胰岛素抵抗的实用标志物:TyG指数在代谢性疾病中的研究现状
Practical Markers of Insulin Resistance: The Current Research Status of TyG Index in Metabolic Diseases
摘要: 胰岛素抵抗是2型糖尿病、代谢综合征、代谢相关脂肪性肝病和动脉粥样硬化性心血管疾病等多种代谢性疾病的共同病理基础。近年来,肌少症及肌少性肥胖被认为是以胰岛素抵抗为核心的传统代谢性疾病谱系的新成员。甘油三酯-葡萄糖指数作为一种基于空腹甘油三酯和血糖计算的新型标志物,因其简便、经济的优点,已成为评估胰岛素抵抗的有效替代指标。本综述系统梳理了甘油三酯葡萄糖指数在上述代谢性疾病中的研究进展。
Abstract: Insulin resistance serves as a common pathological basis for various metabolic diseases, including type 2 diabetes, metabolic syndrome, metabolic dysfunction-associated steatotic liver disease, and atherosclerotic cardiovascular disease. In recent years, sarcopenia and sarcopenic obesity have been recognized as new components of the traditional metabolic disease spectrum centered on insulin resistance. The triglyceride-glucose (TyG) index, a novel marker derived from fasting triglyceride and blood glucose levels, has emerged as an effective and economical alternative for assessing insulin resistance due to its simplicity and accessibility. This review systematically summarizes recent research advances regarding the TyG index in the context of these metabolic diseases.
文章引用:方艳, 杨刚毅. 胰岛素抵抗的实用标志物:TyG指数在代谢性疾病中的研究现状[J]. 临床医学进展, 2026, 16(1): 504-513. https://doi.org/10.12677/acm.2026.161069

1. 引言

胰岛素抵抗(insulin resistance, IR)是指机体对胰岛素敏感性下降,从而导致体内产生过多胰岛素的一种疾病状态。IR与糖尿病、代谢综合征、代谢相关脂肪性肝病以及动脉粥样硬化性心血管疾病的发生密切相关,是上述疾病共同的主要致病机制[1]。近年来,骨骼肌作为一种重要代谢器官,其与代谢紊乱的双向作用日益受到关注,其中肌少症及肌少性肥胖是关注的焦点。随着研究深入,肌少症及肌少性肥胖被认为是以IR为核心的传统代谢性疾病谱系的新成员[2] [3]。因此早期识别、评估IR对上述疾病的诊治有重要意义。高胰岛素正常葡萄糖钳夹试验(hyperinsulinemic-euglycemic clamp, HEC)是评估IR的金标准,但其操作难度大、费用昂贵,故临床应用受限[4]。近年来甘油三酯葡萄糖指数(triglyceride-glucose index, TyG)作为一种新型的评估IR的有效替代指标日益受到关注[5],具备易获取、价格低廉的优点,仅需空腹血糖及甘油三酯两组常规检测数据即可获得。

因此,本综述旨在系统梳理TyG指数在以IR为共同病理基础的代谢性疾病中的应用进展,其中不仅包括2型糖尿病和代谢综合征两种经典的内分泌代谢疾病,也涵盖了以IR为病理机制而驱动的重要器官并发症,如代谢相关脂肪性肝病和动脉粥样硬化性心血管疾病。此外,我们还将探讨TyG在肌少症与肌少性肥胖中的新兴证据,以提供一个更全面的视角。

2. IR与甘油三酯葡萄糖指数

2008年,Simental-Mendía等[6]首次提出TyG指数的概念,其计算公式为TyG = Ln [空腹甘油三酯(mg/dl) × 空腹血糖(mg/dl)/2]。TyG包含糖代谢和脂代谢的参数,是其反映IR的基础。研究证明TyG是评估IR的有效指标,与HEC、HOMA-IR有高度的一致性。Guerrero-Romero等[7]人的研究表明TyG在诊断IR方面与HEC金标准方法有极好的相关性(AUC = 0.858),TyG取值4.68,其估计IR的敏感性为96.5%,特异性为85%。因HEC操作复杂,有研究基于胰岛素稳态模型(homeostatic model assessment for insulin resistance, HOMA-IR)评估TyG与IR间的关系。一项横断面研究表明,TyG与IR强烈相关,TyG与IR风险呈正线性关系[8]。另一项纳入7629例对象的研究也表明TyG与HOMA-IR间的相关性最强,ROC分析结果提示TyG显示出最大的AUC值(男性为0.709,女性为0.711) [9]。TyG不仅能反映成人IR情况,对儿童、青少年及多囊卵巢综合征女性的IR也有良好的预测能力[10]-[12]。因此,基于其与HEC的良好相关性,以及相对于HEC和HOMA-IR的简便性、经济性及可及性,TyG被视为在各级医疗场景和大型流行病学调查中理想的新型IR标志物。

3. TyG与其他简易IR指标的比较

近年来,以TyG指数、胰岛素抵抗代谢指数(metabolic score for insulin resistance, METS-IR)和甘油三酯/高密度脂蛋白胆固醇比值(triglyceride-to-high-density lipoprotein cholesterol ratio, TG/HDL-C)为代表的一系列IR替代指标获得广泛关注。系统比较这些指标在不同疾病中的优劣,对于临床疾病评估选择合适的工具有重要指导意义。

