认知障碍作为慢性阻塞性肺疾病的合并症:一项叙述性综述
Cognitive Impairment as a Comorbidity of Chronic Obstructive Pulmonary Disease: A Comprehensive Narrative Review
DOI: 10.12677/acm.2026.161023, PDF, HTML, XML,   
作者: 堵翀宸, 杭苏宁, 施燚玲:浙江大学医学院附属第四医院,国际医学院,国际健康医学研究院,全科医学科,浙江 义乌;戴红蕾*:浙江大学医学院附属第四医院,国际医学院,国际健康医学研究院,全科医学科,浙江 义乌;浙江大学医学院附属邵逸夫医院全科医学科,浙江 杭州
关键词: 慢性阻塞性肺疾病认知障碍综述合并症Chronic Obstructive Pulmonary Disease Cognitive Impairment Review Comorbidity
摘要: 慢性阻塞性肺疾病(COPD)是一种常合并多种疾病的慢性呼吸系统疾病。其中,认知障碍作为一种常见却易被忽视的合并症,可能对患者的生活质量及疾病管理产生重大影响。尽管慢性阻塞性肺病患者认知障碍的确切原因尚不清楚,但已经提出了慢性炎症、低氧血症、高碳酸血症、吸烟为两者关联的可能机制。本综述旨在总结COPD相关认知障碍的流行病学特征、潜在机制与临床意义,并探讨管理方案。我们强调,将认知障碍的识别与管理整合至COPD的综合治疗策略中至关重要,以改善患者整体健康与长期预后。
Abstract: Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease often associated with multiple comorbidities. Among them, cognitive impairment is a common yet frequently overlooked comorbidity that can significantly affect the patient’s quality of life and disease management. Although the exact causes of cognitive impairment in COPD patients remain unclear, potential mechanisms linking the two have been proposed, including chronic inflammation, hypoxemia, hypercapnia, and smoking. This review aims to summarize the epidemiological characteristics, underlying mechanisms, and clinical significance of COPD-related cognitive impairment, as well as to explore management strategies. We emphasize the importance of integrating the recognition and management of cognitive impairment into the comprehensive treatment strategy for COPD to improve the patient’s overall health and long-term prognosis.
文章引用:堵翀宸, 杭苏宁, 施燚玲, 戴红蕾. 认知障碍作为慢性阻塞性肺疾病的合并症:一项叙述性综述[J]. 临床医学进展, 2026, 16(1): 162-170. https://doi.org/10.12677/acm.2026.161023

1. 引言

慢性阻塞性肺疾病(COPD)是一种以持续气流受限为特征的慢性呼吸系统疾病,不仅对患者健康造成严重负担,也给医疗系统带来巨大的经济压力[1]。目前,COPD已成为全球第三大死因,预计在未来几十年内,每年将导致超过540万人死亡[2]。随着病情的进展,COPD患者常常合并多种疾病,包括心血管疾病、代谢综合征、骨质疏松症、焦虑抑郁症和胃食管反流病等,这些并发症对患者的生活质量、病情恶化频率及生存率产生显著影响[3] [4]。认知障碍是指记忆、注意力、执行功能等多个认知领域的衰退或功能障碍。尽管COPD合并认知障碍在临床上较为常见,但这一问题仍未得到充分重视。有研究表明,许多医护人员认为自己缺乏足够的知识来管理COPD患者的认知障碍[5]。本综述旨在梳理COPD与认知障碍之间的流行病学特征、潜在机制及其临床意义,提出未来的研究方向,强调对COPD患者认知障碍的及时评估和干预,以减轻患者的整体疾病负担。

2. 流行病学

COPD患者中认知障碍的患病率平均为20%~30%,其中轻度认知障碍(MCI)的患病率为24% [6]。Hansen等人的研究发现,在重度COPD患者中,约40%存在认知功能障碍[7]。一项基于队列研究的荟萃分析结果表明,COPD患者发生认知障碍的整体风险显著高于非COPD人群,且COPD患者更倾向表现为非遗忘型轻度认知损害(na-MCI),这种损害主要涉及执行功能、语言及视觉空间技能等非记忆领域的衰退[8]。也有研究显示,COPD患者中认知障碍的患病率存在较大变异,范围从4%到61%不等,这一差异与受研究对象群体特征、评估与诊断工具以及研究设计方法的不同有关[2]。此外,一项前瞻性研究发现,COPD的病程与轻度认知障碍的风险之间存在剂量反应关系,COPD病程超过5年的患者发生轻度认知障碍的风险更高[9]

3. COPD与认知障碍的可能机制

COPD相关的认知功能障碍近年来引起了越来越多的关注。然而,关于其具体机制的研究仍然十分有限。目前的文献普遍认为,低氧血症、高碳酸血症、全身性炎症和吸烟是导致COPD患者认知障碍的主要因素。

