBP (mmHg)

150 (130, 169)

145 (127, 165)

157 (135, 176)

0.02

DBP (mmHg)

85 ± 15

83 ± 14

87 ± 15

0.02

MAP (mmHg)

107 (94, 120)

103 (92, 115)

110 (97, 124)

0.003

并发症/合并症

贫血(n, %)

116 (56%)

46 (44%)

70 (69%)

<0.001

高血压(n, %)

123 (55%)

45 (43%)

78 (76%)

<0.001

高脂血症(n, %)

59 (29%)

25 (24%)

34 (33%)

0.14

冠心病(n, %)

43 (21%)

23 (22%)

20 (20%)

0.658

DR (n, %)

117 (57%)

55 (53%)

62 (61%)

0.252

治疗

胰岛素使用(n, %)

109 (53%)

48 (46%)

61 (60%)

0.5

RAAS抑制剂(n, %)

77 (37%)

21 (20%)

56 (55%)

<0.001

实验室检查结果

WBC (×109/L)

7.6 (5.7, 8.6)

7.7 (5.9, 8.8)

7.5 (5.4, 8.5)

0.3

Hb (g/L)

119 (107, 134)

125 (118, 134)

114 (101, 132)

<0.001

白蛋白(g/L)

35.9 (31.7, 41)

36.4 (32.5, 41.2)

35 (25.6, 40.3)

0.137

尿酸(umol/L)

381 (307, 436)

380 (309, 425)

382 (299, 437)

0.473

血肌酐(umol/L)

101 (80, 121)

89 (64, 107)

114 (96, 132)

<0.001

eGFR (ml/min/1.73m2)

65.6 (48.1, 81.6)

73 (52.7, 91.6)

58.1 (42.7, 68.9)

<0.001

尿素氮(mmol/L)

8.8 (6.5, 10.9)

8.8 (6.3,11.3)

8.7 (6.6, 10.5)

0.884

TG (mmol/L)

2.29 (1.35, 2.71)

2.06 (1.06, 2.52)

2.51 (1.50, 2.75)

0.004

HDL-C (mmol/L)

1.29 (0.95, 1.53)

1.27 (0.93, 1.52)

1.31 (0.99, 1.54)

0.503

LDL-C (mmol/L)

3.03 (2.16, 3.64)

2.75 (1.92, 3.28)

3.32 (2.35, 3.88)

<0.001

TC (mmol/L)

5.47 (4.12, 6.26)

5.04 (3.76, 6.03)

5.92 (4.35, 6.89)

0.001

FBG (mmol/L)

7.71 (6.54,9.13)

7.04 (5.40, 8.76)

8.4 (7.12, 9.87)

<0.001

HbAlc (%)

9.02 (7.15, 10.4)

9.04 (6.93, 10.37)

9.01 (7.26, 10.39)

0.665

TyG指数

9.34 ± 0.67

9.12 ± 0.69

9.57 ± 058

<0.001

尿蛋白(n, %)

<0.001

0~ ±

58 (28%)

48 (46%)

10 (10%)

1+~2+

97 (47%)

43 (41%)

54 (53%)

3+~4+

51 (25%)

13 (13%)

38 (37%)

注:DM为糖尿病;BMI为体重指数;SBP为收缩压;DBP为舒张压;MAP为平均动脉压;DR为糖尿病视网膜病变;RAAS抑制剂为肾素–醛固酮受体抑制剂;WBC为白细胞计数;Hb为血红蛋白;eGFR为肌酐清除率;TG为甘油三酯;H-DLC为高密度脂蛋白胆固醇;LDL-C为低密度脂蛋白胆固醇;TC为总胆固醇;;FBG为空腹血糖;HbAlc为糖化血红蛋白;TyG指数为甘油三酯–葡萄糖指数。

3.2. 基线TyG指数与ESRD的多因素Logistic回归分析

为控制混杂因素,本研究建立了3个模型,模型一为未调整任何因素,结果显示TyG指数被确定为ESRD风险的危险因素(OR2.155 95%CI: 1.546~3.005, P < 0.001)。模型二为调整性别、年龄、糖尿病病程、吸烟状况、SBP、DBP、胰岛素使用、RAAS抑制剂使用、糖尿病视网膜病变、贫血,结果显示TyG指数仍与ESRD风险相关(OR = 2.102, 95%CI: 1.394~3.169, P < 0.001)。模型三在模型二的基础上,进一步校正混杂因素BMI、尿酸、尿素氮、HDL-C、LDL-C、HbAlc、尿蛋白后,TyG指数与ESRD的相关性仍保持稳定(OR = 2.100, 95%CI: 1.284~3.435, P = 0.003)。综上所述,TyG指数是DKD患者ESRD风险的独立危险因素。见表2

