|
[1]
|
Buzzetti, E., Pinzani, M. and Tsochatzis, E.A. (2016) The Multiple-Hit Pathogenesis of Non-Alcoholic Fatty Liver Disease (NAFLD). Metabolism, 65, 1038-1048. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Chen, W., Ding, S., Tu, J., Xiao, G., Chen, K., Zhang, Y., et al. (2023) Association between the Insulin Resistance Marker TyG Index and Subsequent Adverse Long-Term Cardiovascular Events in Young and Middle-Aged US Adults Based on Obesity Status. Lipids in Health and Disease, 22, Article No. 65. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Vasques, A.C.J., Novaes, F.S., de Oliveira, M.D.S., Matos Souza, J.R., Yamanaka, A., Pareja, J.C., et al. (2011) Tyg Index Performs Better than HOMA in a Brazilian Population: A Hyperglycemic Clamp Validated Study. Diabetes Research and Clinical Practice, 93, e98-e100. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B.B., et al. (2022) IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Research and Clinical Practice, 183, Article 109119. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Li, M., Chi, X., Wang, Y., Setrerrahmane, S., Xie, W. and Xu, H. (2022) Trends in Insulin Resistance: Insights into Mechanisms and Therapeutic Strategy. Signal Transduction and Targeted Therapy, 7, Article No. 216. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Gounden, V., Devaraj, S. and Jialal, I. (2024) The Role of the Triglyceride-Glucose Index as a Biomarker of Cardio-Metabolic Syndromes. Lipids in Health and Disease, 23, Article No. 416. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Sun, Y., Gu, Y., Zhou, Y., Liu, A., Lin, X., Wang, X., et al. (2024) Nonlinear Association between the Triglyceride-Glucose Index and Diabetes Mellitus in Overweight and Obese Individuals: A Cross-Sectional Retrospective Analysis. Diabetology & Metabolic Syndrome, 16, Article No. 193. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Guerrero-Romero, F., Simental-Mendía, L.E., González-Ortiz, M., Martínez-Abundis, E., Ramos-Zavala, M.G., Hernández-González, S.O., et al. (2010) The Product of Triglycerides and Glucose, a Simple Measure of Insulin Sensitivity. Comparison with the Euglycemic-Hyperinsulinemic Clamp. The Journal of Clinical Endocrinology & Metabolism, 95, 3347-3351. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Bonora, E., Targher, G., Alberiche, M., Bonadonna, R.C., Saggiani, F., Zenere, M.B., et al. (2000) Homeostasis Model Assessment Closely Mirrors the Glucose Clamp Technique in the Assessment of Insulin Sensitivity: Studies in Subjects with Various Degrees of Glucose Tolerance and Insulin Sensitivity. Diabetes Care, 23, 57-63. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Lee, J.W., Lim, N.K. and Park, H.Y. (2018) The Product of Fasting Plasma Glucose and Triglycerides Improves Risk Prediction of Type 2 Diabetes in Middle-Aged Koreans. BMC Endocrine Disorders, 18, Article No. 33. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Fu, X., Liu, H., Liu, J., Li, N., Li, L., Ke, D., et al. (2021) Association between Triglyceride-Glucose Index and the Risk of Type 2 Diabetes Mellitus in an Older Chinese Population Aged over 75 Years. Frontiers in Public Health, 9, Article 796663. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Kang, E.S., Yun, Y.S., Park, S.W., Kim, H.J., Ahn, C.W., Song, Y.D., et al. (2005) Limitation of the Validity of the Homeostasis Model Assessment as an Index of Insulin Resistance in Korea. Metabolism, 54, 206-211. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Kilpeläinen, T.O., Zillikens, M.C., Stančákova, A., Finucane, F.M., Ried, J.S., Langenberg, C., et al. (2011) Genetic Variation near IRS1 Associates with Reduced Adiposity and an Impaired Metabolic Profile. Nature Genetics, 43, 753-760. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Chen, W., Wang, X., Jiang, Q., Wu, J., Shi, W., Wang, X., et al. (2023) Association between Triglyceride Glucose Index and Severity of Diabetic Foot Ulcers in Type 2 Diabetes Mellitus. Journal of Foot and Ankle Research, 16, Article 68. