吲哚菁绿实验与二维剪切波弹性成像技术对肝移植术后早期移植物功能障碍发生的评估价值
The Value of Indocyanine Green Clearance Test and Two-Dimensional Shear Wave Elastography in Assessing the Risk of Early Allograft Dysfunction after Liver Transplantation
摘要: 目的:探讨吲哚菁绿实验与二维剪切波弹性成像技术对肝移植术后早期移植物功能障碍(EAD)发生的评估价值。方法:选择2024年4月至2025年6月在安徽医科大学第二附属医院器官移植中心接受肝移植手术的患者,供肝获取前均在本院ICU完善ICG及2D SWE检查。回顾性分析纳入的33例供受者资料,根据受体术后早期的肝功能恢复情况进行分组,其中10例发生EAD作为观察组,23例术后肝功能正常组作为对照组。对两组指标进行比较,有差异的指标进行logistic回归分析,并绘制受试者工作特征曲线(ROC),计算曲线下面积(AUC),分析相关因素的判断效能。结果:EAD组受者供肝的杨氏模量值(Emean)、术前MELD评分显著高于对照组,吲哚菁绿滞留实验(ICG R15)无差异。Logistic回归分析结果显示供体肝脏Emean > 4.33 Kpa及受体术前MELD评分 > 23是受者肝移植术后发生EAD的危险因素;ROC曲线显示,供肝Emean预测受体术后EAD发生的AUC为 0.770 (95% CI: 0.574~0.965, P < 0.05),受体MELD评分预测受体术后EAD发生的AUC为 0.828 (95% CI: 0.663~0.994, P < 0.05),Emean联合MELD预测受体术后EAD发生的AUC为 0.917 (95% CI: 0.812~1.000, P < 0.05)。结论:初步结论表明供肝的二维剪切波弹性成像杨氏模量值(Emean)升高及受者术前MELD评分升高与肝移植术后早期移植物功能障碍的发生风险增加相关。本研究提示,术前无创测量供肝Emean可能有助于识别术后发生EAD风险较高的供肝,尤其是当联合受体MELD评分进行综合评估时。这些发现为无创评估供肝质量提供了初步依据,但其临床应用的预测效能仍需在更大样本的前瞻性研究中进一步验证。
Abstract: Objective: Evaluation of the predictive value of indocyanine green clearance test and two-dimensional shear wave elastography for early allograft dysfunction (EAD) after liver transplantation. Methods: This study retrospectively analyzed data from 33 donor-recipient pairs who underwent liver transplantation at the Organ Transplantation Center of the Second Affiliated Hospital of Anhui Medical University between April 2022 and June 2025. Prior to donor liver procurement, all donors completed ICG testing and 2D-SWE examination in the ICU. Patients were divided into two groups based on early postoperative liver function recovery: the observation group (n = 10) with EAD and the control group (n = 23) with normal liver function. Parameters showing significant differences between groups were subjected to logistic regression analysis. Receiver operating characteristic (ROC) curves were plotted to calculate the area under the curve (AUC) and evaluate the predictive efficacy of relevant factors. Results: The EAD group exhibited significantly higher Young’s modulus values (Emean) of donor livers and preoperative MELD scores compared to the control group, while no significant difference was observed in indocyanine green retention rate at 15 minutes (ICG R15). Logistic regression analysis revealed that a donor liver Emean > 4.33 kPa and recipient preoperative MELD score > 23 were independent risk factors for postoperative EAD. ROC curve analysis demonstrated that the AUC for donor liver Emean in predicting EAD was 0.770 (95% CI: 0.574~0.965, P < 0.05), for MELD score was 0.828 (95% CI: 0.663~0.994, P < 0.05), and for the combined Emean and MELD score was 0.917 (95% CI: 0.812~1.000, P < 0.05). Conclusion: Preliminary findings indicate that elevated Young's modulus values (Emean) measured by two-dimensional shear wave elastography (2D-SWE) in donor livers, along with higher preoperative Model for End-Stage Liver Disease (MELD) scores in recipients, are associated with an increased risk of early allograft dysfunction (EAD) following liver transplantation. This study suggests that preoperative noninvasive measurement of donor liver Emean may help identify grafts at higher risk for developing EAD postoperatively, particularly when combined with recipient MELD score for comprehensive assessment. These findings provide preliminary evidence supporting the noninvasive assessment of donor liver quality. However, the predictive performance of this approach for clinical application requires further validation in larger prospective studies.
文章引用:王磊, 崔健, 侯辉. 吲哚菁绿实验与二维剪切波弹性成像技术对肝移植术后早期移植物功能障碍发生的评估价值[J]. 临床医学进展, 2026, 16(1): 398-405. https://doi.org/10.12677/acm.2026.161055