3.1. 慢性低氧血症和高碳酸血症

COPD通过气流受限、肺泡破坏和通气–灌注不匹配等多种机制导致低氧血症。大脑作为高耗氧器官,对氧气供应的变化非常敏感,缺氧状态下容易受到损害。COPD引起的间歇性和持续性缺氧被认为是可能对中枢神经系统的神经递质代谢产生不利影响的关键机制[10]。在严重低氧血症的COPD患者中发生认知障碍的风险是正常人群的5倍以上[11]。虽然低氧被广泛提及,但许多COPD患者即便没有严重的低氧血症,也会出现认知损害,这表明低氧只是导致认知障碍的机制之一,而非唯一因素。

许多晚期COPD患者会出现慢性高碳酸血症性呼吸衰竭。研究表明,高碳酸血症会延长认知功能测试的反应时间,并与逻辑记忆缺陷密切相关[12]。高碳酸血症通过促进低氧激活的星形胶质细胞中HIF-1α核转位,上调MMP-9和AQP-4蛋白表达,破坏血脑屏障(BBB)完整性,从而影响大脑的认知功能[13]。高碳酸血症还可通过激活低氧活化的小胶质细胞中的NLRP3炎症小体,诱导IL-1β过度产生,从而加剧神经炎症,增加神经元细胞死亡,促进认知障碍的发生[14]。值得注意的是,单独的高碳酸血症不足以引起认知功能障碍,但当与低氧血症共同存在时,往往会显著加重认知功能的损害。

3.2. 全身性炎症

COPD是一种肺部慢性炎症性疾病,与健康个体相比,COPD患者血清中炎症介质水平显着升高,例如C反应蛋白(CRP)、白细胞、IL-6、IL-8和纤维蛋白原等[15]。这些炎症因子可以导致氧自由基(ROS)的产生增加,加速氧化应激。肺部的炎症和氧化应激通过血液循环扩散,影响全身,产生系统炎症。这些循环中的炎症因子可以穿过或破坏血脑屏障,导致神经炎症、损伤脑内神经元,进而影响大脑的认知功能[16]。神经元依赖线粒体呼吸提供能量,因此特别容易受到氧化应激的影响。神经元中高水平的ROS会导致有毒的过氧化脂质的产生,进一步加剧氧化损伤,导致神经认知障碍[17] [18]。系统炎症还可诱导脑微血管内皮损伤、微血管病变、脑灌注减少。已有影像研究在COPD患者中发现灰质萎缩、白质病变、脑灌注降低[19]。近期Luo等人研究显示CRP升高与COPD患者认知障碍发生风险增加相关。基于CRP与同型半胱氨酸(Hcy)水平创建的列线图模型对于该共病具有良好的预测能力[20]

3.3. 吸烟

吸烟是COPD发生和发展的一个公认的主要危险因素,其有害影响不仅局限于肺部,还包括神经认知领域[17]。香烟烟雾引起的认知功能障碍与血脑屏障紧密连接蛋白ZO-1的减少、海马体神经炎症相关。此外,香烟烟雾暴露还抑制了海马星形胶质细胞的密度,减少了突触蛋白和树突棘的表达[21]。铁死亡是一种由铁依赖的脂质过氧化驱动的细胞死亡方式,与认知障碍和COPD的发生密切相关[22]-[24]。Zhang等人在香烟烟雾诱导的COPD小鼠模型中发现,Sestrin2,一种重要的抗氧化应激蛋白质,通过结合异质核糖核蛋白(HNRNPL),维持GPX4和XCT的mRNA稳定性,从而抑制脂质过氧化和铁死亡,在COPD海马损伤中起神经保护作用[25]。这为COPD相关认知功能障碍的治疗提供了新的靶点。

