|
[1]
|
Saunois, M., Martinez, A., Poulter, B., et al. (2024) Global Methane Budget 2000-2020. Earth System Science Data, 2024, 1-147.
|
|
[2]
|
Friedlingstein, P., O’Sullivan, M., Jones, M.W., et al. (2024) Global Carbon Budget 2024. Earth System Science Data, 2024, 1-133.
|
|
[3]
|
Arias-Ortiz, A., Wolfe, J., Bridgham, S.D., Knox, S., McNicol, G., Needelman, B.A., et al. (2024) Methane Fluxes in Tidal Marshes of the Conterminous United States. Global Change Biology, 30, e17462. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Al-Haj, A.N. and Fulweiler, R.W. (2020) A Synthesis of Methane Emissions from Shallow Vegetated Coastal Ecosystems. Global Change Biology, 26, 2988-3005. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Bastviken, D., Tranvik, L.J., Downing, J.A., Crill, P.M. and Enrich-Prast, A. (2011) Freshwater Methane Emissions Offset the Continental Carbon Sink. Science, 331, 50. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Rosentreter, J.A., Borges, A.V., Deemer, B.R., Holgerson, M.A., Liu, S., Song, C., et al. (2021) Half of Global Methane Emissions Come from Highly Variable Aquatic Ecosystem Sources. Nature Geoscience, 14, 225-230. [Google Scholar] [CrossRef]
|
|
[7]
|
Chapman, D., Purse, B.V., Roy, H.E. and Bullock, J.M. (2017) Global Trade Networks Determine the Distribution of Invasive Non-Native Species. Global Ecology and Biogeography, 26, 907-917. [Google Scholar] [CrossRef]
|
|
[8]
|
Liu, J.Q., Wang, W.Q., Shen, L.D., et al. (2022) Response of Methanotrophic Activity and Community Structure to Plant Invasion in China’s Coastal Wetlands. Geoderma, 407, Article 115569. [Google Scholar] [CrossRef]
|
|
[9]
|
Zheng, X., Javed, Z., Liu, B., Zhong, S., Cheng, Z., Rehman, A., et al. (2023) Impact of Spartina Alterniflora Invasion in Coastal Wetlands of China: Boon or Bane? Biology, 12, Article 1057. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Song, H., Peng, C., Zhu, Q., Chen, Z., Blanchet, J., Liu, Q., et al. (2024) Quantification and Uncertainty of Global Upland Soil Methane Sinks: Processes, Controls, Model Limitations, and Improvements. Earth-Science Reviews, 252, Article 104758. [Google Scholar] [CrossRef]
|
|
[11]
|
Yanuka-Golub, K., Korenblum, E., Aronson, E.L. and Matzrafi, M. (2025) Linking Microbial-Mediated Methane Production in Wetlands to Invasive Plants. Soil Biology and Biochemistry, 210, Article 109944. [Google Scholar] [CrossRef]
|
|
[12]
|
Deng, L., Liu, G.B. and Shangguan, Z.P. (2014) Land-Use Conversion and Changing Soil Carbon Stocks in China’s ‘Grain-for-Green’ Program: A Synthesis. Global Change Biology, 20, 3544-3556. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Yang, Y., Luo, Y. and Finzi, A.C. (2011) Carbon and Nitrogen Dynamics during Forest Stand Development: A Global Synthesis. New Phytologist, 190, 977-989. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Xiao, D., Deng, L., Kim, D., Huang, C. and Tian, K. (2019) Carbon Budgets of Wetland Ecosystems in China. Global Change Biology, 25, 2061-2076. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Liang, W., Chen, X., Chen, Z.L., Zhu, P., Huang, Z., Li, J., et al. (2024) Unraveling the Impact of Spartina Alterniflora Invasion on Greenhouse Gas Production and Emissions in Coastal Saltmarshes: New Insights from Dissolved Organic Matter Characteristics and Surface-Porewater Interactions. Water Research, 262, Article 122120. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
He, C., Wang, X., Wang, D., Zhao, Z., Wang, F., Cheng, L., et al. (2021) Impact of Spartina Alterniflora Invasion on Soil Bacterial Community and Associated Greenhouse Gas Emission in the Jiuduansha Wetland of China. Applied Soil Ecology, 168, Article 104168. [Google Scholar] [CrossRef]