1. 引言

肝移植(LT)是终末期肝脏疾病的根治性治疗方法,也是急性肝功能衰竭的替代疗法[1]。脑死亡供体是器官移植的常见来源。然而,几乎所有肝脏捐献者都死于某些疾病,一些捐献者患有危重疾病和器官功能恶化,包括肝脏功能。这些因素显著影响移植后移植物功能的恢复,这使得患者在移植后早期面临早期移植物功能障碍(EAD)的风险,甚至是原发性无功能(PNF) [2]。EAD的定义为存在以下标准中的至少一项:术后第7天胆红素水平 ≥ 10 mg/dL;术后第7天国际标准化比率 ≥ 1.6;以及术后前7天内AST或ALT水平 > 2000 IU/L [3]。目前确诊肝脏病变的金标准是肝脏穿刺活检,而供肝穿刺病理活检存在侵袭性和取样误差,现国内外已有学者使用超声剪切波弹性成像技术及肝功能储备的测量用以评估肝脏[4] [5]。超声二维剪切波弹性成像(2D SWE)是一种向组织发送声辐射力脉冲以诱导剪切波的方法,组织弹性是通过使用杨氏模量从剪切波传播速度计算得出的,组织弹性和硬度随相应的病理生理变化而变化[6]。肝功能储备的测量包括基于吲哚菁绿(ICG)的清除率测试,例如15分钟后的ICG滞留率(ICG R15)。由于其安全性,作为一种仅由肝实质细胞提取的无毒染料,以及其可忽略的肝外消除,ICG通过推注、持续输注或经皮监测的方式给药,以确定患病肝脏的功能储备[7]。本研究通过收集肝移植受者对应供肝2D SWE及ICG R15的检查结果,用以探究对受者术后发生EAD的可能。本研究尝试为临床无创评估肝移植供肝质量及预测受者预后提供依据,研究结果报告如下。

2. 资料与方法

2.1. 一般资料及检查流程

选择2024年4月至2025年6月在安徽医科大学第二附属医院器官移植中心接受肝移植手术的患者33例,其中男20例,女13例,患者所行肝移植手术为经典原位肝移植术。受者纳入标准:① 年龄 > 18岁者;② 供肝获取前于本院ICU完成ICG试验和2D SWE 检查,且被评估供肝均用于本院首次接受肝移植的患者。排除标准:① 背驮式肝移植、劈离式肝移植者、肝/肾联合移植或多脏器移植;② 供肝获取后转运至外院的供者;③ 临床资料不完整者。

根据肝移植受者术后早期肝功能恢复情况将其中10例发生EAD作为观察组,23例术后肝功能正常组作为对照组。在本院,所有器官均来自志愿捐献者,未使用死刑犯的器官。器官捐献的同意书均在捐献前从捐献者或其家属处获得。关于检查的信息已向所有接受者和捐献者家属充分解释,并根据《赫尔辛基宣言》(Edinburgh Revision, 2000)的原则获得书面知情同意书。器官分配符合中国移植项目的公平和透明规则,也符合《伊斯坦布尔宣言》的原则。供者移植前均已于本院ICU完善肝脏储备功能测定和2D-SWE检查。采用多功能彩色多普勒超声诊断仪进行SWE检查,供者取平卧位,将探头置于右肋间,选取肝右前叶合适切面,取样框在肝实质的深度为4~5 cm,注意避开血管、胆道及胆囊,检查由同1名经验丰富的高年资超声科医师完成;肝脏储备功能测定根据患者的体重(0.5 mg/kg)在10 s内通过外周或中央静脉注射溶于5 ml生理盐水的25 mg ICG剂量。使用脉冲分光光度法(DDG-3300K,日本)测量ICGR15,该法在每个脉冲间隔处使用连接到患者扩张鼻孔的光学探针无创测量ICG血浆浓度。该仪器通过检测805和890 nm波长的光峰吸收来测量动脉ICG浓度,从而可以连续测量ICGR15。