3.4. 心理因素和合并症

除上述生理机制外,心理因素和合并症亦对COPD患者的认知功能产生重要影响。焦虑和抑郁在COPD患者中的患病率在10%至65%之间[26]。一项前瞻性病例对照研究表明,抑郁和焦虑与COPD共存会加剧认知障碍,并加重疾病的严重程度[27]。过度焦虑可能通过升高皮质醇水平并降低脑源性神经营养因子的表达,进而对认知功能产生不利影响[28]。这提示我们COPD患者的心理健康问题不容忽视,应与生理治疗同步进行评估和干预。阻塞性睡眠呼吸暂停(OSA)是一种其以睡眠期间上呼吸道反复塌陷,导致间歇性缺氧、血氧饱和度周期性下降和睡眠碎片化为特征的呼吸系统疾病[29]。COPD患者常合并OSA,二者共存时被称为COPD/OSA重叠综合征。Marin等人研究发现,COPD患者中OSA的患病率为32% [30]。另一项针对重症COPD患者的研究则发现,OSA的患病率高达63% [31]。这一现象提示,COPD与OSA之间可能存在着复杂的共病关系,二者相互作用,可能加重患者的临床症状。OSA与认知障碍之间存在显著正相关,是导致认知功能受损的一个潜在因素[32]。相较于单纯的OSA,COPD/OSA重叠综合征患者表现出更加显著的认知功能障碍,尤其在记忆力和整体认知方面[33]。这一现象可能是由于COPD患者睡眠期间氧饱和度的反复下降会触发大脑缺氧与再氧合的有害循环。这些循环引发神经组织的氧化应激和炎症,导致神经元功能障碍和细胞凋亡[34]。此外,COPD/OSA重叠综合征患者的认知障碍程度与OSA的严重程度密切相关。与轻度OSA患者相比,中度至重度OSA患者在注意力和反应时间方面存在明显的缺陷[31]。因此,对于COPD/OSA重叠综合征患者,应加强认知筛查,进行早期干预,并根据OSA的严重程度制定个性化的治疗方案。心血管疾病是COPD的常见合并症,与认知障碍存在密切联系。心血管疾病可能通过脑灌注损伤、脑结构变化、炎症、β-淀粉样蛋白沉积和神经内分泌紊乱等途径导致认知衰退甚至痴呆[35],这些途径与COPD患者出现认知障碍的机制存在重叠,表明心血管疾病有较大可能加剧COPD患者的认知功能障碍。

4. 对慢性阻塞性肺病患者的临床意义

自我管理是慢性疾病管理的重要基础,涵盖了对症状的持续监测、对治疗方案的有效执行、健康生活方式的维持,以及应对疾病所带来的各种影响[36]。有研究表明,自我管理能够改善COPD患者的呼吸困难和生活质量,并有效减少住院率[37],在COPD的治疗中发挥着关键作用。良好的自我管理行为对于老年COPD患者尤为重要,它有助于减缓认知功能的下降。与此同时,认知障碍对COPD患者的自我管理产生了负面影响,这种双向关系使得COPD患者面临更大的健康风险[38]。COPD患者的认知功能下降显著影响其疾病管理能力,导致他们对药物、氧疗和行为干预的依从性差,且难以正确使用吸入器,这进一步增加了病情加重的风险[2]。此外,认知功能障碍的程度与COPD患者生活质量的下降呈负相关,认知障碍越严重,生活质量越差[38]。Hansen等人的研究显示,重度COPD患者在功能性认知测试中的表现明显低于非COPD对照组,表明认知功能的下降对日常生活产生了显著影响[7]。随着技术的进步,未来患者可以通过数字健康工具和远程监测技术为自我管理提供更多的选择,减轻认知功能下降对疾病管理的负面影响。

多项研究表明,认知障碍与COPD患者的住院风险和死亡率密切相关。Banerjee等在一项基于美国数据库的研究中发现,认知功能较差的COPD患者呼吸相关死亡风险显著增加,调整后的风险比(HR)约为8.53,明显高于认知功能正常的COPD的患者[39]。Gupta等的研究也指出,对于因COPD急性加重住院的患者而言,共病痴呆往往面临更高的院内死亡率和更长的住院时间[40]

综上,COPD患者存在认知障碍,导致生活质量下降、住院风险升高及死亡率增加。因此,未来的COPD管理应更加注重患者整体健康状况的评估,特别是认知功能的监测和干预。

5. 治疗

由于认知障碍对COPD患者产生很大的负面影响,因此应尽早干预与认知障碍发生相关的可改变危险因素,例如吸烟、低氧血症。Karamanli等人的研究表明未规律氧疗的患者认知状态显著低于规律氧疗组[41]。Thakur等人研究也显示持续氧疗可降低认知障碍的风险[11]。因此,在管理未规律氧疗的COPD患者时,应评估患者的认知功能,并考虑持续地补充氧疗。值得注意的是,在诊断未规律氧疗患者的认知障碍方面,蒙特利尔认知评估量表MoCA评分优于简易精神状态检查量表[14]

肺康复是一种多学科综合干预措施,涵盖运动训练、健康教育与行为矫正等核心内容。它可以帮助慢性阻塞性肺病患者缓解症状、改善身体活动。近年来,越来越多的研究发现,运动训练可以提高运动耐力、呼吸功能和生活质量,降低COPD患者的发病率、住院率和死亡率[42] [43]。研究证明,运动训练对COPD患者的认知功能有积极影响并具有神经保护作用[44]。而且参与运动训练,无论是单独进行有氧运动,还是结合抗阻或肌力训练、健身气功、舞蹈或呼吸练习,均能在不同程度上改善COPD患者的认知[45]

