|
[1]
|
Holden, B.A., Fricke, T.R., Wilson, D.A., Jong, M., Naidoo, K.S., Sankaridurg, P., et al. (2016) Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology, 123, 1036-1042. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Sun, J., Zhou, J., Zhao, P., Lian, J., Zhu, H., Zhou, Y., et al. (2012) High Prevalence of Myopia and High Myopia in 5060 Chinese University Students in Shanghai. Investigative Opthalmology & Visual Science, 53, 7504-7509. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Wang, S.K., Guo, Y., Liao, C., Chen, Y., Su, G., Zhang, G., et al. (2018) Incidence of and Factors Associated with Myopia and High Myopia in Chinese Children, Based on Refraction without Cycloplegia. JAMA Ophthalmology, 136, 1017-1024. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Tang, Y., Wang, X., Wang, J., Huang, W., Gao, Y., Luo, Y., et al. (2015) Prevalence and Causes of Visual Impairment in a Chinese Adult Population: The Taizhou Eye Study. Ophthalmology, 122, 1480-1488. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
竺向佳, 卢奕. 高度近视眼白内障患者可以合理使用多焦点人工晶状体[J]. 中华眼科杂志, 2021, 57(1): 23-27.
|
|
[6]
|
李朝辉, 张弛, 叶子. 高度近视眼合并白内障患者植入多焦点人工晶状体切勿操之过急[J]. 中华眼科杂志, 2021, 57(1): 28-33.
|
|
[7]
|
Wang, H., Zhu, L., Pang, C. and Fan, Q. (2024) Repeatability Assessment of Anterior Segment Measurements in Myopic Patients Using an Anterior Segment OCT with Placido Corneal Topography and Agreement with a Swept-Source Oct. BMC Ophthalmology, 24, Article No. 182. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Hashemi, H., Miraftab, M., Panahi, P. and Asgari, S. (2022) Biometry and Intraocular Power Calculation Using a Swept-Source Optical Coherence Tomography: A Repeatability and Agreement Study. Indian Journal of Ophthalmology, 70, 2845-2850. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Jeong, J., Song, H., Lee, J.K., Chuck, R.S. and Kwon, J. (2017) The Effect of Ocular Biometric Factors on the Accuracy of Various IOL Power Calculation Formulas. BMC Ophthalmology, 17, Article No. 62. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
竺向佳, 何雯雯, 杜钰, 等三种人工晶状体计算公式对高度近视眼并发性白内障的预测误差比较[J].中华眼科杂志, 2017, 53(4): 260-265.
|
|
[11]
|
Doshi, D., Limdi, P., Parekh, N. and Gohil, N. (2017) A Comparative Study to Assess the Predictability of Different IOL Power Calculation Formulas in Eyes of Short and Long Axial Length. Journal of Clinical and Diagnostic Research, 11, NC01-NC04. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Chen, Y., Wei, L., He, W., Lu, Y. and Zhu, X. (2021) Comparison of Kane, Hill-RBF 2.0, Barrett Universal II, and Emmetropia Verifying Optical Formulas in Eyes with Extreme Myopia. Journal of Refractive Surgery, 37, 680-685. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Melles, R.B., Holladay, J.T. and Chang, W.J. (2018) Accuracy of Intraocular Lens Calculation Formulas. Ophthalmology, 125, 169-178. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Rong, X., He, W., Zhu, Q., Qian, D., Lu, Y. and Zhu, X. (2019) Intraocular Lens Power Calculation in Eyes with Extreme Myopia: Comparison of Barrett Universal II, Haigis, and Olsen Formulas. Journal of Cataract and Refractive Surgery, 45, 732-737. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Jennings, E. and Hall, B. (2024) A Retrospective Study of Visual Outcomes When Using a Cloud-Based Surgical Planning Platform and the Barrett Universal II Formula. Clinical Ophthalmology, 18, 2605-2609. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Darcy, K., Gunn, D., Tavassoli, S., Sparrow, J. and Kane, J.X. (2020) Assessment of the Accuracy of New and Updated Intraocular Lens Power Calculation Formulas in 10,930 Eyes from the Uk National Health Service. Journal of Cataract & Refractive Surgery, 46, 2-7.
|
|
[17]
|
Cooke, D.L. and Cooke, T.L. (2016) Comparison of 9 Intraocular Lens Power Calculation Formulas. Journal of Cataract and Refractive Surgery, 42, 1157-1164. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Kim, J.W., Eom, Y., Yoon, E.G., Choi, Y. and Kim, HM. (2021) Algorithmic Intraocular Lens Power Calculation Formula Selection by Keratometry, Anterior Chamber Depth and Axial Length. Acta Ophthalmologica, 100, e701-e709. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Lin, H., Zhang, J., Zhang, Y., Jin, A., Zhang, Y., Jin, L., et al. (2024) Capsular Tension Ring Implantation for Intraocular Lens Decentration and Tilt in Highly Myopic Eyes. JAMA Ophthalmology, 142, 708-715. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Lin, H., Zhang, J., Jin, A., Zhang, Y., Zhang, Y., Jin, L., et al. (2025) Capsular Tension Ring Implantation for Intraocular Lens Power Calculation in Highly Myopic Eyes: Secondary Analysis of a Randomized Clinical Trial. JAMA Ophthalmology, 143, 373-381. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Zhang, S., Penkova, A., Jia, X., Sebag, J. and Sadhal, S.S. (2024) Effective Prediction of Drug Transport in a Partially Liquefied Vitreous Humor: Physics-Informed Neural Network Modeling for Irregular Liquefaction Geometry. Engineering Applications of Artificial Intelligence, 138, Article 109262. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Schartmüller, D., Röggla, V., Schwarzenbacher, L., Meyer, E.L., Abela-Formanek, C., Leydolt, C., et al. (2024) Influence of a Capsular Tension Ring on Capsular Bag Behavior of a Plate Haptic Intraocular Lens: An Intraindividual Randomized Trial. Ophthalmology, 131, 445-457. [Google Scholar] [CrossRef] [PubMed]
|