Table 2. Binary Logistic regression analysis of ESRD

2. ESRD的二元Logistic回归分析

模型

OR

95%CI

P值

模型一

2.155

1.546-3.005

<0.001

模型二

2.102

1.394-3.169

<0.001

模型三

2.100

1.284-3.435

0.003

注:模型一未调整;模型二调整了性别、年龄、糖尿病病程、吸烟状况、SBP、DBP、胰岛素使用、RAAS抑制剂使用、糖尿病视网膜病变、贫血;模型三在模型二基础上调整BMI、尿酸、尿素氮、HDL-C、LDL-C、糖化血红蛋白、尿蛋白。

3.3. TyG指数及其联合模型的预测效能分析

使用ROC曲线分析TyG指数评估DKD患者ESRD的诊断效能,结果显示TyG指数的曲线下面积(AUC)为0.687 (P = 0.000, 95%CI 0.616~0.759)。当截止值为9.29时,对应的约登指数为0.272,此时诊断的敏感性及特异性最大,分别为66.7%和60.6%。通常,AUC > 0.5提示具有诊断价值。这些结果表明,TyG指数对DKD患者ESRD有诊断价值;然而,在该人群中,TyG指数在识别ESRD方面的诊断效能一般。为提升预测效能,构建TyG指数联合eGFR及尿蛋白的联合预测模型。ROC曲线分析显示,联合预测模型预测DKD患者ESRD的AUC为0.814 (P = 0.000, 95%CI 0.757~0.872)。采用DeLong检验比较两个ROC曲线,结果显示,联合模型的预测效能显著高于单独TyG指数(Z = 2.58, P = 0.004)。见图1

Figure 1. Diagnostic efficacy of TyG index and combined prediction model for ESRD

1. TyG指数与联合预测模型对ESRD的诊断效能

4. 讨论

本研究通过回顾性病例对照研究分析发现,ESRD患者的基线TyG指数显著高于非ESRD患者。即使在校正了包括人口学特征,代谢指标及并发症在内的多种已知的混杂因素后,TyG指数与ESRD之间的相关保持稳定,表明较高的TyG指数与更严重的DKD阶段(即ESRD)密切相关,TyG指数可能是DKD进展至终末阶段的潜在危险指标。

传统的直接测量IR操作复杂、具有侵入性且相对昂贵。为此,研究人员开发了更易获取、价格更低的方法来确定IR,并将其与当前金标准高胰岛素-正常血糖钳夹(HIEC)检测法进行了对比[26] [27]评估。HOMA-IR作为一种经过验证且广泛使用的IR评估指标。然而,由于血浆胰岛素检测并未在全部实验室普及,也未纳入临床常规检测项目[16]。TyG指数基于简便、经济的基础生化指标计算得出,已有研究证实其与HIEC检测[26] [27]及HOMA-IR16具有显著相关性。因此,在本回顾性病例对照研究中,选择TyG指数作为IR的替代指标,主要基于其在临床实践中易获取。

IR与肾脏疾病的发病与进展相关加重有关,是导致DKD死亡率增加的因素之一[28]。本研究使用TyG指数作为IR的简易替代指标。相关研究表明,IR可通过慢性炎症[29] [30]、氧化应激[31]及脂代谢异常[32],从而导致肾脏血流动力学紊乱、足细胞活力下降、肾小球系膜扩张和肾小管间质纤维化,进而驱动DKD向ESRD进展。本研究结果提示TyG指数与DKD最严重的临床结局(ESRD)直接关联,为IR在肾脏疾病进展中的作用提供了临床证据。