在COPD患者中,营养状况与疾病严重程度、认知功能障碍及死亡风险密切相关[46]。因此,在COPD的全病程管理中,持续监测患者营养状况并在必要时实施临床营养干预至关重要。ω-3多不饱和脂肪酸(ω-3 PUFAs)属于必需脂肪酸,由于人体缺乏相关合成酶,因此必须依赖饮食等外源获取。ω-3 PUFAs可能通过调节炎症过程、激活抗氧化防御系统,以及促进大脑中β-淀粉样蛋白的清除,来减轻与COPD相关的认知障碍症状[47]。然而,目前尚缺乏临床研究证实ω-3 PUFAs对COPD患者的作用。另一方面,尽管有研究报道膳食纤维(尤其是可溶性纤维)的摄入对认知障碍具有保护作用[48] [49],但Liang等人的研究结果表明,高纤维摄入量可能并不能显著改变COPD与认知功能障碍之间的关联[50]。这可能与研究人群、设计方案、结局指标不同有关。总之营养干预在COPD相关认知障碍中的有效性与适用人群尚存不确定性,亟需大样本、长期随访的多中心临床研究进一步阐明。

目前,针对COPD人群认知障碍的药物干预证据总体有限。一些药物如美金刚(Memantine)和多奈哌齐(Donepezil)常用来改善认知。美金刚是一种非竞争性的N-甲基-D-天冬氨酸(NMDA)受体拮抗剂,它通过阻断NMDA受体通道,抑制谷氨酸引起的兴奋性神经毒性,从而保护神经元免受损伤。多奈哌齐是一种可逆性乙酰胆碱酯酶(AChE)抑制剂,抑制 AChE 使突触间隙中乙酰胆碱浓度增加,从而增强神经元之间的胆碱能传递[51]。一项回顾性队列中,相较于单用多奈哌齐,多奈哌齐联合美金刚对于同时合并阿尔茨海默病(AD)与慢性阻塞性肺疾病的患者认知改善更明显[52]。但目前对于这两种药大多数研究集中于 AD 或其他神经退行性疾病,而非专门针对 COPD 患者认知障碍。未来需要针对COPD人群开展独立的药物临床试验,评估认知药物在COPD人群中的具体疗效及安全性。

罗氟司特是一种选择性磷酸二酯酶4 (PDE4)抑制剂,具有多种抗炎作用,可降低COPD患者的急性加重风险[53]。已有动物模型显示,罗氟司特通过cAMP/CREB/BDNF信号传导和抗神经炎症作用改善APP/PS1小鼠的认知障碍[54]。临床研究也显示,低剂量(100~250 μg)的罗氟司特能够改善健康成年人、健康老年人、轻度认知障碍患者及精神分裂症患者的认知功能[55]。这些研究结果表明,罗氟司特可能成为治疗COPD合并认知障碍患者的一个经济可行的新治疗选择。

吸入性糖皮质激素(ICS)是慢性阻塞性肺病(COPD)治疗中的关键药物,主要通过其抗炎作用发挥疗效。已有研究表明,认知障碍与血液中高水平的皮质类固醇存在一定关联,并且ICS治疗的持续时间与认知功能的下降显著相关[16] [56]。未来需要进一步探索替代的抗炎药物,以减少对认知功能的影响。

6. 结论

综上所述,认知障碍已逐渐成为COPD患者中常见且重要的合并症。尽管已有初步研究揭示了COPD与认知障碍之间的关联,但其具体机制仍不明确。因此,未来的研究应加大对COPD合并认知障碍的生理机制的深入探索,为制定干预策略提供理论支持。其次,未来应开展大规模临床研究,系统评估氧疗、运动训练、营养干预及药物治疗在COPD相关认知障碍中的有效性。此外,不同COPD表型(如慢性支气管炎型与肺气肿型)在认知功能损害方面的作用尚未得到深入探讨。因此,未来研究应进一步探讨COPD不同临床表型与认知障碍之间的差异性关联,实施个体化干预提供依据。

鉴于认知障碍对COPD患者生活质量和疾病管理的深远影响,未来应呼吁将认知功能评估纳入COPD患者的常规管理体系中。通过早期识别认知障碍,可以为患者提供更为个性化的治疗方案,改善其整体健康状况。

