|
[1]
|
Yu, Z., Loisel, J., Brosseau, D.P., Beilman, D.W. and Hunt, S.J. (2010) Global Peatland Dynamics since the Last Glacial Maximum: Global Peatlands since the LGM. Geophysical Research Letters, 37, L13402 [Google Scholar] [CrossRef]
|
|
[2]
|
苏卓侠, 苏冰倩, 上官周平. 植物凋落物分解对土壤有机碳稳定性影响的研究进展[J]. 水土保持研究, 2022, 29(2): 406-413.
|
|
[3]
|
Bradford, M.A., Berg, B., Maynard, D.S., Wieder, W.R. and Wood, S.A. (2015) Understanding the Dominant Controls on Litter Decomposition. Journal of Ecology, 104, 229-238. [Google Scholar] [CrossRef]
|
|
[4]
|
宋梅玲, 王玉琴, 王宏生, 等. 内生真菌对高寒草地紫花针茅凋落物分解的影响[J]. 草业学报, 2021, 30(9): 150-158.
|
|
[5]
|
崔超. 人工增雨和布氏田鼠对内蒙古草原植物凋落物分解和群落结构的影响[D]: [硕士学位论文]. 扬州: 扬州大学, 2019.
|
|
[6]
|
Jin, X., Sun, X., Li, H., Zhao, D., Li, D., Wang, L., et al. (2020) Changes of Plant Species Diversity and Biomass with Reclaimed Marshes Restoration. Journal of Forestry Research, 32, 133-142. [Google Scholar] [CrossRef]
|
|
[7]
|
Beguin, J., Pothier, D. and Côté, S.D. (2011) Deer Browsing and Soil Disturbance Induce Cascading Effects on Plant Communities: A Multilevel Path Analysis. Ecological Applications, 21, 439-451. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Bagchi, S., Namgail, T. and Ritchie, M.E. (2006) Small Mammalian Herbivores as Mediators of Plant Community Dynamics in the High-Altitude Arid Rangelands of Trans-Himalaya. Biological Conservation, 127, 438-442. [Google Scholar] [CrossRef]
|
|
[9]
|
Borer, E.T., Seabloom, E.W., Gruner, D.S., Harpole, W.S., Hillebrand, H., Lind, E.M., et al. (2014) Herbivores and Nutrients Control Grassland Plant Diversity via Light Limitation. Nature, 508, 517-520. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Osipov, A.F., Startsev, V.V. and Dymov, A.A. (2026) Increasing the Number of Forest Machinery Passes and Removing the Organic Layer Reduces Soil Respiration on Skid Trails within Clearcuts of Boreal Coniferous-Deciduous Stands. Soil and Tillage Research, 256, Article ID: 106867. [Google Scholar] [CrossRef]
|
|
[11]
|
黄咸雨, 张一鸣, 薛建涛, 等. 升温和水位下降对泥炭地碳库稳定性的影响[J]. 地球科学, 2025, 50(3): 846-856.
|
|
[12]
|
Ji, C., Agathokleous, E., Ju, L., Yu, Z., Zhu, X., Jiang, T., et al. (2025) Growing Threat of Climate-Induced Abrupt Dry-Wet Transitions in Northern China. Atmospheric Research, 326, Article ID: 108325. [Google Scholar] [CrossRef]
|
|
[13]
|
李军祥, 张扬建, 朱军涛, 等. 藏北高山嵩草草甸群落特征及生产力对模拟增温幅度的响应[J]. 生态学报, 2019, 39(2): 474-485.
|
|
[14]
|
刘桢迪, 宋艳宇, 王宪伟, 等. 冻土区泥炭地植物生长及碳氮特征对模拟增温的响应[J]. 生态环境学报, 2022, 31(9): 1765-1772.
|
|
[15]
|
Austin, A.T. and Ballaré, C.L. (2024) Photodegradation in Terrestrial Ecosystems. New Phytologist, 244, 769-785. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Wickings, K., Grandy, A.S., Reed, S.C. and Cleveland, C.C. (2012) The Origin of Litter Chemical Complexity during Decomposition. Ecology Letters, 15, 1180-1188. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
于志国, 唐健, 王红岩, 等. 气候变暖对典型湿地碳汇功能动态影响研究进展[J]. 中国农村水利水电, 2022(10): 1-5.