我们研究的一个主要发现是,在DKD患者这一特定人群中证实了TyG指数与ESRD风险的独立相关性。最近,在Qzgur等人的研究中发现,TyG指数与2型糖尿病患者的DKD早期标志物(尿蛋白及eGFR)显著相关[33],而本研究拓展至ESRD这一终末阶段,仍保持相关。此外,已有研究发现,TyG指数在BMI和ESRD之间起着显著的中介作用,并倾向于与ESRD风险相关[23]。而在我们的研究中,即使在调整BMI后,DKD患者的TyG指数与ESRD之间仍呈现显著相关,既排除了BMI的混杂干扰,也说明TyG指数可以作为ESRD风险的独立相关因素。此外,本研究构建的TyG指数联合eGFR的预测模型,AUC达0.814,显著优于单独的TyG指数,提示联合常规肾脏功能指标可进一步提升ESRD风险的预测效能,为临床精准评估提供更优方案。

这项研究仍存在若干局限性。首先,该研究样本量小,其回顾性病例对照设计可能存在偏倚,无法确定因果关系;其次,尿蛋白采用半定量法评估,其精准度低于尿白蛋白肌酐比值,可能对肾脏损伤程度的评估及关联强度的估计造成一定偏倚;第三,TyG指数仅仅基于一次空腹血糖及甘油三酯测量,无法完全反应长期的代谢波动;最后,尽管已调整常见的危险因素,但仍可能存在未纳入的混杂因素,如饮食习惯、运动状况、并发症的严重程度等。未来的研究需要开展多中心、前瞻性队列研究,并采用更精准的蛋白尿测量指标,对DKD进展的长期预测价值。