NOTES

*通讯作者。

参考文献

[1] Boers, E., Allen, A., Barrett, M., Benjafield, A.V., Rice, M.B., Wedzicha, J.A., et al. (2025) Forecasting the Global Economic and Health Burden of COPD from 2025 through 2050. Chest, 168, 880-889. [Google Scholar] [CrossRef] [PubMed]
[2] Siraj, R.A. (2023) Comorbid Cognitive Impairment in Chronic Obstructive Pulmonary Disease (COPD): Current Understanding, Risk Factors, Implications for Clinical Practice, and Suggested Interventions. Medicina, 59, Article 732. [Google Scholar] [CrossRef] [PubMed]
[3] Smith, M. and Wrobel, J. (2014) Epidemiology and Clinical Impact of Major Comorbidities in Patients with COPD. International Journal of Chronic Obstructive Pulmonary Disease, 9, 871-888. [Google Scholar] [CrossRef] [PubMed]
[4] Xiang, Y. and Luo, X. (2024) Extrapulmonary Comorbidities Associated with Chronic Obstructive Pulmonary Disease: A Review. International Journal of Chronic Obstructive Pulmonary Disease, 19, 567-578. [Google Scholar] [CrossRef] [PubMed]
[5] Siraj, R.A. (2025) Healthcare Workers (HCWs)’ Perceptions and Current Practice of Managing Cognitively Impaired Patients with Chronic Obstructive Pulmonary Disease (COPD). Medicina, 61, Article 59. [Google Scholar] [CrossRef] [PubMed]
[6] Zhang, Z., Yang, P., Xiao, G., Li, B., He, M., Yang, Y., et al. (2025) Prevalence and Risk Factors of Cognitive Impairment in COPD: A Systematic Review and Meta‐Analysis. Public Health Nursing, 42, 1389-1407. [Google Scholar] [CrossRef] [PubMed]
[7] Hansen, K.K., Farver-Vestergaard, I., Jensen, H.I., Løkke, A. and Hilberg, O. (2025) Cognitive Impairment in Patients with Severe COPD: A Cross-Sectional Study. Journal of Clinical Medicine, 14, Article 7122. [Google Scholar] [CrossRef
[8] Chen, X., Yu, Z., Liu, Y., Zhao, Y., Li, S. and Wang, L. (2024) Chronic Obstructive Pulmonary Disease as a Risk Factor for Cognitive Impairment: A Systematic Review and Meta-Analysis. BMJ Open Respiratory Research, 11, e001709. [Google Scholar] [CrossRef] [PubMed]
[9] Singh, B., Mielke, M.M., Parsaik, A.K., Cha, R.H., Roberts, R.O., Scanlon, P.D., et al. (2014) A Prospective Study of Chronic Obstructive Pulmonary Disease and the Risk for Mild Cognitive Impairment. JAMA Neurology, 71, 581-588. [Google Scholar] [CrossRef] [PubMed]
[10] Wen, X., Li, Y., Han, D., Sun, L., Ren, P. and Ren, D. (2018) The Relationship between Cognitive Function and Arterial Partial Pressure O2 in Patients with COPD. Medicine, 97, e9599. [Google Scholar] [CrossRef] [PubMed]
[11] Thakur, N., Blanc, P.D., Julian, L.J., et al. (2010) COPD and Cognitive Impairment: The Role of Hypoxemia and Oxygen Therapy. International Journal of Chronic Obstructive Pulmonary Disease, 5, 263-269.
[12] Kung, S., Shen, Y., Chang, E., Hong, Y. and Wang, L. (2018) Hypercapnia Impaired Cognitive and Memory Functions in Obese Patients with Obstructive Sleep Apnoea. Scientific Reports, 8, Article No. 17551. [Google Scholar] [CrossRef] [PubMed]
[13] Liu, X., Ding, H., Li, X., Deng, Y., Liu, X., Wang, K., et al. (2020) Hypercapnia Exacerbates the Blood-Brain Barrier Disruption via Promoting HIF-1a Nuclear Translocation in the Astrocytes of the Hippocampus: Implication in Further Cognitive Impairment in Hypoxemic Adult Rats. Neurochemical Research, 45, 1674-1689. [Google Scholar] [CrossRef] [PubMed]
[14] Ding, H., Deng, Y., Yang, R., Wang, Q., Jiang, W., Han, Y., et al. (2018) Hypercapnia Induces IL-1β Overproduction via Activation of NLRP3 Inflammasome: Implication in Cognitive Impairment in Hypoxemic Adult Rats. Journal of Neuroinflammation, 15, Article No. 4. [Google Scholar] [CrossRef] [PubMed]
[15] Su, B., Liu, T., Fan, H., Chen, F., Ding, H., Wu, Z., et al. (2016) Inflammatory Markers and the Risk of Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-Analysis. PLOS ONE, 11, e0150586. [Google Scholar] [CrossRef] [PubMed]
