|
[1]
|
中华医学会糖尿病学分会. 胰岛素抵抗相关临床问题专家共识(2022版) [J]. 中华糖尿病杂志, 2022, 14(12): 1210-1215.
|
|
[2]
|
Cleasby, M.E., Jamieson, P.M. and Atherton, P.J. (2016) Insulin Resistance and Sarcopenia: Mechanistic Links between Common Co-morbidities. Journal of Endocrinology, 229, R67-R81. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Hong, S. and Choi, K.M. (2020) Sarcopenic Obesity, Insulin Resistance, and Their Implications in Cardiovascular and Metabolic Consequences. International Journal of Molecular Sciences, 21, Article 494. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Bonora, E., Targher, G., Alberiche, M., Bonadonna, R.C., Saggiani, F., Zenere, M.B., et al. (2000) Homeostasis Model Assessment Closely Mirrors the Glucose Clamp Technique in the Assessment of Insulin Sensitivity: Studies in Subjects with Various Degrees of Glucose Tolerance and Insulin Sensitivity. Diabetes Care, 23, 57-63. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Sun, Y., Ji, H., Sun, W., An, X. and Lian, F. (2025) Triglyceride Glucose (TyG) Index: A Promising Biomarker for Diagnosis and Treatment of Different Diseases. European Journal of Internal Medicine, 131, 3-14. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Simental-Mendía, L.E., Rodríguez-Morán, M. and Guerrero-Romero, F. (2008) The Product of Fasting Glucose and Triglycerides as Surrogate for Identifying Insulin Resistance in Apparently Healthy Subjects. Metabolic Syndrome and Related Disorders, 6, 299-304. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Guerrero-Romero, F., Simental-Mendía, L.E., González-Ortiz, M., Martínez-Abundis, E., Ramos-Zavala, M.G., Hernández-González, S.O., et al. (2010) The Product of Triglycerides and Glucose, a Simple Measure of Insulin Sensitivity. Comparison with the Euglycemic-Hyper-Insulinemic Clamp. The Journal of Clinical Endocrinology & Metabolism, 95, 3347-3351. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Yu, L., Li, Y., Ma, R., Guo, H., Zhang, X., Yan, Y., et al. (2022) Construction of a Personalized Insulin Resistance Risk Assessment Tool in Xinjiang Kazakhs Based on Lipid-and Obesity-Related Indices. Risk Management and Healthcare Policy, 15, 631-641. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Du, T., Yuan, G., Zhang, M., Zhou, X., Sun, X. and Yu, X. (2014) Clinical Usefulness of Lipid Ratios, Visceral Adiposity Indicators, and the Triglycerides and Glucose Index as Risk Markers of Insulin Resistance. Cardiovascular Diabetology, 13, Article No. 146. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Hirschler, V., Molinari, C., Edit, S., Miorin, C., Bocco, P., Guntsche, Z., et al. (2022) Ability of TyG Index as a Marker of Insulin Resistance in Argentinean School Children. Frontiers in Pediatrics, 10, Article 885242. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Song, K., Park, G., Lee, H.S., Choi, Y., Oh, J.S., Choi, H.S., et al. (2021) Prediction of Insulin Resistance by Modified Triglyceride Glucose Indices in Youth. Life, 11, Article 286. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Zheng, Y., Yin, G., Chen, F., Lin, L. and Chen, Y. (2022) Evaluation of Triglyceride Glucose Index and Homeostasis Model of Insulin Resistance in Patients with Polycystic Ovary Syndrome. International Journal of Women’s Health, 14, 1821-1829. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Bello-Chavolla, O.Y., Almeda-Valdes, P., Gomez-Velasco, D., Viveros-Ruiz, T., Cruz-Bautista, I., Romo-Romo, A., et al. (2018) METS-IR, a Novel Score to Evaluate Insulin Sensitivity, Is Predictive of Visceral Adiposity and Incident Type 2 Diabetes. European Journal of Endocrinology, 178, 533-544. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
McLaughlin, T., Abbasi, F., Cheal, K., Chu, J., Lamendola, C. and Reaven, G. (2003) Use of Metabolic Markers to Identify Overweight Individuals Who Are Insulin Resistant. Annals of Internal Medicine, 139, 802-809. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Yang, L., Feng, Y., Wang, Y., Liu, C. and Gao, D. (2024) Relationship between Four Insulin Resistance Surrogates and Regression to Normoglycemia from Prediabetes among Chinese Adults: A Longitudinal Cohort Study. Endocrine, 86, 980-993. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Lee, Y.C., Lee, J.W. and Kwon, Y.J. (2022) Comparison of the Triglyceride Glucose (TyG) Index, Triglyceride to High-Density Lipoprotein Cholesterol (TG/HDL-C) Ratio, and Metabolic Score for Insulin Resistance (METS-IR) Associated with Periodontitis in Korean Adults. Therapeutic Advances in Chronic Disease, 13, Article 20406223221122671. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Li, X., Xue, Y., Dang, Y., Liu, W., Wang, Q., Zhao, Y., et al. (2022) Association of Non-Insulin-Based Insulin Resistance Indices with Risk of Incident Prediabetes and Diabetes in a Chinese Rural Population: A 12-Year Prospective Study. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 15, 3809-3819. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Mu, X., Wu, A., Hu, H., Yang, M. and Zhou, H. (2024) Correlation between Alternative Insulin Resistance Indexes and Diabetic Kidney Disease: A Retrospective Study. Endocrine, 84, 136-147. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Zhu, Y.Y., He, J.B., Li, X., et al. (2022) Comparing the Effectiveness of Different Indicators of Insulin Resistance in Predicting Diabetes among Adults with Sarcopenia from the NHANES (1999-2018). Medicine, 13, 1-15.