2.2. 指标收集

供体变量包括15分钟ICG滞留率(ICGR15)和杨氏模量值(Emean)。受者变量包括术前血清白蛋白水平、血清钠(Na)、红细胞压积(HCT)、血小板计数(PLT)、血清肌酐(Cr)、血清总胆红素(TBil)、谷丙转氨酶(ALT)、谷草转氨酶(AST)、碱性磷酸酶(ALP)、γ-谷氨酰转移酶(GGT)血浆国际标准化比值(INR)、终末期肝病模型(MELD)评分、肝硬化患者的肝脏储备功能量化评估Child评分。

2.3. 统计学分析

本研究采用SPSS 27.0软件进行统计分析。连续变量经Shapiro-Wilk检验确认呈正态分布者,以均数± 标准差( x ¯ ±s )表示,组间比较采用独立样本t检验;非正态分布数据以中位数及四分位数间距[M(P25, P75)]描述,组间差异通过Mann-Whitney U检验评估。统计学显著性阈值设定为P < 0.05。针对组间存在显著差异的变量,进一步构建二元logistic回归模型识别独立预测因子,并通过受试者工作特征曲线(ROC)分析评估其预测效能,计算曲线下面积(AUC)及其95%置信区间(95% CI)。

3. 结果

3.1. 两组临床资料的单因素分析

两组资料的指标中仅有供肝的杨氏模量值(Emean)、受者术前MELD评分及、血浆国际标准化比值(INR)有差异,EAD组显著高于非EAD组,其余均无统计学意义(P > 0.05),详见表1

Table 1. Comparison of clinical characteristics between the two groups

1. 两组临床资料比较

指标

EAD组(n = 10)

非EAD组(n = 23)

t/Z

P

Emean [Kpa, M(P25, P75)]

4.56 (3.25, 7.34)

3.30 (2.96, 4.10)

−2.43

0.015

ICGr15 [%, M(P25, P75)]

2.40 (1.77, 3.02)

2.4 (1.0, 6.6)

−0.216

0.829

MELD评分[分,M(P25, P75)]

27.0 (18.75, 37.75)

15.0 (12.0, 20.0)

−2.791

0.003

Child评分(分, x ¯ ±s )

10.50 ± 2.36

8.70 ± 2.34

−2.026

0.051

SCR [umol/l, M(P25, P75)]

81.0 (60.25, 98.50)

61.0 (42.0, 92.0)

−1.234

0.217

Na (mmol/l, x ¯ ±s )

138.38 ± 3.45

139.96 ± 6.72

0.702

0.488

HCT ( x ¯ ±s )

0.24 ± 0.08

0.28 ± 0.07

1.275

0.212

PLT [%, M(P25, P75)]

47.0 (35.0, 106.0)

52.0 (41.0, 85.0)

−0.059

0.953

INR [M(P25, P75)]

1.81 (1.44, 2.35)

1.36 (1.14, 1.59)

−2.547

0.011

TBIL [umol/l, M(P25, P75)]

189.65 (51.30, 421.20)

72.9 (23.5, 145.7)

−1.763

0.078

ALT [u/l, M(P25, P75)]

34.0 (27.25, 58.75)

34.0 (25.0, 44.0)

−0.098

0.922

AST [u/l, M(P25, P75)]

60.5 (46.0, 96.2)

59.0 (37.0, 83.0)

−0.235

0.814

GGT [u/l, M(P25, P75)]

28.5 (18.0, 37.5)

32.0 (21.0, 84.0)

−1.176

0.240

ALP [u/l, M(P25, P75)]

93.0 (74.5, 178.7)

128.0 (83.0, 165.0)