[16] Yu, X., Xiao, H., Liu, Y., Dong, Z., Meng, X. and Wang, F. (2025) The Lung-Brain Axis in Chronic Obstructive Pulmonary Disease-Associated Neurocognitive Dysfunction: Mechanistic Insights and Potential Therapeutic Options. International Journal of Biological Sciences, 21, 3461-3477. [Google Scholar] [CrossRef] [PubMed]
[17] De Luca, S.N., Brassington, K., Chan, S.M.H., Dobric, A., Mou, K., Seow, H.J., et al. (2022) Ebselen Prevents Cigarette Smoke-Induced Cognitive Dysfunction in Mice by Preserving Hippocampal Synaptophysin Expression. Journal of Neuroinflammation, 19, Article No. 72. [Google Scholar] [CrossRef] [PubMed]
[18] Sakai, Y., Hattori, J., Morikawa, Y., Matsumura, T., Jimbo, S., Suenami, K., et al. (2024) α-Pyrrolidinooctanophenone Facilitates Activation of Human Microglial Cells via ROS/STAT3-Dependent Pathway. Forensic Toxicology, 43, 142-154. [Google Scholar] [CrossRef] [PubMed]
[19] Zhang, Z., He, M., Liu, Y., Guan, Z. and Li, C. (2025) Neuroimaging Insights into Lung Disease-Related Brain Changes: From Structure to Function. Frontiers in Aging Neuroscience, 17, Article 1550319. [Google Scholar] [CrossRef] [PubMed]
[20] Luo, J., Yang, W., Liu, Y., Ji, H., Li, X., Bai, J., et al. (2025) Construction and Evaluation of Nomogram for Risk Prediction of Cognitive Impairment in Chronic Obstructive Pulmonary Disease Comorbidity. BMC Psychology, 13, Article No. 273. [Google Scholar] [CrossRef] [PubMed]
[21] Dobric, A., De Luca, S.N., Seow, H.J., Wang, H., Brassington, K., Chan, S.M.H., et al. (2022) Cigarette Smoke Exposure Induces Neurocognitive Impairments and Neuropathological Changes in the Hippocampus. Frontiers in Molecular Neuroscience, 15, Article 893083. [Google Scholar] [CrossRef] [PubMed]
[22] Yoshida, M., Minagawa, S., Araya, J., Sakamoto, T., Hara, H., Tsubouchi, K., et al. (2019) Involvement of Cigarette Smoke-Induced Epithelial Cell Ferroptosis in COPD Pathogenesis. Nature Communications, 10, Article No. 3145. [Google Scholar] [CrossRef] [PubMed]
[23] Ma, M., Jing, G., Tian, Y., Yin, R. and Zhang, M. (2024) Ferroptosis in Cognitive Impairment Associated with Diabetes and Alzheimer’s Disease: Mechanistic Insights and New Therapeutic Opportunities. Molecular Neurobiology, 62, 2435-2449. [Google Scholar] [CrossRef] [PubMed]
[24] Stockwell, B.R. (2022) Ferroptosis Turns 10: Emerging Mechanisms, Physiological Functions, and Therapeutic Applications. Cell, 185, 2401-2421. [Google Scholar] [CrossRef] [PubMed]
[25] Zhang, D., Yang, M., Zhou, M., Wei, Y., Hu, L., Hong, M., et al. (2025) Sestrin2 Alleviates Cognitive Impairment via Inhibiting Hippocampus Ferroptosis in Cigarette Smoke-Induced Chronic Obstructive Pulmonary Disease. Redox Biology, 85, Article ID: 103673. [Google Scholar] [CrossRef] [PubMed]
[26] Wu, K., Lu, L., Chen, Y., Peng, J., Wu, X., Tang, G., et al. (2024) Associations of Anxiety and Depression with Prognosis in Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-Analysis. Pulmonology, 31, Article ID: 2438553. [Google Scholar] [CrossRef] [PubMed]
[27] Aras, Y.G., Tunç, A., Güngen, B.D., Güngen, A.C., Aydemir, Y. and Demiyürek, B.E. (2017) The Effects of Depression, Anxiety and Sleep Disturbances on Cognitive Impairment in Patients with Chronic Obstructive Pulmonary Disease. Cognitive Neurodynamics, 11, 565-571. [Google Scholar] [CrossRef] [PubMed]
[28] Weinstein, G., Beiser, A.S., Choi, S.H., Preis, S.R., Chen, T.C., Vorgas, D., et al. (2014) Serum Brain-Derived Neurotrophic Factor and the Risk for Dementia. JAMA Neurology, 71, 55-61. [Google Scholar] [CrossRef] [PubMed]