本研究获得重庆医科大学附属永川医院伦理委员会批准(审批号:2024EC0070)。

NOTES

*通讯作者。

参考文献

[1] Ogurtsova, K., Guariguata, L., Barengo, N.C., Ruiz, P.L., Sacre, J.W., Karuranga, S., et al. (2022) IDF Diabetes Atlas: Global Estimates of Undiagnosed Diabetes in Adults for 2021. Diabetes Research and Clinical Practice, 183, Article ID: 109118. [Google Scholar] [CrossRef] [PubMed]
[2] Umanath, K. and Lewis, J.B. (2018) Update on Diabetic Nephropathy: Core Curriculum 2018. American Journal of Kidney Diseases, 71, 884-895. [Google Scholar] [CrossRef] [PubMed]
[3] González-Pérez, A., Saez, M., Vizcaya, D., Lind, M. and Garcia Rodriguez, L. (2021) Incidence and Risk Factors for Mortality and End-Stage Renal Disease in People with Type 2 Diabetes and Diabetic Kidney Disease: A Population-Based Cohort Study in the UK. BMJ Open Diabetes Research & Care, 9, e002146. [Google Scholar] [CrossRef] [PubMed]
[4] Yun, C.J., Fai, W.E.Y., Hang, C.E.P., et al. (2017) The Health-Related Quality of Life of Chinese Patients on Hemodialysis and Peritoneal Dialysis. The Patient, 10, 799-808.
[5] Chen, H., Kuo, S., Su, P., Wu, J. and Ou, H. (2020) Health Care Costs Associated with Macrovascular, Microvascular, and Metabolic Complications of Type 2 Diabetes across Time: Estimates from a Population-Based Cohort of More than 0.8 Million Individuals with up to 15 Years of Follow-up. Diabetes Care, 43, 1732-1740. [Google Scholar] [CrossRef] [PubMed]
[6] Nakhaee, S., Azadi, R., Salehinia, H., Moodi, M., Zarban, A., Sharifi, F., et al. (2024) The Role of Nitric Oxide, Insulin Resistance, and Vitamin D in Cognitive Function of Older Adults. Scientific Reports, 14, Article No. 30020. [Google Scholar] [CrossRef] [PubMed]
[7] Arnold, S.E., Arvanitakis, Z., Macauley-Rambach, S.L., Koenig, A.M., Wang, H., Ahima, R.S., et al. (2018) Brain Insulin Resistance in Type 2 Diabetes and Alzheimer Disease: Concepts and Conundrums. Nature Reviews Neurology, 14, 168-181. [Google Scholar] [CrossRef] [PubMed]
[8] Hou, C., Yuan, X., Peng, M., Shi, X., Yang, D., Wang, F., et al. (2025) The Role of Insulin Resistance in the Longitudinal Progression from NAFLD to Cardiovascular-Kidney-Metabolic Disease. Cardiovascular Diabetology, 24, Article No. 398. [Google Scholar] [CrossRef
[9] Fortin, E., Campi, B., Ferrannini, E., Mari, A., Mellbin, L.G., Norhammar, A., et al. (2023) High Mannose Correlates with Surrogate Indexes of Insulin Resistance and Is Associated with an Increased Risk of Cardiovascular Events Independently of Glycemic Status and Traditional Risk Factors. Diabetes Care, 47, 246-251. [Google Scholar] [CrossRef] [PubMed]
[10] Kim, B., Kim, G., Han, K., Maki, N., Taniguchi, K. and Oh, S. (2023) The Triglyceride-Glucose Index Is Independently Associated with Chronic Kidney Disease in the Geriatric Population, Regardless of Obesity and Sex. Annals of Geriatric Medicine and Research, 27, 258-265. [Google Scholar] [CrossRef] [PubMed]
[11] Artunc, F., Schleicher, E., Weigert, C., Fritsche, A., Stefan, N. and Häring, H. (2016) The Impact of Insulin Resistance on the Kidney and Vasculature. Nature Reviews Nephrology, 12, 721-737. [Google Scholar] [CrossRef] [PubMed]
[12] Whaley-Connell, A. and Sowers, J.R. (2017) Insulin Resistance in Kidney Disease: Is There a Distinct Role Separate from That of Diabetes or Obesity. Cardiorenal Medicine, 8, 41-49. [Google Scholar] [CrossRef] [PubMed]
[13] Yusuf, S., Teo, K.K., Pogue, J., et al. (2008) Telmisartan, Ramipril, or Both in Patients at High Risk for Vascular Events. The New England Journal of Medicine, 358, 1547-1559.
[14] Guerrero-Romero, F., Simental-Mendía, L.E., González-Ortiz, M., Martínez-Abundis, E., Ramos-Zavala, M.G., Hernández-González, S.O., et al. (2010) The Product of Triglycerides and Glucose, a Simple Measure of Insulin Sensitivity. Comparison with the Euglycemic-Hyperinsulinemic Clamp. The Journal of Clinical Endocrinology & Metabolism, 95, 3347-3351. [Google Scholar] [CrossRef] [PubMed]
[15] Aslan Çin, N.N., Yardımcı, H., Koç, N., Uçaktürk, S.A. and Akçil Ok, M. (2020) Triglycerides/High-Density Lipoprotein Cholesterol Is a Predictor Similar to the Triglyceride-Glucose Index for the Diagnosis of Metabolic Syndrome Using International Diabetes Federation Criteria of Insulin Resistance in Obese Adolescents: A Cross-Sectional Study. Journal of Pediatric Endocrinology and Metabolism, 33, 777-784. [Google Scholar] [CrossRef] [PubMed]
[16] Pradeepa, R., Jha, V., Thyparambil Aravindakshan, P., Waghdhare, S., Mohan, V., Chambers, J., et al. (2024) 1991-LB: Triglyceride-Glucose Index Is an Effective Tool for Assessing Glycemic Control in Asian Indians with Type 2 Diabetes. Diabetes, 73, 1991-LB. [Google Scholar] [CrossRef