|
|
[20]
|
Duan, M.X., Zhao, X., Li, S.L., et al. (2024) Metabolic Score for Insulin Resistance (METS-IR) Predicts All-Cause and Cardiovascular Mortality in the General Population: Evidence from NHANES 2001-2018. Cardiovascular Diabetology, 23, Article No. 243. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Magliano, D.J., Boyko, E.J. and IDF Diabetes Atlas 10th Edition Scientific Committee (2021) IDF Diabetes Atlas. 10th Edition, International Diabetes Federation.
|
|
[22]
|
Kahn, S.E. (2003) The Relative Contributions of Insulin Resistance and Beta-Cell Dysfunction to the Pathophysiology of Type 2 Diabetes. Diabetologia, 46, 3-19. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Wang, Z., Zhao, L. and He, S. (2021) Triglyceride-Glucose Index as Predictor for Future Type 2 Diabetes Mellitus in a Chinese Population in Southwest China: A 15-Year Prospective Study. Endocrine, 72, 124-131. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Lee, D.Y., Lee, E.S., Kim, J.H., Park, S.E., Park, C., Oh, K., et al. (2016) Predictive Value of Triglyceride Glucose Index for the Risk of Incident Diabetes: A 4-Year Retrospective Longitudinal Study. PLOS ONE, 11, e0163465. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Kim, J.A., Kim, J., Roh, E., Hong, S., Lee, Y., Baik, S.H., et al. (2021) Triglyceride and Glucose Index and the Risk of Gestational Diabetes Mellitus: A Nationwide Population-Based Cohort Study. Diabetes Research and Clinical Practice, 171, Article 108533. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Yao, H., Sun, Z., Yuan, W., Shao, C., Cai, H., Li, L., et al. (2022) Relationship between the Triglyceride-Glucose Index and Type 2 Diabetic Macroangiopathy: A Single-Center Retrospective Analysis. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 15, 3483-3497. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Lv, L., Zhou, Y., Chen, X., Gong, L., Wu, J., Luo, W., et al. (2021) Relationship between the Tyg Index and Diabetic Kidney Disease in Patients with Type-2 Diabetes Mellitus. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 14, 3299-3306. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Low, S., Pek, S., Moh, A., Ang, K., Khoo, J., Shao, Y., et al. (2022) Triglyceride-Glucose Index Is Prospectively Associated with Chronic Kidney Disease Progression in Type 2 Diabetes—Mediation by Pigment Epithelium-Derived Factor. Diabetes and Vascular Disease Research, 19, Article 14791641221113784. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Gao, Y.M., Chen, W.J., Deng, Z.L., et al. (2023) Association between Triglyceride-Glucose Index and Risk of End-Stage Renal Disease in Patients with Type 2 Diabetes Mellitus and Chronic Kidney Disease. Frontiers in Endocrinology, 14, Article 1150980. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Neelam, K., Aung, K.C.Y., Ang, K., Tavintharan, S., Sum, C.F. and Lim, S.C. (2023) Association of Triglyceride Glucose Index with Prevalence and Incidence of Diabetic Retinopathy in a Singaporean Population. Clinical Ophthalmology, 17, 445-454. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Yao, L., Wang, X., Zhong, Y., Wang, Y., Wu, J., Geng, J., et al. (2021) The Triglyceride-Glucose Index Is Associated with Diabetic Retinopathy in Chinese Patients with Type 2 Diabetes: A Hospital-Based, Nested, Case-Control Study. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 14, 1547-1555. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Jeyaseeli, A., R, G., Mathivanan, D. and Prabagaran, A. (2023) Assessment of Triglyceride Glucose Index in Type 2 Diabetes Mellitus Patients with and without Cardiac Autonomic Neuropathy. Cureus, 15, e42541. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Chen, W., Wang, X., Jiang, Q., Wu, J., Shi, W., Wang, X., et al. (2023) Association between Triglyceride Glucose Index and Severity of Diabetic Foot Ulcers in Type 2 Diabetes Mellitus. Journal of Foot and Ankle Research, 16, Article 68 [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Rochlani, Y., Pothineni, N.V., Kovelamudi, S. and Mehta, J.L. (2017) Metabolic Syndrome: Pathophysiology, Management, and Modulation by Natural Compounds. Therapeutic Advances in Cardiovascular Disease, 11, 215-225. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Saklayen, M.G. (2018) The Global Epidemic of the Metabolic Syndrome. Current Hypertension Reports, 20, Article No. 12. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Kang, S.W., Kim, S.K., Kim, Y.S. and Park, M. (2023) Risk Prediction of the Metabolic Syndrome Using TyG Index and SNPs: A 10-Year Longitudinal Prospective Cohort Study. Molecular and Cellular Biochemistry, 478, 39-45. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Wan, H., Cao, H. and Ning, P. (2024) Superiority of the Triglyceride Glucose Index over the Homeostasis Model in Predicting Metabolic Syndrome Based on NHANES Data Analysis. Scientific Reports, 14, Article No. 15499. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Nabipoorashrafi, S.A., Seyedi, S.A., Rabizadeh, S., Ebrahimi, M., Ranjbar, S.A., Reyhan, S.K., et al. (2022) The Accuracy of Triglyceride-Glucose (TyG) Index for the Screening of Metabolic Syndrome in Adults: A Systematic Review and Meta-Analysis. Nutrition, Metabolism and Cardiovascular Diseases, 32, 2677-2688. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Lou, T.W., Yang, R.X. and Fan, J.G. (2024) The Global Burden of Fatty Liver Disease: The Major Impact of China. Hepatobiliary Surgery and Nutrition, 13, 119-123. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Cusi, K., Isaacs, S., Barb, D., Basu, R., Caprio, S., Garvey, W.T., et al. (2022) American Association of Clinical Endocrinology Clinical Practice Guideline for the Diagnosis and Management of Nonalcoholic Fatty Liver Disease in Primary Care and Endocrinology Clinical Settings: Co-Sponsored by the American Association for the Study of Liver Diseases (AASLD). Endocrine Practice, 28, 528-562. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Khanmohammadi, S., Ramos-Molina, B. and Kuchay, M.S. (2023) NOD-Like Receptors in the Pathogenesis of Metabolic (Dysfunction)-Associated Fatty Liver Disease: Therapeutic Agents Targeting Nod-Like Receptors. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 17, Article 102788. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
El-Agroudy, N.N., Kurzbach, A., Rodionov, R.N., O’Sullivan, J., Roden, M., Birkenfeld, A.L., et al. (2019) Are Lifestyle Therapies Effective for NAFLD Treatment? Trends in Endocrinology & Metabolism, 30, 701-709. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Khanmohammadi, S. and Kuchay, M.S. (2022) Toll-Like Receptors and Metabolic (Dysfunction)-Associated Fatty Liver Disease. Pharmacological Research, 185, Article 106507. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Khamseh, M.E., Malek, M., Jahangiri, S., Nobarani, S., Hekmatdoost, A., Salavatizadeh, M., et al. (2024) Insulin Resistance/Sensitivity Measures as Screening Indicators of Metabolic-Associated Fatty Liver Disease and Liver Fibrosis. Digestive Diseases and Sciences, 69, 1430-1443. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Su, Z., Xue, J., Sun, J., Ding, Y. and Ji, C. (2025) Triglyceride Glucose Index as a Causal Risk Factor for Metabolic Dysfunction-Associated Fatty Liver Disease: Evidence from the National Health and Nutrition Examination Survey 2017-2020 and Mendelian Randomization. European Journal of Gastroenterology & Hepatology, 37, 1292-1301. [Google Scholar] [CrossRef]
|
|
[46]
|
Liu, C., Li, C., Fu, J., Bai, L., Wang, M., Song, P., et al. (2025) Association between the Tyg Index and MAFLD and Its Subtypes: A Population-Based Cross-Sectional Study. BMC Gastroenterology, 25, Article No. 652. [Google Scholar] [CrossRef]
|
|
[47]
|
Simental-Mendia, L.E., Simental-Mendia, E., Rodriguez-Hernandez, H., et al. (2016) The Product of Triglycerides and Glucose as Biomarker for Screening Simple Steatosis and NASH in Asymptomatic Women. Annals of Hepatology, 15, 715-720.