[29] Rodríguez-Pérez, J., Andreu-Martínez, R., Daza, R., Fernández-Arroyo, L., Hernández-García, A., Díaz-García, E., et al. (2025) Oxidative Stress and Inflammation in Hypoxemic Respiratory Diseases and Their Comorbidities: Molecular Insights and Diagnostic Advances in Chronic Obstructive Pulmonary Disease and Sleep Apnea. Antioxidants, 14, Article 839. [Google Scholar] [CrossRef] [PubMed]
[30] Marin, J.M., Soriano, J.B., Marin-Oto, M., De-Torres, J.P., Seijo, L.M., Cabrera, C., et al. (2025) Sleep-Disordered Breathing in Patients with Chronic Obstructive Pulmonary Disease: Prevalence and Outcomes. Annals of the American Thoracic Society, 22, 1227-1235. [Google Scholar] [CrossRef] [PubMed]
[31] Hansen, K.K., Løkke, A., Jensen, H.I., Gantzhorn, E.K., Farver-Vestergaard, I. and Hilberg, O. (2024) Examining the Impact of Obstructive Sleep Apnea on Cognitive Function in Severe COPD. Sleep and Breathing, 29, Article No. 59. [Google Scholar] [CrossRef] [PubMed]
[32] Ren, Y., Chen, S., Wang, H., Zou, C., Xie, Q., Wu, Y., et al. (2025) Unraveling the Bidirectional Links between Obstructive Sleep Apnea and Mild Cognitive Impairment: A Systematic Review and Meta-Analysis. Sleep Medicine, 132, Article ID: 106562. [Google Scholar] [CrossRef] [PubMed]
[33] Alharbi, A.M., Alotaibi, N., Uysal, Ö.F., Rakhit, R.D., Brill, S.E., Hurst, J.R., et al. (2025) Cognitive Outcomes in Chronic Obstructive Pulmonary Disease (COPD)/OSA Overlap Syndrome Compared to Obstructive Sleep Apnea (OSA) Alone: A Systematic Review. Sleep and Breathing, 29, Article No. 275. [Google Scholar] [CrossRef
[34] Panda, S., Walsh, M., Anghel, I. and Ghosh, A.J. (2025) Mechanisms and Risk Factors of Cognitive Impairment in COPD. CHEST Pulmonary. [Google Scholar] [CrossRef
[35] Zuo, W. and Wu, J. (2022) The Interaction and Pathogenesis between Cognitive Impairment and Common Cardiovascular Diseases in the Elderly. Therapeutic Advances in Chronic Disease, 13, 1-12. [Google Scholar] [CrossRef] [PubMed]
[36] Baird, C., Lovell, J., Johnson, M., Shiell, K. and Ibrahim, J.E. (2017) The Impact of Cognitive Impairment on Self-Management in Chronic Obstructive Pulmonary Disease: A Systematic Review. Respiratory Medicine, 129, 130-139. [Google Scholar] [CrossRef] [PubMed]
[37] Zwerink, M., Brusse-Keizer, M., van der Valk, P.D., Zielhuis, G.A., Monninkhof, E.M., van der Palen, J., et al. (2014) Self Management for Patients with Chronic Obstructive Pulmonary Disease. Cochrane Database of Systematic Reviews, No. 3, CD002990. [Google Scholar] [CrossRef] [PubMed]
[38] Zhang, X., Li, S., Qin, J., Han, X., Su, X., Qin, L., et al. (2025) Correlation between Self-Management, Psychological Cognitive Impairment, and Quality of Life in Elderly Chronic Obstructive Pulmonary Disease Patients. World Journal of Psychiatry, 15, Article ID: 102494. [Google Scholar] [CrossRef] [PubMed]
[39] Banerjee, S., Khubchandani, J., England-Kennedy, E., McIntyre, R., Kopera-Frye, K. and Batra, K. (2024) Cognitive Functioning Influences Mortality Risk among Older Adults with COPD. Healthcare, 12, Article 2220. [Google Scholar] [CrossRef] [PubMed]
[40] Gupta, A., McKeever, T.M., Hutchinson, J.P. and Bolton, C.E. (2022) Impact of Coexisting Dementia on Inpatient Outcomes for Patients Admitted with a COPD Exacerbation. International Journal of Chronic Obstructive Pulmonary Disease, 17, 535-544. [Google Scholar] [CrossRef] [PubMed]
[41] Karamanli, H., Ilik, F., Kayhan, F. and Pazarlı, A.C. (2015) Assessment of Cognitive Impairment in Long-Term Oxygen Therapy-Dependent COPD Patients. International Journal of Chronic Obstructive Pulmonary Disease, 10, 2087-2094. [Google Scholar] [CrossRef] [PubMed]
[42] Rochester, C.L. and Holland, A.E. (2020) Pulmonary Rehabilitation and Improved Survival for Patients with COPD. JAMA, 323, 1783-1785.
https://jamanetwork.com/journals/jama/fullarticle/2765710