−0.607

0.544

3.2. 肝移植术后EAD发生的逻辑回归分析

将单因素分析中有统计学意义的指标纳入logistic回归分析,其中因变量为是否发生EAD,结果显示供者肝脏Emean和受者术前MELD评分是肝移植术后发生EAD的危险因素,见表2

Table 2. Logistic regression analysis of factors associated with EAD after liver transplantation

2. 影响肝移植术后EAD发生的logistic回归分析

变量

P

B

SE

OR

95% CI上限

MELD评分

0.039

0.156

0.076

1.169

1.356

EMEAN

0.035

1.289

0.612

3.628

12.031

INR

0.257

1.441

1.270

4.225

50.929

3.3. ROC曲线分析

绘制供者肝脏Emean、受者术前MELD评分及两者联合预测EAD发生效能的ROC曲线,ROC曲线显示,供肝Emean预测受体术后EAD发生的AUC为 0.770 (95% CI: 0.574~0.965, P < 0.05),受体MELD评分预测受体术后EAD发生的AUC为0.828 (95% CI: 0.663~0.994, P < 0.05),Emean联合MELD预测受体术后EAD发生的AUC为0.917 (95% CI: 0.812~1.000, P < 0.05),由于样本量限制,联合预测因子(Emean & MELD评分)的AUC置信区间上限经四舍五入后为1.000。见图1

Figure 1. ROC Curves of the Diagnostic Efficacy for EAD

1. 诊断EAD发生效能的ROC曲线

4. 讨论

肝移植是慢性终末期肝病患者和部分急性肝功能衰竭(ALF)患者的一项最终治疗手段[8]-[10]。目前大多数移植器官都取自脑死亡供体,然而脑死亡的存在是肝移植的一个重要危险因素。另外避免移植的肝脏短缺的途径之一是使用边缘性肝脏,这些肝脏可能引起更高概率的原发性无功能或初始功能不良的风险[11]。许多研究表明,这些肝脏更容易因获取、冷藏和手术操作而受到缺血/再灌注损伤(IRI) [12]。因此在获取前评估供者肝脏的功能至关重要,目前对于肝脏评估的金标准是穿刺活检,但其为有创检查且存在感染、出血、穿孔和抽样误差的风险,并且活检结果的解释存在观察者间差异,分期和分级方面的不一致性高达25% [13] [14]。同时供者基本处于重症监护室(插管和通气),常规CT、MRI等检查难以进行,因此我们试图使用ICG-R15及2D-SWE来评估供肝质量,探索与受者术后移植物功能的联系。

吲哚菁绿(ICG)是一种属于三羰花青类的近红外光敏染料。静脉注射后,该染料可快速与血浆中的白蛋白结合。其在肝脏的摄取主要依赖肝细胞膜上的有机阴离子转运多肽1B3 (OATP1B3)及钠–牛磺胆酸共转运蛋白(NTCP)介导;而排泄过程则主要经由毛细胆管膜上表达的多药耐药相关蛋白2 (MRP2)完成。值得注意的是,ICG在体内代谢过程中不参与肠肝循环,其清除路径相对独立[15]。早在1961年,它的消除率就被广泛用于测量肝功能和肝脏血流量[16]。现有相关研究表明,测量LT后ICG的清除率可以预测早期移植物功能[17] [18]。这些ICG试验的测量都是在LT受者中进行的,这些试验未能预测供体是否适合肝脏捐献,关于术前对于脑死亡供体使用ICG检查用于评估术后早期移植物功能的研究并不多。我们的研究在单因素分析中可以看出两组之间无统计学差异(P > 0.05),这与TANG等[19]的研究并不一致,根据他们的研究获取前供体ICGR15的最佳临界值定义11.0%/min,并观察到供体ICGR15评分高于此值的患者中,3个月移植物衰竭的概率显著增加。对于此,我们发现本院供者术前ICGR15检查结果EAD组2.40 (1.77, 3.02)、非EAD组2.4 (1.0, 6.6)都远小于11,这可能是没有组间差异的原因之一。JANSSEN等[20]的研究指出高动力状态下的ICG R15比率可能会掩盖真正的排泄移植功能。他们在体外肝脏灌注的猪模型中比较了正常和高血流量下的ICG R15比率,结果发现每个肝脏灌注中ICG R15水平存在相当大的差异。本院基本为脑死亡供体,继而当患者被宣布为脑死亡时,一系列事件会影响供体器官。当颅内压(ICP)升高时,全身性和激素变化会立即出现,例如血流动力学改变、激素变化以及炎症和免疫激活。这就导致不同供体肝脏灌注的差异,致使我们的ICG R15检查并不能准确反应实际肝脏储备功能,所以在本研究中两组并未发现差异。

