|
[1]
|
Mayadas, T.N., Cullere, X. and Lowell, C.A. (2014) The Multifaceted Functions of Neutrophils. Annual Review of Pathology: Mechanisms of Disease, 9, 181-218. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Jensen, H.K., Donskov, F., Marcussen, N., Nordsmark, M., Lundbeck, F. and von der Maase, H. (2009) Presence of Intratumoral Neutrophils Is an Independent Prognostic Factor in Localized Renal Cell Carcinoma. Journal of Clinical Oncology, 27, 4709-4717. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
SenGupta, S., Subramanian, B.C. and Parent, C.A. (2018) Getting Tanned: How the Tumor Microenvironment Drives Neutrophil Recruitment. Journal of Leukocyte Biology, 105, 449-462. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Adrover, J.M., Nicolás-Ávila, J.A. and Hidalgo, A. (2016) Aging: A Temporal Dimension for Neutrophils. Trends in Immunology, 37, 334-345. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Basu, S., Hodgson, G., Katz, M. and Dunn, A.R. (2002) Evaluation of Role of G-CSF in the Production, Survival, and Release of Neutrophils from Bone Marrow into Circulation. Blood, 100, 854-861. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Galli, S.J., Borregaard, N. and Wynn, T.A. (2011) Phenotypic and Functional Plasticity of Cells of Innate Immunity: Macrophages, Mast Cells and Neutrophils. Nature Immunology, 12, 1035-1044. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Mayadas, T.N. and Cullere, X. (2005) Neutrophil Β2 Integrins: Moderators of Life or Death Decisions. Trends in Immunology, 26, 388-395. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Dancey, J.T., Deubelbeiss, K.A., Harker, L.A. and Finch, C.A. (1976) Neutrophil Kinetics in Man. Journal of Clinical Investigation, 58, 705-715. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Pillay, J., den Braber, I., Vrisekoop, N., Kwast, L.M., de Boer, R.J., Borghans, J.A.M., et al. (2010) In Vivo Labeling with 2H2O Reveals a Human Neutrophil Lifespan of 5.4 Days. Blood, 116, 625-627. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Tofts, P.S., Chevassut, T., Cutajar, M., Dowell, N.G. and Peters, A.M. (2011) Doubts Concerning the Recently Reported Human Neutrophil Lifespan of 5.4 Days. Blood, 117, 6050-6052. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Ng, M.S.F., Kwok, I., Tan, L., Shi, C., Cerezo-Wallis, D., Tan, Y., et al. (2024) Deterministic Reprogramming of Neutrophils within Tumors. Science, 383, eadf6493. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Cassetta, L. and Pollard, J.W. (2018) Targeting Macrophages: Therapeutic Approaches in Cancer. Nature Reviews Drug Discovery, 17, 887-904. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Fridlender, Z.G., Sun, J., Kim, S., Kapoor, V., Cheng, G., Ling, L., et al. (2009) Polarization of Tumor-Associated Neutrophil Phenotype by TGF-β: “N1” versus “N2” TAN. Cancer Cell, 16, 183-194. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Shaul, M.E. and Fridlender, Z.G. (2019) Tumour-Associated Neutrophils in Patients with Cancer. Nature Reviews Clinical Oncology, 16, 601-620. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Ohms, M., Möller, S. and Laskay, T. (2020) An Attempt to Polarize Human Neutrophils toward N1 and N2 Phenotypes in Vitro. Frontiers in Immunology, 11, Article ID: 532. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Mantovani, A., Cassatella, M.A., Costantini, C. and Jaillon, S. (2011) Neutrophils in the Activation and Regulation of Innate and Adaptive Immunity. Nature Reviews Immunology, 11, 519-531. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Granot, Z., Henke, E., Comen, E.A., King, T.A., Norton, L. and Benezra, R. (2011) Tumor Entrained Neutrophils Inhibit Seeding in the Premetastatic Lung. Cancer Cell, 20, 300-314. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Masucci, M.T., Minopoli, M. and Carriero, M.V. (2019) Tumor Associated Neutrophils. Their Role in Tumorigenesis, Metastasis, Prognosis and Therapy. Frontiers in Oncology, 9, Article ID: 1146. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Wang, L., Liu, Y., Dai, Y., Tang, X., Yin, T., Wang, C., et al. (2023) Single-Cell RNA-Seq Analysis Reveals Bhlhe40-Driven Pro-Tumour Neutrophils with Hyperactivated Glycolysis in Pancreatic Tumour Microenvironment. Gut, 72, 958-971. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Wu, Y., Ma, J., Yang, X., Nan, F., Zhang, T., Ji, S., et al. (2024) Neutrophil Profiling Illuminates Anti-Tumor Antigen-Presenting Potency. Cell, 187, 1422-1439.e24. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Mishalian, I., Bayuh, R., Levy, L., Zolotarov, L., Michaeli, J. and Fridlender, Z.G. (2013) Tumor-Associated Neutrophils (TAN) Develop Pro-Tumorigenic Properties during Tumor Progression. Cancer Immunology, Immunotherapy, 62, 1745-1756. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Andzinski, L., Kasnitz, N., Stahnke, S., Wu, C., Gereke, M., von Köckritz‐Blickwede, M., et al. (2016) Type IIFNs Induce Anti‐Tumor Polarization of Tumor Associated Neutrophils in Mice and Human. International Journal of Cancer, 138, 1982-1993. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Borregaard, N. (2010) Neutrophils, from Marrow to Microbes. Immunity, 33, 657-670. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Zhu, Y.P., Padgett, L., Dinh, H.Q., Marcovecchio, P., Blatchley, A., Wu, R., et al. (2018) Identification of an Early Unipotent Neutrophil Progenitor with Pro-Tumoral Activity in Mouse and Human Bone Marrow. Cell Reports, 24, 2329-2341.e8. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Sagiv, J.Y., Michaeli, J., Assi, S., Mishalian, I., Kisos, H., Levy, L., et al. (2015) Phenotypic Diversity and Plasticity in Circulating Neutrophil Subpopulations in Cancer. Cell Reports, 10, 562-573. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Brandau, S., Trellakis, S., Bruderek, K., Schmaltz, D., Steller, G., Elian, M., et al. (2011) Myeloid-Derived Suppressor Cells in the Peripheral Blood of Cancer Patients Contain a Subset of Immature Neutrophils with Impaired Migratory Properties. Journal of Leukocyte Biology, 89, 311-317. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Lang, S., Bruderek, K., Kaspar, C., Höing, B., Kanaan, O., Dominas, N., et al. (2018) Clinical Relevance and Suppressive Capacity of Human Myeloid-Derived Suppressor Cell Subsets. Clinical Cancer Research, 24, 4834-4844. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Lakschevitz, F.S., Hassanpour, S., Rubin, A., Fine, N., Sun, C. and Glogauer, M. (2016) Identification of Neutrophil Surface Marker Changes in Health and Inflammation Using High-Throughput Screening Flow Cytometry. Experimental Cell Research, 342, 200-209. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Li, S., Cong, X., Gao, H., Lan, X., Li, Z., Wang, W., et al. (2019) Tumor-Associated Neutrophils Induce EMT by Il-17a to Promote Migration and Invasion in Gastric Cancer Cells. Journal of Experimental & Clinical Cancer Research, 38, Article No. 6. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Quaas, A., Pamuk, A., Klein, S., Quantius, J., Rehkaemper, J., Barutcu, A.G., et al. (2021) Sex-Specific Prognostic Effect of CD66b-Positive Tumor-Infiltrating Neutrophils (TANs) in Gastric and Esophageal Adenocarcinoma. Gastric Cancer, 24, 1213-1226. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Chen, Q., Yin, H., Liu, S., Shoucair, S., Ding, N., Ji, Y., et al. (2022) Prognostic Value of Tumor-Associated N1/N2 Neutrophil Plasticity in Patients Following Radical Resection of Pancreas Ductal Adenocarcinoma. Journal for ImmunoTherapy of Cancer, 10, e005798. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Nawaz, A., Bilal, M., Fujisaka, S., Kado, T., Aslam, M.R., Ahmed, S., et al. (2022) Depletion of CD206+ M2-Like Macrophages Induces Fibro-Adipogenic Progenitors Activation and Muscle Regeneration. Nature Communications, 13, Article No. 7058. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Modak, M., Mattes, A., Reiss, D., Skronska-Wasek, W., Langlois, R., Sabarth, N., et al. (2022) CD206+ Tumor-Associated Macrophages Cross-Present Tumor Antigen and Drive Antitumor Immunity. JCI Insight, 7, e155022.
|
|
[34]
|
Mishalian, I., Bayuh, R., Eruslanov, E., Michaeli, J., Levy, L., Zolotarov, L., et al. (2014) Neutrophils Recruit Regulatory T‐Cells into Tumors via Secretion of CCL17—A New Mechanism of Impaired Antitumor Immunity. International Journal of Cancer, 135, 1178-1186. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Demers, M., Krause, D.S., Schatzberg, D., Martinod, K., Voorhees, J.R., Fuchs, T.A., et al. (2012) Cancers Predispose Neutrophils to Release Extracellular DNA Traps That Contribute to Cancer-Associated Thrombosis. Proceedings of the National Academy of Sciences, 109, 13076-13081. [Google Scholar] [CrossRef] [PubMed]
|