[43] Garcia-Aymerich, J., Lange, P., Benet, M., Schnohr, P. and Anto, J.M. (2006) Regular Physical Activity Reduces Hospital Admission and Mortality in Chronic Obstructive Pulmonary Disease: A Population Based Cohort Study. Thorax, 61, 772-778. [Google Scholar] [CrossRef] [PubMed]
[44] Desveaux, L., Harrison, S.L., Gagnon, J., Goldstein, R.S., Brooks, D. and Pepin, V. (2018) Effects of Exercise Training on Cognition in Chronic Obstructive Pulmonary Disease: A Systematic Review. Respiratory Medicine, 139, 110-116. [Google Scholar] [CrossRef] [PubMed]
[45] Ding, K., Song, F., Sun, W., Sun, M. and Xia, R. (2025) Impact of Exercise Training on Cognitive Function in Patients with COPD: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. European Respiratory Review, 34, Article ID: 240170. [Google Scholar] [CrossRef] [PubMed]
[46] Yang, Y., You, M., Luo, W., Xu, Y., Luo, L. and Wei, H. (2025) Exploring the Link: Nutritional Status and Chronic Obstructive Pulmonary Disease-Insights from NHANES and Clinical Research. BMC Pulmonary Medicine, 25, Article No. 318. [Google Scholar] [CrossRef] [PubMed]
[47] Zailani, H., Satyanarayanan, S.K., Liao, W., Hsu, Y., Huang, S., Gałecki, P., et al. (2023) Roles of ω-3 Polyunsaturated Fatty Acids in Managing Cognitive Impairment in Chronic Obstructive Pulmonary Disease: A Review. Nutrients, 15, Article 4363. [Google Scholar] [CrossRef] [PubMed]
[48] Yamagishi, K., Maruyama, K., Ikeda, A., Nagao, M., Noda, H., Umesawa, M., et al. (2022) Dietary Fiber Intake and Risk of Incident Disabling Dementia: The Circulatory Risk in Communities Study. Nutritional Neuroscience, 26, 148-155. [Google Scholar] [CrossRef] [PubMed]
[49] Prokopidis, K., Giannos, P., Ispoglou, T., Witard, O.C. and Isanejad, M. (2022) Dietary Fiber Intake Is Associated with Cognitive Function in Older Adults: Data from the National Health and Nutrition Examination Survey. The American Journal of Medicine, 135, e257-e262. [Google Scholar] [CrossRef] [PubMed]
[50] Liang, S., Han, X., Diao, S. and Li, H. (2023) COPD, Dietary Fiber Intake, and Cognitive Performance in Older Adults: A Cross-Sectional Study from NHANES 2011-2014. Experimental Aging Research, 51, 92-102. [Google Scholar] [CrossRef] [PubMed]
[51] Tu, H., Zhou, S. and Lin, J. (2025) Combined Effects of Donepezil and Memantine on Behavioral and Psychological Symptoms, Cognitive Function, and Daily Living Abilities in Patients with Alzheimer’s Disease. British Journal of Hospital Medicine, 86, 1-15. [Google Scholar] [CrossRef] [PubMed]
[52] Cao, Y., Qian, L., Yu, W., Li, T., Mao, S. and Han, G. (2020) Donepezil Plus Memantine versus Donepezil Alone for Treatment of Concomitant Alzheimer’s Disease and Chronic Obstructive Pulmonary Disease: A Retrospective Observational Study. Journal of International Medical Research, 48, 1-12. [Google Scholar] [CrossRef] [PubMed]
[53] Wedzicha, J., Calverley, P. and Rabe, K. (2016) Roflumilast: A Review of Its Use in the Treatment of COPD. International Journal of Chronic Obstructive Pulmonary Disease, 11, 81-90. [Google Scholar] [CrossRef] [PubMed]
[54] Feng, H., Wang, C., He, W., Wu, X., Li, S., Zeng, Z., et al. (2019) Roflumilast Ameliorates Cognitive Impairment in APP/PS1 Mice via cAMP/CREB/BDNF Signaling and Anti-Neuroinflammatory Effects. Metabolic Brain Disease, 34, 583-591. [Google Scholar] [CrossRef] [PubMed]
[55] Prickaerts, J., Kerckhoffs, J., Possemis, N., van Overveld, W., Verbeek, F., Grooters, T., et al. (2024) Roflumilast and Cognition Enhancement: A Translational Perspective. Biomedicine & Pharmacotherapy, 181, Article ID: 117707. [Google Scholar] [CrossRef] [PubMed]
[56] Sharma, S., Karki, D. and Julitta, K. (2024) Effect of Long-Term Inhaled Corticosteroids Therapy on Cognitive Function in Patients with Bronchial Asthma and Chronic Obstructive Pulmonary Disease. Lung India, 41, 357-361. [Google Scholar] [CrossRef] [PubMed]