|
|
[48]
|
Wunderer, F., Traeger, L., Sigurslid, H.H., Meybohm, P., Bloch, D.B. and Malhotra, R. (2020) The Role of Hepcidin and Iron Homeostasis in Atherosclerosis. Pharmacological Research, 153, Article 104664. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Roth, G.A., Mensah, G.A., Johnson, C.O., et al. (2020) Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update from the GBD 2019 Study. Journal of the American College of Cardiology, 76, 2982-3021.
|
|
[50]
|
Ouyang, J., Wang, H. and Huang, J. (2023) The Role of Lactate in Cardiovascular Diseases. Cell Communication and Signaling, 21, Article No. 317. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Wang, W., Hu, M., Liu, H., Zhang, X., Li, H., Zhou, F., et al. (2021) Global Burden of Disease Study 2019 Suggests That Metabolic Risk Factors Are the Leading Drivers of the Burden of Ischemic Heart Disease. Cell Metabolism, 33, 1943-1956.e2. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Bornfeldt, K.E. and Tabas, I. (2011) Insulin Resistance, Hyperglycemia, and Atherosclerosis. Cell Metabolism, 14, 575-585. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Hong, S., Han, K. and Park, C.Y. (2020) The Triglyceride Glucose Index Is a Simple and Low-Cost Marker Associated with Atherosclerotic Cardiovascular Disease: A Population-Based Study. BMC Medicine, 18, Article No. 361. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Ding, X., Wang, X., Wu, J., Zhang, M. and Cui, M. (2021) Triglyceride-Glucose Index and the Incidence of Atherosclerotic Cardiovascular Diseases: A Meta-Analysis of Cohort Studies. Cardiovascular Diabetology, 20, Article No. 76. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Sun, J.H., Chen, X.J., He, L. and Zhao, Y.F. (2024) Association between the Triglyceride Glucose Index and Atherosclerotic Cardiovascular Disease in the General Population: Analysis of the National Health and Nutrition Examination Survey 1999-2004. Frontiers in Endocrinology, 15, Article 1376357. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Wang, H., Fu, Q., Xiao, S., Ma, X., Liao, Y., Kang, C., et al. (2024) Predictive Value of the Triglyceride-Glucose Index for Short-and Long-Term All-Cause Mortality in Patients with Critical Coronary Artery Disease: A Cohort Study from the MIMIC-IV Database. Lipids in Health and Disease, 23, Article No. 263. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Fiorentino, T.V., Marini, M.A., Succurro, E., Andreozzi, F. and Sesti, G. (2019) Relationships of Surrogate Indexes of Insulin Resistance with Insulin Sensitivity Assessed by Euglycemic Hyperinsulinemic Clamp and Subclinical Vascular Damage. BMJ Open Diabetes Research & Care, 7, e000911. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Cruz-Jentoft, A.J. and Sayer, A.A. (2019) Sarcopenia. The Lancet, 393, 2636-2646. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Donini, L.M., Busetto, L., Bischoff, S.C., Cederholm, T., Ballesteros-Pomar, M.D., Batsis, J.A., et al. (2022) Definition and Diagnostic Criteria for Sarcopenic Obesity: ESPEN and EASO Consensus Statement. Clinical Nutrition, 41, 990-1000. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Petermann-Rocha, F., Balntzi, V., Gray, S.R., Lara, J., Ho, F.K., Pell, J.P., et al. (2021) Global Prevalence of Sarcopenia and Severe Sarcopenia: A Systematic Review and Meta-Analysis. Journal of Cachexia, Sarcopenia and Muscle, 13, 86-99. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Vieira, F.T., Godziuk, K., Lamarca, F., Melendez-Araújo, M.S., Lima, R.M., Prado, C.M., et al. (2022) Sarcopenic Obesity Diagnosis by Different Criteria Mid to Long-Term Post-Bariatric Surgery. Clinical Nutrition, 41, 1932-1941. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Damluji, A.A., Alfaraidhy, M., AlHajri, N., Rohant, N.N., Kumar, M., Al Malouf, C., et al. (2023) Sarcopenia and Cardiovascular Diseases. Circulation, 147, 1534-1553. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Zhang, H., Lin, S., Gao, T., Zhong, F., Cai, J., Sun, Y., et al. (2018) Association between Sarcopenia and Metabolic Syndrome in Middle-Aged and Older Non-Obese Adults: A Systematic Review and Meta-Analysis. Nutrients, 10, Article 364. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Chuan, F., Chen, S., Ye, X., Kang, S., Mei, M., Tian, W., et al. (2022) Sarcopenic Obesity Predicts Negative Health Outcomes among Older Patients with Type 2 Diabetes: The Ageing and Body Composition of Diabetes (ABCD) Cohort Study. Clinical Nutrition, 41, 2740-2748. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Poggiogalle, E., Lubrano, C., Sergi, G., Coin, A., Gnessi, L., Mariani, S., et al. (2016) Sarcopenic Obesity and Metabolic Syndrome in Adult Caucasian Subjects. The Journal of Nutrition, Health and Aging, 20, 958-963. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Park, M.J. and Choi, K.M. (2023) Interplay of Skeletal Muscle and Adipose Tissue: Sarcopenic Obesity. Metabolism, 144, Article 155577. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Yang, J., Liu, C., Zhao, S., Wang, L., Wu, G., Zhao, Z., et al. (2024) The Association between the Triglyceride-Glucose Index and Sarcopenia: Data from the NHANES 2011-2018. Lipids in Health and Disease, 23, Article No. 219. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Chen, R., Zhang, L., Zhang, M., Wang, Y., Liu, D., Li, Z., et al. (2022) The Triglyceride-Glucose Index as a Novel Marker Associated with Sarcopenia in Non-Diabetic Patients on Maintenance Hemodialysis. Renal Failure, 44, 1616-1622. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Chen, Y., Liu, C. and Hu, M. (2024) Association between Triglyceride-Glucose Index and Sarcopenia in China: A Nationally Representative Cohort Study. Experimental Gerontology, 190, Article 112419. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Li, M., Liu, Y., Gao, L., Zheng, Y., Chen, L., Wang, Y., et al. (2025) Higher Triglyceride-Glucose Index and Triglyceride Glucose-Body Mass Index Protect against Sarcopenia in Chinese Middle-Aged and Older Non-Diabetic Women: A Cross-Sectional Study. Frontiers in Public Health, 12, Article 1475330. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Xu, C., He, L., Tu, Y., Guo, C., Lai, H., Liao, C., et al. (2024) Longitudinal Analysis of Insulin Resistance and Sarcopenic Obesity in Chinese Middle-Aged and Older Adults: Evidence from Charls. Frontiers in Public Health, 12, Article 1472456. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Zhao, Z., Cai, R., Tao, L., Sun, Y. and Sun, K. (2025) Association between Triglyceride-Glucose Index and Sarcopenic Obesity in Adults: A Population-Based Study. Frontiers in Nutrition, 12, Article 1452512. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Kim, B., Kim, G., Lee, Y., Taniguchi, K., Isobe, T. and Oh, S. (2023) Triglyceride-Glucose Index as a Potential Indicator of Sarcopenic Obesity in Older People. Nutrients, 15, Article 555. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Huang, Q., Du, X., Ouyang, W., Wang, J. and Liu, X. (2025) Relationship between Triglyceride-Glucose Index and All-Cause Mortality in Older Adults with Sarcopenic Obesity. Metabolism Open, 27, Article 100388. [Google Scholar] [CrossRef]
|
|
[75]
|
Cheng, H., Hu, Y., Zhao, H., Zhou, G., Wang, G., Ma, C., et al. (2023) Exploring the Association between Triglyceride-Glucose Index and Thyroid Function. European Journal of Medical Research, 28, Article No. 508. [Google Scholar] [CrossRef] [PubMed]
|
|
[76]
|
Kwon, S., Heo, A. and Chun, S. (2023) Triglyceride and Glucose Index for Identifying Abnormal Insulin Sensitivity in Women with Polycystic Ovary Syndrome. Obstetrics & Gynecology Science, 66, 307-315. [Google Scholar] [CrossRef] [PubMed]
|