|
[1]
|
宋静, 骆永明, 夏家淇. 我国农用地土壤环境基准与标准制定研究[J]. 环境保护科学, 2016, 42(4): 29-35.
|
|
[2]
|
Janeiro-Tato, I., Rodríguez, E., Lopez-Anton, M.A., Baragaño, D., Arrojo, L., Parra-Benito, P., et al. (2024) Bio-based Carbon Foams Assembled with Fe Nanoparticles for Simultaneous Remediation of As, Hg and PAHs in Co-Contaminated Industrial Soils. Environmental Science: Nano, 11, 2683-2692. [Google Scholar] [CrossRef]
|
|
[3]
|
Long, J., He, P., Przystupa, K., Wang, Y. and Kochan, O. (2024) Preparation of Oily Sludge-Derived Activated Carbon and Its Adsorption Performance for Tetracycline Hydrochloride. Molecules, 29, Article 769. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Ahmad, M., Rajapaksha, A.U., Lim, J.E., Zhang, M., Bolan, N., Mohan, D., et al. (2014) Biochar as a Sorbent for Contaminant Management in Soil and Water: A Review. Chemosphere, 99, 19-33. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Zhou, Y., Qin, S., Verma, S., Sar, T., Sarsaiya, S., Ravindran, B., et al. (2021) Production and Beneficial Impact of Biochar for Environmental Application: A Comprehensive Review. Bioresource Technology, 337, Article ID: 125451. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
蒋剑春, 孙康. 活性炭制备技术及应用研究综述[J]. 林产化学与工业, 2017, 37(1): 1-13.
|
|
[7]
|
Sridharan, R., Monisha, B., Kumar, P.S. and Gayathri, K.V. (2022) Carbon Nanomaterials and Its Applications in Pharmaceuticals: A Brief Review. Chemosphere, 294, Article ID: 133731. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
孙建财, 周丹丹, 王薇, 等. 生物炭改性及其对污染物吸附与降解行为的研究进展[J]. 环境化学, 2021, 40(5): 1503-1513.
|
|
[9]
|
Martins, A.C., Pezoti, O., Cazetta, A.L., Bedin, K.C., Yamazaki, D.A.S., Bandoch, G.F.G., et al. (2015) Removal of Tetracycline by NaOH-Activated Carbon Produced from Macadamia Nut Shells: Kinetic and Equilibrium Studies. Chemical Engineering Journal, 260, 291-299. [Google Scholar] [CrossRef]
|
|
[10]
|
Wang, H., Maiyalagan, T. and Wang, X. (2012) Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications. ACS Catalysis, 2, 781-794. [Google Scholar] [CrossRef]
|
|
[11]
|
Asenjo, N.G., Álvarez, P., Granda, M., Blanco, C., Santamaría, R. and Menéndez, R. (2011) High Performance Activated Carbon for Benzene/Toluene Adsorption from Industrial Wastewater. Journal of Hazardous Materials, 192, 1525-1532. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Zhang, D., Pan, B., Zhang, H., Ning, P. and Xing, B. (2010) Contribution of Different Sulfamethoxazole Species to Their Overall Adsorption on Functionalized Carbon Nanotubes. Environmental Science & Technology, 44, 3806-3811. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Weidemann, E., Niinipuu, M., Fick, J. and Jansson, S. (2018) Using Carbonized Low-Cost Materials for Removal of Chemicals of Environmental Concern from Water. Environmental Science and Pollution Research, 25, 15793-15801. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Cara, I.G., Țopa, D., Puiu, I., et al. (2022) Biochar a Promising Strategy for Pesticide-Contaminated Soils. Agriculture, 12, 1579. [Google Scholar] [CrossRef]
|
|
[15]
|
周烈兴, 彭金辉, 钱天才, 等. 活性炭对甲苯的吸附平衡及热力学研究[J]. 功能材料, 2011, 42(4): 753-756, 759.
|
|
[16]
|
Tong, Y., McNamara, P.J. and Mayer, B.K. (2019) Adsorption of Organic Micropollutants onto Biochar: A Review of Relevant Kinetics, Mechanisms and Equilibrium. Environmental Science: Water Research & Technology, 5, 821-838. [Google Scholar] [CrossRef]
|
|
[17]
|
吴晓梅, 叶美锋, 吴飞龙, 等. 农林废弃物生物炭的制备及其吸附性能[J]. 生物质化学工程, 2023, 57(4): 27-33.
|
|
[18]
|
Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., et al. (2015) Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87, 1051-1069. [Google Scholar] [CrossRef]
|
|
[19]
|
刘安琪. 石化企业VOCs排放管控及特征组分苯的模拟吸附研究[D]: [博士学位论文]. 青岛: 中国石油大学(华东), 2019.
|
|
[20]
|
于长江. 生物炭复合材料的制备及其对重金属离子的吸附行为和机制研究[D]: [博士学位论文]. 昆明: 昆明理工大学, 2018.
|
|
[21]
|
Hou, R., Zhang, J., Fu, Q., Li, T., Gao, S., Wang, R., et al. (2024) The Boom Era of Emerging Contaminants: A Review of Remediating Agricultural Soils by Biochar. Science of the Total Environment, 931, Article ID: 172899. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
周震峰, 徐良. 生物炭对土壤吸附邻苯二甲酸二乙酯的影响[J]. 环境工程学报, 2017, 11(9): 5267-5274.
|
|
[23]
|
Liang, Y., Zhao, B. and Yuan, C. (2022) Adsorption of Atrazine by Fe-Mn-Modified Biochar: The Dominant Mechanism of π-π Interaction and Pore Structure. Agronomy, 12, Article 3097. [Google Scholar] [CrossRef]
|
|
[24]
|
Kołtowski, M., Hilber, I., Bucheli, T.D. and Oleszczuk, P. (2016) Effect of Activated Carbon and Biochars on the Bioavailability of Polycyclic Aromatic Hydrocarbons in Different Industrially Contaminated Soils. Environmental Science and Pollution Research, 23, 11058-11068. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
FAN, X. and LI, X. (2012) Preparation and Magnetic Property of Multiwalled Carbon Nanotubes Decorated by Fe3O4 Nanoparticles. New Carbon Materials, 27, 111-116. [Google Scholar] [CrossRef]
|
|
[26]
|
Lofrano, G., Libralato, G., Minetto, D., De Gisi, S., Todaro, F., Conte, B., et al. (2016) In Situ Remediation of Contaminated Marinesediment: An Overview. Environmental Science and Pollution Research, 24, 5189-5206. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Tu, Y., Premachandra, G.S., Boyd, S.A., Sallach, J.B., Li, H., Teppen, B.J., et al. (2021) Synthesis and Evaluation of Fe3O4-Impregnated Activated Carbon for Dioxin Removal. Chemosphere, 263, Article ID: 128263. [Google Scholar] [CrossRef] [PubMed]
|