[17] Flake, C.C., Morales-Valenzuela, M., Tiongco, R.E. and Navarro, A. (2024) Profiling Triglyceride-Glucose Index in Filipinos with Type 2 Diabetes Mellitus: A Single-Center Study. The Egyptian Journal of Internal Medicine, 36, Article No. 27. [Google Scholar] [CrossRef
[18] Campos Muñiz, C., León-García, P.E., Serrato Diaz, A. and Hernández-Pérez, E. (2023) Diabetes Mellitus Prediction Based on the Triglyceride and Glucose Index. Medicina Clínica (English Edition), 160, 231-236. [Google Scholar] [CrossRef
[19] Mah jabeen, W., Jahangir, B., Khilji, S. and Aslam, A. (2023) Association of Triglyceride Glucose Index and Triglyceride HDL Ratio with Glucose Levels, Microvascular and Macrovascular Complications in Diabetes Mellitus Type-2. Pakistan Journal of Medical Sciences, 39, 1255-1259. [Google Scholar] [CrossRef] [PubMed]
[20] Kassab, H.S., Osman, N.A. and Elrahmany, S.M. (2023) Assessment of Triglyceride–glucose Index and Ratio in Patients with Type 2 Diabetes and Their Relation to Microvascular Complications. Endocrine Research, 48, 94-100. [Google Scholar] [CrossRef] [PubMed]
[21] Wang, H., Chen, G., Sun, D. and Ma, Y. (2024) The Threshold Effect of Triglyceride Glucose Index on Diabetic Kidney Disease Risk in Patients with Type 2 Diabetes: Unveiling a Non-Linear Association. Frontiers in Endocrinology, 15, Article 1411486. [Google Scholar] [CrossRef] [PubMed]
[22] Low, S., Pek, S., Moh, A., Ang, K., Khoo, J., Shao, Y., et al. (2022) Triglyceride-Glucose Index Is Prospectively Associated with Chronic Kidney Disease Progression in Type 2 Diabetes—Mediation by Pigment Epithelium-Derived Factor. Diabetes and Vascular Disease Research, 19, 1-9. [Google Scholar] [CrossRef] [PubMed]
[23] Fritz, J., Brozek, W., Concin, H., Nagel, G., Kerschbaum, J., Lhotta, K., et al. (2021) The Triglyceride-Glucose Index and Obesity-Related Risk of End-Stage Kidney Disease in Austrian Adults. JAMA Network Open, 4, e212612. [Google Scholar] [CrossRef] [PubMed]
[24] Levey, A.S., Stevens, L.A., Schmid, C.H., Zhang, Y., Castro, A.F., Feldman, H.I., et al. (2009) A New Equation to Estimate Glomerular Filtration Rate. Annals of Internal Medicine, 150, 604-612. [Google Scholar] [CrossRef] [PubMed]
[25] Simental-Mendía, L.E., Rodríguez-Morán, M. and Guerrero-Romero, F. (2008) The Product of Fasting Glucose and Triglycerides as Surrogate for Identifying Insulin Resistance in Apparently Healthy Subjects. Metabolic Syndrome and Related Disorders, 6, 299-304. [Google Scholar] [CrossRef] [PubMed]
[26] Trikudanathan, S., Raji, A., Chamarthi, B., Seely, E.W. and Simonson, D.C. (2013) Comparison of Insulin Sensitivity Measures in South Asians. Metabolism, 62, 1448-1454. [Google Scholar] [CrossRef] [PubMed]
[27] Mohd Nor, N.S., Lee, S., Bacha, F., Tfayli, H. and Arslanian, S. (2015) Triglyceride Glucose Index as a Surrogate Measure of Insulin Sensitivity in Obese Adolescents with Normoglycemia, Prediabetes, and Type 2 Diabetes Mellitus: Comparison with the Hyperinsulinemic-Euglycemic Clamp. Pediatric Diabetes, 17, 458-465. [Google Scholar] [CrossRef] [PubMed]
[28] Susmita, S. and Mainul, H. (2022) Insulin Resistance and Type 2 Diabetes Mellitus: An Ultimatum to Renal Physiology. Cureus, 14, e28944.
[29] Mosterd, C.M., Kanbay, M., van den Born, B.J.H., van Raalte, D.H. and Rampanelli, E. (2021) Intestinal Microbiota and Diabetic Kidney Diseases: The Role of Microbiota and Derived Metabolites Inmodulation of Renal Inflammation and Disease Progression. Best Practice & Research Clinical Endocrinology & Metabolism, 35, Article ID: 101484. [Google Scholar] [CrossRef] [PubMed]
[30] Pérez-Morales, R.E., del Pino, M.D., Valdivielso, J.M., Ortiz, A., Mora-Fernández, C. and Navarro-González, J.F. (2018) Inflammation in Diabetic Kidney Disease. Nephron, 143, 12-16. [Google Scholar] [CrossRef] [PubMed]
[31] Duni, A., Liakopoulos, V., Roumeliotis, S., Peschos, D. and Dounousi, E. (2019) Oxidative Stress in the Pathogenesis and Evolution of Chronic Kidney Disease: Untangling Ariadne’s Thread. International Journal of Molecular Sciences, 20, Article 3711. [Google Scholar] [CrossRef] [PubMed]
[32] Tung, C., Hsu, Y., Shih, Y., Chang, P. and Lin, C. (2018) Glomerular Mesangial Cell and Podocyte Injuries in Diabetic Nephropathy. Nephrology, 23, 32-37. [Google Scholar] [CrossRef] [PubMed]
[33] Yilmaz, O. and Erinc, O. (2025) Evaluation of the Relationship between Albuminuria and Triglyceride Glucose Index in Patients with Type 2 Diabetes Mellitus: A Retrospective Cross-Sectional Study. Medicina, 61, Article 1803. [Google Scholar] [CrossRef