|
|
[17]
|
Huang, X., Duan, Y., Tao, Y., Wang, X., Long, H., Luo, C., et al. (2022) Effects of Spartina Alterniflora Invasion on Soil Organic Carbon Storage in the Beihai Coastal Wetlands of China. Frontiers in Marine Science, 9, Article 890811. [Google Scholar] [CrossRef]
|
|
[18]
|
Liao, Q., Yuan, F., Fan, Q., Chen, H., Wang, Y., Zhang, C., et al. (2024) Plant-and Microbial-Mediated Soil Organic Carbon Accumulation in Spartina Alterniflora Salt Marshes. Catena, 237, Article 107777. [Google Scholar] [CrossRef]
|
|
[19]
|
Jiang, Y., Shao, Y., Huang, J., Du, Y., Wen, Y., Tang, H., et al. (2024) Changes in Sediment Greenhouse Gases Production Dynamics in an Estuarine Wetland Following Invasion by Spartina Alterniflora. Frontiers in Microbiology, 15, Article 1420924. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Yuan, J., Liu, D., Ji, Y., Xiang, J., Lin, Y., Wu, M., et al. (2019) Spartina alterniflora Invasion Drastically Increases Methane Production Potential by Shifting Methanogenesis from Hydrogenotrophic to Methylotrophic Pathway in a Coastal Marsh. Journal of Ecology, 107, 2436-2450. [Google Scholar] [CrossRef]
|
|
[21]
|
Cao, M., Cui, L., Sun, H., Zhang, X., Zheng, X. and Jiang, J. (2021) Effects of Spartina Alterniflora Invasion on Soil Microbial Community Structure and Ecological Functions. Microorganisms, 9, Article 138. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Maricle, B.R. and Lee, R.W. (2002) Aerenchyma Development and Oxygen Transport in the Estuarine Cordgrasses Spartina Alterniflora and S. Anglica. Aquatic Botany, 74, 109-120. [Google Scholar] [CrossRef]
|
|
[23]
|
Zhao, M., Han, G., Li, J., Song, W., Qu, W., Eller, F., et al. (2020) Responses of Soil CO2 and CH4 Emissions to Changing Water Table Level in a Coastal Wetland. Journal of Cleaner Production, 269, Article 122316. [Google Scholar] [CrossRef]
|
|
[24]
|
Zhu, Z., Minasny, B., Field, D.J. and An, S. (2023) Using Mid-Infrared Diffuse Reflectance Spectroscopy to Investigate the Dynamics of Soil Aggregate Formation in a Clay Soil. Catena, 231, Article 107366. [Google Scholar] [CrossRef]
|
|
[25]
|
Wu, J., Cheng, X., Xing, W. and Liu, G. (2022) Soil-Atmosphere Exchange of CH4 in Response to Nitrogen Addition in Diverse Upland and Wetland Ecosystems: A Meta-Analysis. Soil Biology and Biochemistry, 164, Article 108467. [Google Scholar] [CrossRef]
|
|
[26]
|
Määttä, T. and Malhotra, A. (2024) The Hidden Roots of Wetland Methane Emissions. Global Change Biology, 30, e17127. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Song, H. and Liu, X. (2016) Anthropogenic Effects on Fluxes of Ecosystem Respiration and Methane in the Yellow River Estuary, China. Wetlands, 36, 113-123. [Google Scholar] [CrossRef]
|
|
[28]
|
Morris, K.A., Smith, M., Bailey, V.L., Bittencourt-Peixoto, R., Day, D.J., Hamovit, N., et al. (2024) Methane Flux from Transplanted Soil Monoliths Depends on Moisture, but Not Origin. Soil Biology and Biochemistry, 193, Article 109296. [Google Scholar] [CrossRef]
|
|
[29]
|
Das, T., Pal, S. and Debanshi, S. (2024) Effect of Water Presence Consistency on Balance between CH4 Emission and CO2 Sequestration in Floodplain Wetland. Acta Geophysica, 73, 1847-1864. [Google Scholar] [CrossRef]
|
|
[30]
|
Xue, J., Chen, X., Wang, X. and Sun, X. (2023) Fine-Scale Assessment of Greenhouse Gases Fluxes from a Boreal Peatland Pond. Water, 15, Article 307. [Google Scholar] [CrossRef]
|
|
[31]
|
Duan, X., Wang, X., Mu, Y. and Ouyang, Z. (2005) Seasonal and Diurnal Variations in Methane Emissions from Wuliangsu Lake in Arid Regions of China. Atmospheric Environment, 39, 4479-4487. [Google Scholar] [CrossRef]
|
|
[32]
|
黄璞祎, 于洪贤, 柴龙会, 等. 扎龙芦苇湿地生长季的甲烷排放通量[J]. 应用生态学报, 2011, 22(5): 1219-1224.