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Zhang, M., Wang, B., Liu, Y., Sun, X., Luo, X., Wang, C., et al. (2017) Cumulative Increased Risk of Incident Type 2 Diabetes Mellitus with Increasing Triglyceride Glucose Index in Normal-Weight People: The Rural Chinese Cohort Study. Cardiovascular Diabetology, 16, Article No. 30. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Cui, H., Liu, Q., Wu, Y. and Cao, L. (2022) Cumulative Triglyceride-Glucose Index Is a Risk for CVD: A Prospective Cohort Study. Cardiovascular Diabetology, 21, Article No. 22. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Li, C., Zhao, S., Li, Y., He, S., Jian, W., Liu, Y., et al. (2025) Triglyceride-glucose Index Predicts Adverse Cardiovascular Events in Patients with H-Type Hypertension Combined with Coronary Heart Disease: A Retrospective Cohort Study. Cardiovascular Diabetology, 24, Article No. 45. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Wang, A., Tian, X., Zuo, Y., Chen, S., Meng, X., Wu, S., et al. (2021) Change in Triglyceride-Glucose Index Predicts the Risk of Cardiovascular Disease in the General Population: A Prospective Cohort Study. Cardiovascular Diabetology, 20, Article No. 113. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Younossi, Z.M., Koenig, A.B., Abdelatif, D., Fazel, Y., Henry, L. and Wymer, M. (2016) Global Epidemiology of Nonalcoholic Fatty Liver Disease—Meta-Analytic Assessment of Prevalence, Incidence, and Outcomes. Hepatology, 64, 73-84. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Tanase, D.M., Gosav, E.M., Costea, C.F., Ciocoiu, M., Lacatusu, C.M., Maranduca, M.A., et al. (2020) The Intricate Relationship between Type 2 Diabetes Mellitus, Insulin Resistance, and Nonalcoholic Fatty Liver Disease. Journal of Diabetes Research, 2020, 1-16. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Raeman, R. (2022) Inflammation: The Straw That Broke the NAFLD Liver! Cellular and Molecular Gastroenterology and Hepatology, 13, 1273-1274. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Tamura, S. and Shimomura, I. (2005) Contribution of Adipose Tissue and De Novo Lipogenesis to Nonalcoholic Fatty Liver Disease. Journal of Clinical Investigation, 115, 1139-1142. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Knebel, B., Haas, J., Hartwig, S., Jacob, S., Köllmer, C., Nitzgen, U., et al. (2012) Liver-specific Expression of Transcriptionally Active SREBP-1C Is Associated with Fatty Liver and Increased Visceral Fat Mass. PLOS ONE, 7, e31812. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Palma, R., Pronio, A., Romeo, M., Scognamiglio, F., Ventriglia, L., Ormando, V.M., et al. (2022) The Role of Insulin Resistance in Fueling NAFLD Pathogenesis: From Molecular Mechanisms to Clinical Implications. Journal of Clinical Medicine, 11, Article 3649. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Yang, R., Guan, M., Zhao, N., Li, M. and Zeng, T. (2019) Roles of Extrahepatic Lipolysis and the Disturbance of Hepatic Fatty Acid Metabolism in TNF-α-Induced Hepatic Steatosis. Toxicology, 411, 172-180. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Nayak, S.S., Kuriyakose, D., Polisetty, L.D., Patil, A.A., Ameen, D., Bonu, R., et al. (2024) Diagnostic and Prognostic Value of Triglyceride Glucose Index: A Comprehensive Evaluation of Meta-Analysis. Cardiovascular Diabetology, 23, Article No. 310. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Liu, S.J., Duan, J.H., Chen, Y.Y., et al. (2025) Unraveling the Triglyceride-Glucose Index: A Key Predictor of Liver Fat Content and the Amplifying Role of BMI: Evidence from a Large Physical Examination Data. Frontiers in Endocrinology, 16, Article 1555300. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Wang, X., Liu, J., Yu, K., Huang, Z., Liu, H. and Li, X. (2025) Association between TyG-Related Parameters and NAFLD Risk in Japanese Non-Obese Population. Scientific Reports, 15, Article No. 7119. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Ling, Q., Chen, J., Liu, X., Xu, Y., Ma, J., Yu, P., et al. (2023) The Triglyceride and Glucose Index and Risk of Nonalcoholic Fatty Liver Disease: A Dose-Response Meta-Analysis. Frontiers in Endocrinology, 13, Article 1043169. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Ning, Q., Zheng, K., Yan, J. and Zhu, C. (2024) Triglyceride Glucose Index as a Predictor for Non-Alcoholic Fatty Liver Disease: Insights from a Longitudinal Analysis in Non-Obese Individuals. Frontiers in Medicine, 11, Article 1429413. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Zhang, Y., Wang, F., Tang, J., Shen, L., He, J. and Chen, Y. (2024) Association of Triglyceride Glucose-Related Parameters with All-Cause Mortality and Cardiovascular Disease in NAFLD Patients: NHANES 1999-2018. Cardiovascular Diabetology, 23, Article No. 262. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Faheem, S.A., Saeed, N.M., El-Naga, R.N., Ayoub, I.M. and Azab, S.S. (2020) Hepatoprotective Effect of Cranberry Nutraceutical Extract in Non-Alcoholic Fatty Liver Model in Rats: Impact on Insulin Resistance and Nrf-2 Expression. Frontiers in Pharmacology, 11, Article 218. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Oh, C.J., Kim, J.Y., Choi, Y.K., Kim, H.J., Jeong, J.Y., et al. (2012) Dimethylfumarate Attenuates Renal Fibrosis via NF-E2-Related Factor 2-Mediated Inhibition of Transforming Growth Factor-β/Smad Signaling. PLOS ONE, 7, e45870. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Boutin, R.D., Yao, L., Canter, R.J. and Lenchik, L. (2015) Sarcopenia: Current Concepts and Imaging Implications. American Journal of Roentgenology, 205, W255-W266. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Sakuma, K., Aoi, W. and Yamaguchi, A. (2017) Molecular Mechanism of Sarcopenia and Cachexia: Recent Research Advances. European Journal of Physiology, 469, 573-591. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Huang, K.C., Chiang, Y.F., Huang, T.C., et al. (2023) Capsaicin Alleviates Cisplatin‐induced Muscle Loss and Atrophy in Vitro and in Vivo. Journal of Cachexia, Sarcopenia and Muscle, 14, 182-197. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Pan, R., Wang, T., Tang, R. and Qian, Z. (2024) Association of Atherogenic Index of Plasma and Triglyceride Glucose-Body Mass Index and Sarcopenia in Adults from 20 to 59: A Cross-Sectional Study. Frontiers in Endocrinology, 15, Article 143739. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Kim, B., Kim, G., Lee, Y., Taniguchi, K., Isobe, T. and Oh, S. (2023) Triglyceride-Glucose Index as a Potential Indicator of Sarcopenic Obesity in Older People. Nutrients, 15, Article 555. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
March, W.A., Moore, V.M., Willson, K.J., Phillips, D.I.W., Norman, R.J. and Davies, M.J. (2010) The Prevalence of Polycystic Ovary Syndrome in a Community Sample Assessed under Contrasting Diagnostic Criteria. Human Reproduction, 25, 544-551. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Wołczyński, S. and Zgliczyński, W. (2012) Abnormalities of the Menstrual Cycle. In: Zgliczyński, W., Large Interna—Endocrinology, Medical Tribune, 561-567.
|
|
[41]
|
Echiburú, B., Pérez-Bravo, F., Galgani, J.E., Sandoval, D., Saldías, C., Crisosto, N., et al. (2018) Enlarged Adipocytes in Subcutaneous Adipose Tissue Associated to Hyperandrogenism and Visceral Adipose Tissue Volume in Women with Polycystic Ovary Syndrome. Steroids, 130, 15-21. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Rudnicka, E., Suchta, K., Grymowicz, M., Calik-Ksepka, A., Smolarczyk, K., Duszewska, A.M., et al. (2021) Chronic Low Grade Inflammation in Pathogenesis of PCOS. International Journal of Molecular Sciences, 22, Article 3789. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Lath, R., Shendye, R. and Jibhkate, A. (2015) Insulin Resistance and Lipid Profile in Polycystic Ovary Syndrome. Asian Journal of Biomedical and Pharmaceutical Sciences, 5, 30-35.
