|
[1]
|
Yao, W., Yang, Y., Beillouin, D., Zhao, J., Olesen, J.E., Zhou, J., et al. (2025) Legume-Rice Rotations Increase Rice Yields and Carbon Sequestration Potential Globally. One Earth, 8, Article ID: 101170. [Google Scholar] [CrossRef]
|
|
[2]
|
Wei, C., Cao, B., Gao, S. and Liang, H. (2025) Co-Incorporation of Green Manure and Rice Straw Increases Rice Yield and Nutrient Utilization. Plants, 14, Article 1678. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Yang, T., Zhang, H., Li, F., Yang, T., Shi, Y., Gu, X., et al. (2024) Optimized Tillage Method Increased Rice Yield in Rice Ratooning System. Agriculture, 14, Article 1768. [Google Scholar] [CrossRef]
|
|
[4]
|
Liang, X., Zhao, C., Liu, K., Wang, W., Huo, Z., Song, X., et al. (2025) Advances in Research on the Biological Characteristics of Weedy Rice. Plants, 14, Article 3188. [Google Scholar] [CrossRef]
|
|
[5]
|
Fan, Y., Chen, Z., Yang, X., Cui, K., Huang, J., Peng, S., et al. (2025) The Race to Flourish: Evaluating Natural Variation of Early Growth Rates in Rice. Food and Energy Security, 14, e70133. [Google Scholar] [CrossRef]
|
|
[6]
|
Mohapatra, K.K., Nayak, A.K., Patra, R.K., Tripathi, R., Swain, C.K., Mishra, P., et al. (2025) Multi-Criteria Assessment of Climate Smartness in Rice-Based Cropping Systems. Farming System, 3, Article ID: 100135. [Google Scholar] [CrossRef]
|
|
[7]
|
Rongyan B, Wenlong C, Shang H, et al. (2025) Straw Retention and Manure Application Increase the Yield of Rice in Rotation with Rapeseed and Wheat by Improving Soil Fertility. Land Degradation & Development.
|
|
[8]
|
孟秋峰, 张欣洁, 顾洁莹, 等. 稻菜轮作模式研究进展[J]. 长江蔬菜, 2025(20): 40-44.
|
|
[9]
|
周晶, 陈灿, 隆斌庆, 等. 三种垄栽稻田综合种养模式对水稻产量、品质及土壤养分的影响[J]. 中南农业科技, 2025, 46(9): 32-37.
|
|
[10]
|
Grover, D., Chaudhry, S. and Mishra, A.K. (2025) Evaluating the Influence of Tillage and Residue Management Practices on Soil Quality and Nutrient Dynamics in Rice-Wheat Cropping Systems in Haryana. Environmental Research Communications, 7, Article ID: 075010. [Google Scholar] [CrossRef]
|
|
[11]
|
Zhang, H., Chen, L., Wang, Y., Xu, M., Qiu, W., Liu, W., et al. (2025) Straw and Green Manure Return Can Improve Soil Fertility and Rice Yield in Long-Term Cultivation Paddy Fields with High Initial Organic Matter Content. Plants, 14, Article 1967. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Pan, Z., Wu, C., Xing, Y., Man, Y., Jiang, T., Ustiatik, R., et al. (2025) Mitigating Methylmercury in Rice through Ridge Tillage: A Sustainable Solution for Mercury-Polluted Paddy Fields in Populated Regions. Environmental Pollution, 375, Article ID: 126347. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
吴杏梅. 水稻优质高产栽培技术要点[J]. 世界热带农业信息, 2025(10): 127-129.
|
|
[14]
|
Ding, Z., Zeng, J., He, Z., Zhu, B., Nie, J., Zhou, Y., et al. (2025) Optimizing Fertilization Strategies to Reduce Carbon Footprints and Enhance Net Ecosystem Economic Benefits in Ratoon Rice Systems. Agriculture, 15, Article 1715. [Google Scholar] [CrossRef]
|
|
[15]
|
Coyle, K., Adjei, J., Abbasi, E., Vargas, P., Slaughter, L., Alvarez‐Pugliese, C.E., et al. (2024) Novel Slow‐Release Fertilizer Promotes Nitrogen Circularity While Increasing Soil Organic Carbon. Soil Science Society of America Journal, 89, e20797. [Google Scholar] [CrossRef]
|
|
[16]
|
高天强, 叶凌凤. 肥料种类和用量对水稻生长及产量的影响[J]. 安徽农学通报, 2024, 30(17): 22-25.
|
|
[17]
|
汤强, 赵琼, 寇娜, 等. 不同种类肥料对稻田生态系统碳排放的影响[J]. 安徽农业大学学报, 2025, 52(5): 885-895.
|
|
[18]
|
王庆新, 李莹雪. 科学施肥技术在水稻种植中的应用[J]. 河北农业, 2025(10): 92-93.
|
|
[19]
|
雷文婷. 优化水稻种植技术重要环节及正确施肥方式的运用方法[J]. 种子科技, 2025, 43(17): 222-224.
|
|
[20]
|
张铭, 沈婷, 俞鹏飞. 不同施肥方式对水稻产量及肥料利用情况的影响[J]. 现代农业科技, 2025(17): 70-72.
|
|
[21]
|
江红蕾. 有关如何更科学地开展水稻种植与施肥技术实施的研究[J]. 种子世界, 2025(9): 147-149.