|
|
[18]
|
薛凡, 刘金福, 兰思仁, 等. 戴云山国家级自然保护区植物多样性评价与可持续发展策略研究[J]. 武夷科学, 2013, 29: 6-15.
|
|
[19]
|
Cotrufo, M.F., Soong, J.L., Horton, A.J., Campbell, E.E., Haddix, M.L., Wall, D.H., et al. (2015) Formation of Soil Organic Matter via Biochemical and Physical Pathways of Litter Mass Loss. Nature Geoscience, 8, 776-779. [Google Scholar] [CrossRef]
|
|
[20]
|
贾丙瑞. 凋落物分解及其影响机制[J]. 植物生态学报, 2019, 43(8): 648-657.
|
|
[21]
|
Bastianoni, A., Chacón, N., Méndez, C.L. and Flores, S. (2015) Decomposition Dynamics of Mixed Litter in a Seasonally Flooded Forest near the Orinoco River. Acta Oecologica, 64, 21-28. [Google Scholar] [CrossRef]
|
|
[22]
|
Kou, L., et al. (2020) Diversity-Decomposition Relationships in Forests Worldwide. eLife, 9, e55813.
|
|
[23]
|
Berglund, S.L., Ågren, G.I. and Ekblad, A. (2013) Carbon and Nitrogen Transfer in Leaf Litter Mixtures. Soil Biology and Biochemistry, 57, 341-348. [Google Scholar] [CrossRef]
|
|
[24]
|
Hättenschwiler, S., Tiunov, A.V. and Scheu, S. (2005) Biodiversity and Litter Decomposition in Terrestrial Ecosystems. Annual Review of Ecology, Evolution, and Systematics, 36, 191-218. [Google Scholar] [CrossRef]
|
|
[25]
|
Zhang, X., Wang, Y., Jiang, W. and Mao, R. (2020) Effect of Expanded Shrub Litter on Decomposition of Graminoid Litter in a Temperate Freshwater Marsh. Plant and Soil, 451, 409-418. [Google Scholar] [CrossRef]
|
|
[26]
|
López, J., Vancampenhout, K., Muys, B. and Ponette, Q. (2026) Tree Community Composition Modulates Early-Stage Decomposition of Standard Litter through Chemical and Physical Engineering. Forest Ecosystems, 15, Article ID: 100387. [Google Scholar] [CrossRef]
|
|
[27]
|
严珺, 吴纪华. 植物多样性对土壤动物影响的研究进展[J]. 土壤, 2018, 50(2): 231-238.
|
|
[28]
|
Beck, J.J., Hernández, D.L., Pasari, J.R. and Zavaleta, E.S. (2015) Grazing Maintains Native Plant Diversity and Promotes Community Stability in an Annual Grassland. Ecological Applications, 25, 1259-1270. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Herrero‐Jáuregui, C. and Oesterheld, M. (2018) Effects of Grazing Intensity on Plant Richness and Diversity: A Meta‐analysis. Oikos, 127, 757-766. [Google Scholar] [CrossRef]
|
|
[30]
|
van der Plas, F., et al. (2016) Different-Sized Grazers Have Distinctive Effects on Plant Functional Composition of an African Savannah. Journal of Ecology, 104, 864-875.
|
|
[31]
|
Davidson, A.D., Detling, J.K. and Brown, J.H. (2012) Ecological Roles and Conservation Challenges of Social, Burrowing, Herbivorous Mammals in the World’s Grasslands. Frontiers in Ecology and the Environment, 10, 477-486. [Google Scholar] [CrossRef]
|
|
[32]
|
Cappelli, S.L., Pichon, N.A., Mannall, T. and Allan, E. (2022) Partitioning the Effects of Plant Diversity on Ecosystem Functions at Different Trophic Levels. Ecological Monographs, 92, e1521. [Google Scholar] [CrossRef]
|
|
[33]
|
李琨, 徐锟, 张丽华, 等. 新巴尔虎右旗草原鼠害与气候因子的关系[J]. 干旱区资源与环境, 2017, 31(4): 178-182.
|