肝移植的肝脏移植物的高度脂肪变性(大泡性或小泡性脂肪变性)会增加肝移植的缺血再灌注损伤的严重程度,从而导致移植物功能恢复的延迟[21]。关于脂肪变性,一些团队已经表明肝脏硬度(LS)与脂肪变性之间存在相关性,以及纤维化与肝脏的坏死性炎症活动之间也存在相关性[22]。二维剪切波弹性成像(2D-SWE)是一种新型的无创方法,已被提议用于通过测量肝实质中弹性剪切波的速度来评估肝脏硬度[23]。在剪切波弹性成像中,剪切波是由超声产生的声辐射力脉冲创建的,然后通过感兴趣区域(ROI)上的多普勒效应来估计剪切波的速度,并且该速度与介质的硬度或弹性相关。该剪切波速度可用于通过公式E = ρc2计算组织硬度,其中E是组织弹性(Emean, kPa),ρ是组织密度(kg/m3),c是剪切波速度(m/s) [24]。在本研究中术后EAD组与非EAD组肝脏硬度在多因素分析中存在显著差异(P = 0.035),EAD组肝脏Emean 4.56 (3.25, 7.34)高于非EAD组Emean 3.30 (2.96, 4.10)。这与HUANG等[25]的研究结果一致,他们使用二维剪切波弹性成像(2D SWE)测量的脑死亡供体LS并研究了供体LS与肝移植术后早期移植物功能障碍(EAD)之间的潜在关系,发现EAD组的LS更高。另一项涉及32名捐献者的研究表明,LS可以预测EAD,剪切波弹性成像的AUC为0.929 (p < 0.001;临界值,4.35 kPa;敏感性,100.0%;特异性,76.5%) [26]

MELD评分反映了移植前肝脏疾病的严重程度,并且与术后发病率和并发症相关[27]。在多因素分析中,EAD组与非EAD组间受体术前MELD评分存在统计学意义(P = 0.039),证明受体术前高MELD是术后发生EAD的独立危险因素,这与KLINZING等[28]研究结果一致。在本研究中受者术前检验指标INR在单因素分析中也具有差异,但在进一步多因素逻辑回归中并无统计学差异(P = 0.257)。

5. 本研究的局限性与未来展望

本研究存在若干局限性,在解释结果时需审慎。首先,样本量较小(n = 33)且为单中心回顾性设计,这可能限制了统计效能,导致部分效应估计(如联合预测模型AUC的置信区间)不稳定,并引入了选择偏倚的风险。其次,关于ICG R15未能显示预测价值,可能与脑死亡供体的血流动力学波动影响其测定准确性有关,本研究数据尚无法完全阐明。此外,未能将影像学硬度(Emean)与供肝的组织病理学结果(如脂肪变性、纤维化)相关联,也未能评估对移植物长期存活的影响。未来需要更大规模、多中心的前瞻性研究来验证这些初步发现,并应结合病理学检查,深入探讨2D-SWE所测肝硬度背后的生物学机制及其在供肝质量综合评估中的确切作用。

