|
[1]
|
Ogurtsova, K., Guariguata, L., Barengo, N.C., Ruiz, P.L., Sacre, J.W., Karuranga, S., et al. (2022) IDF Diabetes Atlas: Global Estimates of Undiagnosed Diabetes in Adults for 2021. Diabetes Research and Clinical Practice, 183, Article ID: 109118. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Umanath, K. and Lewis, J.B. (2018) Update on Diabetic Nephropathy: Core Curriculum 2018. American Journal of Kidney Diseases, 71, 884-895. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
González-Pérez, A., Saez, M., Vizcaya, D., Lind, M. and Garcia Rodriguez, L. (2021) Incidence and Risk Factors for Mortality and End-Stage Renal Disease in People with Type 2 Diabetes and Diabetic Kidney Disease: A Population-Based Cohort Study in the UK. BMJ Open Diabetes Research & Care, 9, e002146. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Yun, C.J., Fai, W.E.Y., Hang, C.E.P., et al. (2017) The Health-Related Quality of Life of Chinese Patients on Hemodialysis and Peritoneal Dialysis. The Patient, 10, 799-808.
|
|
[5]
|
Chen, H., Kuo, S., Su, P., Wu, J. and Ou, H. (2020) Health Care Costs Associated with Macrovascular, Microvascular, and Metabolic Complications of Type 2 Diabetes across Time: Estimates from a Population-Based Cohort of More than 0.8 Million Individuals with up to 15 Years of Follow-up. Diabetes Care, 43, 1732-1740. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Nakhaee, S., Azadi, R., Salehinia, H., Moodi, M., Zarban, A., Sharifi, F., et al. (2024) The Role of Nitric Oxide, Insulin Resistance, and Vitamin D in Cognitive Function of Older Adults. Scientific Reports, 14, Article No. 30020. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Arnold, S.E., Arvanitakis, Z., Macauley-Rambach, S.L., Koenig, A.M., Wang, H., Ahima, R.S., et al. (2018) Brain Insulin Resistance in Type 2 Diabetes and Alzheimer Disease: Concepts and Conundrums. Nature Reviews Neurology, 14, 168-181. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Hou, C., Yuan, X., Peng, M., Shi, X., Yang, D., Wang, F., et al. (2025) The Role of Insulin Resistance in the Longitudinal Progression from NAFLD to Cardiovascular-Kidney-Metabolic Disease. Cardiovascular Diabetology, 24, Article No. 398. [Google Scholar] [CrossRef]
|
|
[9]
|
Fortin, E., Campi, B., Ferrannini, E., Mari, A., Mellbin, L.G., Norhammar, A., et al. (2023) High Mannose Correlates with Surrogate Indexes of Insulin Resistance and Is Associated with an Increased Risk of Cardiovascular Events Independently of Glycemic Status and Traditional Risk Factors. Diabetes Care, 47, 246-251. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Kim, B., Kim, G., Han, K., Maki, N., Taniguchi, K. and Oh, S. (2023) The Triglyceride-Glucose Index Is Independently Associated with Chronic Kidney Disease in the Geriatric Population, Regardless of Obesity and Sex. Annals of Geriatric Medicine and Research, 27, 258-265. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Artunc, F., Schleicher, E., Weigert, C., Fritsche, A., Stefan, N. and Häring, H. (2016) The Impact of Insulin Resistance on the Kidney and Vasculature. Nature Reviews Nephrology, 12, 721-737. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Whaley-Connell, A. and Sowers, J.R. (2017) Insulin Resistance in Kidney Disease: Is There a Distinct Role Separate from That of Diabetes or Obesity. Cardiorenal Medicine, 8, 41-49. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Yusuf, S., Teo, K.K., Pogue, J., et al. (2008) Telmisartan, Ramipril, or Both in Patients at High Risk for Vascular Events. The New England Journal of Medicine, 358, 1547-1559.