|
|
[22]
|
Pei, W., Dai, M., Shi, S., Zhang, Y., Wu, D., Qiao, C., et al. (2025) Effects of Foliar Selenium Spraying on the Growth and Selenium Content and Morphology of Rice. Frontiers in Plant Science, 16, Article 1587159. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Dun, C., Zhang, Y., Mi, K., Wang, R., Chen, Y., Zhang, H., et al. (2025) Impact of Controlled-Release Nitrogen Fertilizer on Rice Selenium Content, Yield and Quality. Journal of Food Composition and Analysis, 141, Article ID: 107379. [Google Scholar] [CrossRef]
|
|
[24]
|
Ma, X., Ding, Z., Hu, R., Wang, X., Hou, J., Zou, G., et al. (2025) Increasing Rice Yield with Low Ammonia Volatilization by Combined Application of Controlled-Release Blended Fertilizer and Densification. PLOS ONE, 20, e0318177. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Wu, H., Jin, Y., Qi, Y., Huang, R. and Wang, F. (2025) Combination of Nitrogen and Organic Fertilizer Practices Increased Rice Yields and Quality with Lower CH4 Emissions in a Subtropical Rice Cropping System. Frontiers in Plant Science, 16, Article 1613163. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Wu, M., Li, L., Wu, G., Meng, X., Wang, Z., Zhang, H., et al. (2025) Applying Silicon Fertilizer under Straw Return Can Reduce Nitrogen Application, Increase Rice Yield and Lodging Resistance. BMC Plant Biology, 25, Article No. 1086. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Sari, S.L., Rahman Djuwansah, M., Trinurani Sofyan, E., Budiarto, R., Nur Istyami, A. and Wibawa Mukti, G. (2025) Shape-adjusted Controlled-Release Fertilizer for Enhancing Nutrient Efficiency and Reducing Residues in Rice Production. Journal of Plant Nutrition. [Google Scholar] [CrossRef]
|
|
[28]
|
Sharma, M., Kumar, C.J. and Bhattacharyya, D.K. (2024) Machine/Deep Learning Techniques for Disease and Nutrient Deficiency Disorder Diagnosis in Rice Crops: A Systematic Review. Biosystems Engineering, 244, 77-92. [Google Scholar] [CrossRef]
|
|
[29]
|
Jia, Y., Zhao, Y., Ma, H., Gong, W., Zou, D., Wang, J., et al. (2024) Analysis of the Effects of Population Structure and Environmental Factors on Rice Nitrogen Nutrition Index and Yield Based on Machine Learning. Agronomy, 14, Article 1028. [Google Scholar] [CrossRef]
|
|
[30]
|
R, E. and Manoranjitham, T. (2024) An Artificial Intelligence Ensemble Model for Paddy Leaf Disease Diagnosis Utilizing Deep Transfer Learning. Multimedia Tools and Applications, 83, 79533-79558. [Google Scholar] [CrossRef]
|
|
[31]
|
Rodriguez, I.M., Lacasa, J., van Versendaal, E., Lemaire, G., Belanger, G., Jégo, G., et al. (2024) Revisiting the Relationship between Nitrogen Nutrition Index and Yield across Major Species. European Journal of Agronomy, 154, Article ID: 127079. [Google Scholar] [CrossRef]
|
|
[32]
|
Pai, P., Amutha, S., Patil, S., Shobha, T., Basthikodi, M., Shafeeq, B.M.A., et al. (2025) Deep Learning-Based Automatic Diagnosis of Rice Leaf Diseases Using Ensemble CNN Models. Scientific Reports, 15, Article No. 27690. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Yang, J., Jiang, J., Fu, Z., Wang, W., Cao, Q., Tian, Y., et al. (2025) Integrating Phenology Information with UAV Multispectral Data for Rice Nitrogen Nutrition Diagnosis. European Journal of Agronomy, 169, Article ID: 127696. [Google Scholar] [CrossRef]
|
|
[34]
|
Qiu, Z., Ma, F., Zhou, J. and Du, C. (2025) Improving Rice Nitrogen Nutrition Index Estimation Using UAV Images Combined with Meteorological and Fertilization Variables. Agronomy, 15, Article 1946. [Google Scholar] [CrossRef]
|
|
[35]
|
Liao, X. and Yang, H. (2025) Diagnosis of Early Nitrogen, Phosphorus and Potassium Deficiency Categories in Rice Based on Multimodal Integration and Knowledge Distillation. Scientific Reports, 15, Article No. 13014. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
徐永娟, 闻惠. 测土配方施肥对水稻产量性状和肥料利用率的影响研究[J]. 北方水稻, 2025, 55(5): 41-44.
|
|
[37]
|
李婷婷, 黄玉准, 黄泉龙. 水稻测土配方施肥技术及其应用[J]. 农村科学实验, 2025(9): 66-68.
|
|
[38]
|
何贵宾. 测土配方施肥技术在水稻种植中的应用分析[J]. 南方农机, 2024, 55(16): 75-77.
|
|
[39]
|
郎川. 水稻施肥中存在的问题及解决对策[J]. 种子科技, 2025, 43(11): 180-182.
|
|
[40]
|
汪文丽, 周发英, 郑克梅. 水稻种植中科学施肥技术及方法探究[J]. 农村科学实验, 2024(9): 43-45.
|