NOTES

*通讯作者。

参考文献

[1] Oweira, H., Lahdou, I., Daniel, V., Opelz, G., Schmidt, J., Zidan, A., et al. (2016) Early Post-Operative Acute Phase Response in Patients with Early Graft Dysfunction Is Predictive of 6-Month and 12-Month Mortality in Liver Transplant Recipients. Human Immunology, 77, 952-960. [Google Scholar] [CrossRef] [PubMed]
[2] Ashokkumar, C., Soltys, K., Mazariegos, G., Bond, G., Higgs, B.W., Ningappa, M., et al. (2017) Predicting Cellular Rejection with a Cell-Based Assay: Preclinical Evaluation in Children. Transplantation, 101, 131-140. [Google Scholar] [CrossRef] [PubMed]
[3] Olthoff, K.M., Kulik, L., Samstein, B., Kaminski, M., Abecassis, M., Emond, J., et al. (2010) Validation of a Current Definition of Early Allograft Dysfunction in Liver Transplant Recipients and Analysis of Risk Factors. Liver Transplantation, 16, 943-949. [Google Scholar] [CrossRef] [PubMed]
[4] Cherchi, V., Vetrugno, L., Terrosu, G., Zanini, V., Ventin, M., Pravisani, R., et al. (2021) Association between the Donor to Recipient ICG-PDR Variation Rate and the Functional Recovery of the Graft after Orthotopic Liver Transplantation: A Case Series. PLOS ONE, 16, e0256786. [Google Scholar] [CrossRef] [PubMed]
[5] Deurdulian, C., Grant, E.G., Tchelepi, H., Latterman, P.T., Paluch, J.T., Chopra, S., et al. (2019) Assessment of Fibrosis in Liver Transplant Recipients: Diagnostic Performance of Shear Wave Elastography (SWE) and Correlation of SWE Findings with Biopsy Results. American Journal of Roentgenology, 213, W264-W271. [Google Scholar] [CrossRef] [PubMed]
[6] Gennisson, J.L., Deffieux, T., Fink, M. and Tanter, M. (2013) Ultrasound Elastography: Principles and Techniques. Diagnostic and Interventional Imaging, 94, 487-495. [Google Scholar] [CrossRef] [PubMed]
[7] Tsubono, T. (1996) Indocyanine Green Elimination Test in Orthotopic Liver Recipients. Hepatology, 24, 1165-1171. [Google Scholar] [CrossRef] [PubMed]
[8] Starzl, T.E., Demetris, A.J. and Thiel, D.V. (1989) Medical Progress: Liver Transplantation. New England Journal of Medicine, 321, 1014-1022. [Google Scholar] [CrossRef] [PubMed]
[9] Merion, R.M., Schaubel, D.E., Dykstra, D.M., Freeman, R.B., Port, F.K. and Wolfe, R.A. (2005) The Survival Benefit of Liver Transplantation. American Journal of Transplantation, 5, 307-313. [Google Scholar] [CrossRef] [PubMed]
[10] Varma, V., Mehta, N., Kumaran, V. and Nundy, S. (2011) Indications and Contraindications for Liver Transplantation. International Journal of Hepatology, 2011, 1-9. [Google Scholar] [CrossRef] [PubMed]
[11] Jiménez-Castro, M.B., Gracia-Sancho, J. and Peralta, C. (2015) Brain Death and Marginal Grafts in Liver Transplantation. Cell Death & Disease, 6, e1777-e1777. [Google Scholar] [CrossRef] [PubMed]
[12] 李巍, 安源, 关连越. 肝移植物缺血——再灌注损伤的防治策略与未来展望[J]. 器官移植, 2025, 16(5): 701-709.
[13] Makowka, L., Gordon, R.D., Todo, S., et al. (1987) Analysis of Donor Criteria for the Prediction of Outcome in Clinical Liver Transplantation. Transplantation Proceedings, 19, 2378-2382.
[14] Bravo, A.A., Sheth, S.G. and Chopra, S. (2001) Liver Biopsy. New England Journal of Medicine, 344, 495-500. [Google Scholar] [CrossRef] [PubMed]
[15] de Graaf, W., Häusler, S., Heger, M., van Ginhoven, T.M., van Cappellen, G., Bennink, R.J., et al. (2011) Transporters Involved in the Hepatic Uptake of 99mtc-Mebrofenin and Indocyanine Green. Journal of Hepatology, 54, 738-745. [Google Scholar] [CrossRef] [PubMed]