|
|
[44]
|
Du, T., Yuan, G., Zhang, M., Zhou, X., Sun, X. and Yu, X. (2014) Clinical Usefulness of Lipid Ratios, Visceral Adiposity Indicators, and the Triglycerides and Glucose Index as Risk Markers of Insulin Resistance. Cardiovascular Diabetology, 13, Article No. 146. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Kheirollahi, A., Teimouri, M., Karimi, M., Vatannejad, A., Moradi, N., Borumandnia, N., et al. (2020) Evaluation of Lipid Ratios and Triglyceride-Glucose Index as Risk Markers of Insulin Resistance in Iranian Polycystic Ovary Syndrome Women. Lipids in Health and Disease, 19, Article No. 235. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Zhang, L., Wang, H., Ma, Q., Liu, Y., Chen, A., Lu, J., et al. (2023) Value of the Triglyceride-Glucose Index and Non-Traditional Blood Lipid Parameters in Predicting Metabolic Syndrome in Women with Polycystic Ovary Syndrome. Hormones, 22, 263-271. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Adeva-Andany, M.M., Domínguez-Montero, A., Castro-Quintela, E., Funcasta-Calderón, R. and Fernández-Fernández, C. (2024) Hypoxia-Induced Insulin Resistance Mediates the Elevated Cardiovascular Risk in Patients with Obstructive Sleep Apnea: A Comprehensive Review. Reviews in Cardiovascular Medicine, 25, Article 231. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Zeng, S., Wang, Y., Ai, L., Huang, L., Liu, Z., He, C., et al. (2024) Chronic Intermittent Hypoxia-Induced Oxidative Stress Activates TRB3 and Phosphorylated JNK to Mediate Insulin Resistance and Cell Apoptosis in the Pancreas. Clinical and Experimental Pharmacology and Physiology, 51, e13843. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Li, Y.E. and Ren, J. (2022) Association between Obstructive Sleep Apnea and Cardiovascular Diseases. Acta Biochimica et Biophysica Sinica, 54, 882-892. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Meng, X., Wen, H. and Lian, L. (2024) Association between Triglyceride Glucose-Body Mass Index and Obstructive Sleep Apnea: A Study from NHANES 2015-2018. Frontiers in Nutrition, 11, Article 1424881. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Murphy, A.M., Thomas, A., Crinion, S.J., Kent, B.D., Tambuwala, M.M., Fabre, A., et al. (2017) Intermittent Hypoxia in Obstructive Sleep Apnoea Mediates Insulin Resistance through Adipose Tissue Inflammation. European Respiratory Journal, 49, Article 1601731. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Kang, H.H., Kim, S.W. and Lee, S.H. (2020) Association between Triglyceride Glucose Index and Obstructive Sleep Apnea Risk in Korean Adults: A Cross-Sectional Cohort Study. Lipids in Health and Disease, 19, Article No. 182. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Zou, J., Wang, Y., Xu, H., Xia, Y., Qian, Y., Zou, J., et al. (2020) The Use of Visceral Adiposity Variables in the Prediction of Obstructive Sleep Apnea: Evidence from a Large Cross-Sectional Study. Sleep and Breathing, 24, 1373-1382. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Bikov, A., Frent, S.M., Meszaros, M., Kunos, L., Mathioudakis, A.G., Negru, A.G., et al. (2021) Triglyceride-glucose Index in Non-Diabetic, Non-Obese Patients with Obstructive Sleep Apnoea. Journal of Clinical Medicine, 10, Article 1932. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Han, R., Zhang, Y. and Jiang, X. (2022) Relationship between Four Non-Insulin-Based Indexes of Insulin Resistance and Serum Uric Acid in Patients with Type 2 Diabetes: A Cross-Sectional Study. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 15, 1461-1471. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Zhu, Y., Hu, Y., Huang, T., Zhang, Y., Li, Z., Luo, C., et al. (2014) High Uric Acid Directly Inhibits Insulin Signalling and Induces Insulin Resistance. Biochemical and Biophysical Research Communications, 447, 707-714. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
King, C., Lanaspa, M.A., Jensen, T., Tolan, D.R., Sánchez-Lozada, L.G. and Johnson, R.J. (2018) Uric Acid as a Cause of the Metabolic Syndrome. In: Contributions to Nephrology, S. Karger AG, 88-102. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Spatola, L., Ferraro, P.M., Gambaro, G., Badalamenti, S. and Dauriz, M. (2018) Metabolic Syndrome and Uric Acid Nephrolithiasis: Insulin Resistance in Focus. Metabolism, 83, 225-233. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Lanaspa, M.A., Sanchez-Lozada, L.G., Choi, Y.J., Cicerchi, C., et al. (2012) Uric Acid Induces Hepatic Steatosis by Generation of Mitochondrial Oxidative Stress: Potential Role in Fructose-Dependent and Independent Fatty Liver. Journal of Biological Chemistry, 287, 40732-40744. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Gu, Q., Hu, X., Meng, J., Ge, J., Wang, S.J. and Liu, X.Z. (2020) Associations of Triglyceride-Glucose Index and Its Derivatives with Hyperuricemia Risk: A Cohort Study in Chinese General Population. International Journal of Endocrinology, 2020, 1-7. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Wan, H., Zhang, K., Wang, Y., Chen, Y., Zhang, W., Xia, F., et al. (2020) The Associations between Gonadal Hormones and Serum Uric Acid Levels in Men and Postmenopausal Women with Diabetes. Frontiers in Endocrinology, 11, Article 55. [Google Scholar] [CrossRef] [PubMed]
|