|
|
[33]
|
Zhang, Y., Naafs, B.D.A., Huang, X., Song, Q., Xue, J., Wang, R., et al. (2022) Variations in Wetland Hydrology Drive Rapid Changes in the Microbial Community, Carbon Metabolic Activity, and Greenhouse Gas Fluxes. Geochimica et Cosmochimica Acta, 317, 269-285. [Google Scholar] [CrossRef]
|
|
[34]
|
潘小翠, 管铭, 张崇邦. 互花米草入侵对滩涂湿地甲烷排放的影响[J]. 应用生态学报, 2016, 27(4): 1145-1152.
|
|
[35]
|
Lin, Y., Yi, X., Ning, C., Li, Y., Peng, Y., Liu, S., et al. (2026) Microbial Mechanisms Underlying Differences of Methane Emissions between Urban and Rural Wetlands. Soil Biology and Biochemistry, 212, Article 109993. [Google Scholar] [CrossRef]
|
|
[36]
|
Shen, W., Ji, Y., Jia, Z., Huang, Q., Zhu, X., Ma, J., et al. (2024) Historical Water Regime Determines the Methanogenic Pathway Response to the Current Soil: Water Ratio. Soil and Tillage Research, 239, Article 106032. [Google Scholar] [CrossRef]
|
|
[37]
|
Perry, H., Carrijo, D.R., Duncan, A.H., Fendorf, S. and Linquist, B.A. (2024) Mid-Season Drain Severity Impacts on Rice Yields, Greenhouse Gas Emissions and Heavy Metal Uptake in Grain: Evidence from On-Farm Studies. Field Crops Research, 307, Article 109248. [Google Scholar] [CrossRef]
|
|
[38]
|
Wang, N., Li, K., Yuan, F., Zuo, Y., Liu, J., Zhu, X., et al. (2024) Faster Cycling but Lower Efficiency: A Microbial Metabolic Perspective on Carbon Loss after Wetland Conversion to Cropland. Soil Biology and Biochemistry, 189, Article 109260. [Google Scholar] [CrossRef]
|
|
[39]
|
Chen, Y., Xu, J., Liu, B., Zhang, Z. and Xu, M. (2024) The Biological Mechanism of a Lower Carbon/Nitrogen Ratio Increases Methane Emissions during Vegetable Waste Composting. Science of the Total Environment, 955, Article 177297. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Shen, Y., Feng, J., Zhou, D., He, K. and Zhu, B. (2023) Impacts of Aboveground Litter and Belowground Roots on Soil Greenhouse Gas Emissions: Evidence from a DIRT Experiment in a Pine Plantation. Agricultural and Forest Meteorology, 343, Article 109792. [Google Scholar] [CrossRef]
|
|
[41]
|
Wu, J., Lu, Y., Wang, H. and Li, G. (2023) Effects of Nitrogen and Phosphorus Additions on CH4 Flux in Wet Meadow of Qinghai-Tibet Plateau. Science of the Total Environment, 887, Article 163448. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Yang, H., Chen, X., Zhang, C., Zhao, M., Zhao, X., Perry, D.C., et al. (2022) Nitrogen Removal by Eutrophic Coastal Wetlands Accomplished with CH4 Emission Reduction. Journal of Cleaner Production, 332, Article 130082. [Google Scholar] [CrossRef]
|