[16] Caesar, J., Shaldon, S., Chiandussi, L., et al. (1961) The Use of Indocyanine Green in the Measurement of Hepatic Blood Flow and as a Test of Hepatic Function. Clinical Science, 21, 43-57.
[17] Olmedilla, L., Pérez-Peña, J.M., Ripoll, C., Garutti, I., de Diego, R., Salcedo, M., et al. (2009) Early Noninvasive Measurement of the Indocyanine Green Plasma Disappearance Rate Accurately Predicts Early Graft Dysfunction and Mortality after Deceased Donor Liver Transplantation. Liver Transplantation, 15, 1247-1253. [Google Scholar] [CrossRef] [PubMed]
[18] Levesque, E., Saliba, F., Benhamida, S., Ichaï, P., Azoulay, D., Adam, R., et al. (2009) Plasma Disappearance Rate of Indocyanine Green: A Tool to Evaluate Early Graft Outcome after Liver Transplantation. Liver Transplantation, 15, 1358-1364. [Google Scholar] [CrossRef] [PubMed]
[19] Tang, Y., Han, M., Chen, M., Wang, X., Ji, F., Zhao, Q., et al. (2017) Donor Indocyanine Green Clearance Test Predicts Graft Quality and Early Graft Prognosis after Liver Transplantation. Digestive Diseases and Sciences, 62, 3212-3220. [Google Scholar] [CrossRef] [PubMed]
[20] Janssen, M.W.W., Druckrey-Fiskaaen, K.T., Omidi, L., Sliwinski, G., Thiele, C., Donaubauer, B., et al. (2009) Indocyanine Green R15 Ratio Depends Directly on Liver Perfusion Flow Rate. Journal of Hepato-Biliary-Pancreatic Sciences, 17, 180-185. [Google Scholar] [CrossRef] [PubMed]
[21] Urena, M.A., Moreno Gonzalez, E., Romero, C.J., et al. (1999) An Approach to the Rational Use of Steatotic Donor Livers in Liver Transplantation. Hepato-Gastroenterology, 46, 1164-1173.
[22] Lupşor, M., Badea, R., Stefănescu, H., et al. (2008) Analysis of Histopathological Changes That Influence Liver Stiffness in Chronic Hepatitis c. Results from a Cohort of 324 Patients. Journal of Gastrointestinal and Liver Diseases, 17, 155-163.
[23] Bavu, É., Gennisson, J., Couade, M., Bercoff, J., Mallet, V., Fink, M., et al. (2011) Noninvasive in Vivo Liver Fibrosis Evaluation Using Supersonic Shear Imaging: A Clinical Study on 113 Hepatitis C Virus Patients. Ultrasound in Medicine & Biology, 37, 1361-1373. [Google Scholar] [CrossRef] [PubMed]
[24] Xie, L., Yan, C., Zhao, Q., He, M. and Jiang, T. (2018) Quantitative and Noninvasive Assessment of Chronic Liver Diseases Using Two-Dimensional Shear Wave Elastography. World Journal of Gastroenterology, 24, 957-970. [Google Scholar] [CrossRef] [PubMed]
[25] Huang, H., Li, B., Song, J., Ye, G., Tang, X., Qu, T., et al. (2021) Can Ultrasound Elastography Assess Liver Quality in Brain-Dead Donors and Predict Early Allograft Dysfunction after Transplantation? Academic Radiology, 28, S112-S117. [Google Scholar] [CrossRef] [PubMed]
[26] Liu, W., Li, X., Fu, X., Wu, X., Wang, X., Guo, Y., et al. (2020) Combination of Liver Graft Sonographic Grading and Point Shear Wave Elastography to Reduce Early Allograft Dysfunction after Liver Transplantation. European Radiology, 30, 5191-5199. [Google Scholar] [CrossRef] [PubMed]
[27] 陈永泰, 许蜂蜂, 王明, 等. 终末期肝病模型评分及MELD-Na评分评估肝衰竭肝移植短期预后的对比观察[J]. 中华普通外科学文献(电子版), 2020, 14(3): 195-199.
[28] Klinzing, S., Brandi, G., Stehberger, P.A., Raptis, D.A. and Béchir, M. (2014) The Combination of MELD Score and ICG Liver Testing Predicts Length of Stay in the ICU and Hospital Mortality in Liver Transplant Recipients. BMC Anesthesiology, 14, Article No. 103. [Google Scholar] [CrossRef] [PubMed]