|
|
[14]
|
Guerrero-Romero, F., Simental-Mendía, L.E., González-Ortiz, M., Martínez-Abundis, E., Ramos-Zavala, M.G., Hernández-González, S.O., et al. (2010) The Product of Triglycerides and Glucose, a Simple Measure of Insulin Sensitivity. Comparison with the Euglycemic-Hyperinsulinemic Clamp. The Journal of Clinical Endocrinology & Metabolism, 95, 3347-3351. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Aslan Çin, N.N., Yardımcı, H., Koç, N., Uçaktürk, S.A. and Akçil Ok, M. (2020) Triglycerides/High-Density Lipoprotein Cholesterol Is a Predictor Similar to the Triglyceride-Glucose Index for the Diagnosis of Metabolic Syndrome Using International Diabetes Federation Criteria of Insulin Resistance in Obese Adolescents: A Cross-Sectional Study. Journal of Pediatric Endocrinology and Metabolism, 33, 777-784. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Pradeepa, R., Jha, V., Thyparambil Aravindakshan, P., Waghdhare, S., Mohan, V., Chambers, J., et al. (2024) 1991-LB: Triglyceride-Glucose Index Is an Effective Tool for Assessing Glycemic Control in Asian Indians with Type 2 Diabetes. Diabetes, 73, 1991-LB. [Google Scholar] [CrossRef]
|
|
[17]
|
Flake, C.C., Morales-Valenzuela, M., Tiongco, R.E. and Navarro, A. (2024) Profiling Triglyceride-Glucose Index in Filipinos with Type 2 Diabetes Mellitus: A Single-Center Study. The Egyptian Journal of Internal Medicine, 36, Article No. 27. [Google Scholar] [CrossRef]
|
|
[18]
|
Campos Muñiz, C., León-García, P.E., Serrato Diaz, A. and Hernández-Pérez, E. (2023) Diabetes Mellitus Prediction Based on the Triglyceride and Glucose Index. Medicina Clínica (English Edition), 160, 231-236. [Google Scholar] [CrossRef]
|
|
[19]
|
Mah jabeen, W., Jahangir, B., Khilji, S. and Aslam, A. (2023) Association of Triglyceride Glucose Index and Triglyceride HDL Ratio with Glucose Levels, Microvascular and Macrovascular Complications in Diabetes Mellitus Type-2. Pakistan Journal of Medical Sciences, 39, 1255-1259. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Kassab, H.S., Osman, N.A. and Elrahmany, S.M. (2023) Assessment of Triglyceride–glucose Index and Ratio in Patients with Type 2 Diabetes and Their Relation to Microvascular Complications. Endocrine Research, 48, 94-100. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Wang, H., Chen, G., Sun, D. and Ma, Y. (2024) The Threshold Effect of Triglyceride Glucose Index on Diabetic Kidney Disease Risk in Patients with Type 2 Diabetes: Unveiling a Non-Linear Association. Frontiers in Endocrinology, 15, Article 1411486. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Low, S., Pek, S., Moh, A., Ang, K., Khoo, J., Shao, Y., et al. (2022) Triglyceride-Glucose Index Is Prospectively Associated with Chronic Kidney Disease Progression in Type 2 Diabetes—Mediation by Pigment Epithelium-Derived Factor. Diabetes and Vascular Disease Research, 19, 1-9. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Fritz, J., Brozek, W., Concin, H., Nagel, G., Kerschbaum, J., Lhotta, K., et al. (2021) The Triglyceride-Glucose Index and Obesity-Related Risk of End-Stage Kidney Disease in Austrian Adults. JAMA Network Open, 4, e212612. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Levey, A.S., Stevens, L.A., Schmid, C.H., Zhang, Y., Castro, A.F., Feldman, H.I., et al. (2009) A New Equation to Estimate Glomerular Filtration Rate. Annals of Internal Medicine, 150, 604-612. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Simental-Mendía, L.E., Rodríguez-Morán, M. and Guerrero-Romero, F. (2008) The Product of Fasting Glucose and Triglycerides as Surrogate for Identifying Insulin Resistance in Apparently Healthy Subjects. Metabolic Syndrome and Related Disorders, 6, 299-304. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Trikudanathan, S., Raji, A., Chamarthi, B., Seely, E.W. and Simonson, D.C. (2013) Comparison of Insulin Sensitivity Measures in South Asians. Metabolism, 62, 1448-1454. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Mohd Nor, N.S., Lee, S., Bacha, F., Tfayli, H. and Arslanian, S. (2015) Triglyceride Glucose Index as a Surrogate Measure of Insulin Sensitivity in Obese Adolescents with Normoglycemia, Prediabetes, and Type 2 Diabetes Mellitus: Comparison with the Hyperinsulinemic-Euglycemic Clamp. Pediatric Diabetes, 17, 458-465. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Susmita, S. and Mainul, H. (2022) Insulin Resistance and Type 2 Diabetes Mellitus: An Ultimatum to Renal Physiology. Cureus, 14, e28944.
|
|
[29]
|
Mosterd, C.M., Kanbay, M., van den Born, B.J.H., van Raalte, D.H. and Rampanelli, E. (2021) Intestinal Microbiota and Diabetic Kidney Diseases: The Role of Microbiota and Derived Metabolites Inmodulation of Renal Inflammation and Disease Progression. Best Practice & Research Clinical Endocrinology & Metabolism, 35, Article ID: 101484. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Pérez-Morales, R.E., del Pino, M.D., Valdivielso, J.M., Ortiz, A., Mora-Fernández, C. and Navarro-González, J.F. (2018) Inflammation in Diabetic Kidney Disease. Nephron, 143, 12-16. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Duni, A., Liakopoulos, V., Roumeliotis, S., Peschos, D. and Dounousi, E. (2019) Oxidative Stress in the Pathogenesis and Evolution of Chronic Kidney Disease: Untangling Ariadne’s Thread. International Journal of Molecular Sciences, 20, Article 3711. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Tung, C., Hsu, Y., Shih, Y., Chang, P. and Lin, C. (2018) Glomerular Mesangial Cell and Podocyte Injuries in Diabetic Nephropathy. Nephrology, 23, 32-37. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Yilmaz, O. and Erinc, O. (2025) Evaluation of the Relationship between Albuminuria and Triglyceride Glucose Index in Patients with Type 2 Diabetes Mellitus: A Retrospective Cross-Sectional Study. Medicina, 61, Article 1803. [Google Scholar] [CrossRef]
|