METS-IR指标涵盖了血糖、血脂、肥胖相关指标,其计算公式为METS-IR = [2 × FPG (mg/dl) + TG (mg/dl)] × BMI (kg/m2)/Ln[HDL (mg/dl) [13]。TG/HDL-C仅含血脂相关指标,其计算公式为TG/HDL-C = ln [TG (mg/dl)  × HDL-C (mg/dl)/2] [14]。研究指出,相较于TyG、TG/HDL-C,METS-IR对糖尿病前期、牙周炎疾病有更强的预测能力[15] [16]。但Li等研究发现在预测正常血糖人群的T2DM发病率时,TyG比TG/HDL-C和METS-IR更有用[17]。一项回顾性研究对不同IR指标预测T2DM患者发生糖尿病肾病进行受试者工作曲线分析,结果表明,TyG、METS-IR、TG/HDL-C的曲线下面积无明显差别,但均优于HOMA-IR [18]。Zhu等的研究表明TyG对T2DM人群肌少症发生有更高的预测价值与G/HDL-C、METS-IR相比[19]。在心血管疾病方面,研究发现,METS-IR与全因死亡和心血管死亡有明显相关性[20]。关于三种指标在代谢相关脂肪性肝病、代谢综合征以及肌少性肥胖中的比较的研究目前尚少。TyG在简便性和综合性方面得到了良好平衡;TG/HDL-C更侧重脂代谢;而METS-IR则通过纳入肥胖参数提供了更全面的视角。实际工作中,结合患者情况选择合适的指标,但总体来说,TyG的可靠性和简便性更优。

4. TyG在代谢性疾病中的研究

4.1. TyG与糖尿病

据估计,到2045年,全球糖尿病患病人数将达到7.83亿,糖尿病前期患病人数将高达11.7亿[21]。作为一种累及全身的慢性代谢性疾病,糖尿病引起的各器官系统的并发症极大增加疾病负担,因此对糖尿病前期和糖尿病的防治尤为重要。IR引起的血糖升高是2型糖尿病(type 2 diabetes mellitus, T2DM)的标志,是T2DM发生发展的主要病理生理机制[22]。准确评估IR对T2DM高危人群的早期识别和T2DM及并发症的诊治有重要意义。

研究表明TyG可预测T2DM的发生风险。一项长达15年的队列研究[23]发现TyG是T2DM发生发展最重要的独立预测因子,该研究的结果显示TyG与T2DM发病之间存在非线性关联和阈值效应。当TyG在8.51附近时,T2DM的发病风险最低。当TyG > 8.51时,其每增加一个标准差,T2DM的发病风险增加38%。Lee等[24]对2900名非糖尿病患者数据进行分析,结果表明TyG可作为评估患糖尿病风险的标志物。该研究发现TyG高的受试者患糖尿病的风险高,TyG四分位数中,第3、4分位数的风险比分别为4.06、5.65。TyG对妊娠期糖尿病(gestational diabetes mellitus, GDM)的发生也有一定预测价值。研究表明,孕前、孕早期和整个孕期TyG升高与GDM风险增加密切相关[25]

此外,研究发现TyG可评估糖尿病并发症的发生风险。例如,Yao等[26]对858名T2DM患者进行回顾性分析,结果显示,TyG为9.31时,可预测T2DM患者的大血管并发症,且独立于已知的心血管危险因素。Lv L等[27]的研究发现TyG高的T2DM患者更易发生微量白蛋白尿及肾功能异常,发生糖尿病肾脏病(diabetic kidney disease, DKD)的风险更高。另外,研究发现TyG是DKD进展的独立预测因子[28],与进展为终末期肾病(end-stage renal disease, ESRD)显著正相关,其每增加一个单位,ESRD的风险增加1.5倍[29]。Neelam等[30]的队列研究表明TyG与糖尿病视网膜病变(diabetic retinopathy, DR)的发生显著相关。Yao等[31]研究进一步揭示TyG与DR的严重程度相关。研究[32]观察到与T2DM未合并神经病变相比,合并神经病变的T2DM患者具有更高的TyG值。Chen等[33]发现较高的TyG与糖尿病足的严重程度相关,且在男性、年龄 ≥ 65岁、糖尿病病程超过10年且无外周动脉疾病的患者中关联更显著。

4.2. TyG与代谢综合征

随着超重、肥胖发病率逐年增加,代谢综合征(metabolic syndrome, MetS)的患病率在全球范围内不断增长,且年轻化趋势明显[34]。全球超10亿人患有MetS [35]。MetS聚集IR、糖脂代谢紊乱、血压升高以及肥胖等一众危险因素,极大增加了心血管事件、糖尿病以及众多慢性疾病的发病风险。

近年来,研究发现TyG可有效预测MetS。例如,Kang等[36]的前瞻性队列研究结果发现TyG对患MetS的高风险个体有很高的预测价值。Wan等[37]基于美国国家健康与营养调查(national health and nutrition examination survey, NHANES)数据库进行的研究发现,TyG预测MetS发病风险的能力优于HOMA-IR。一项纳入13项研究的荟萃分析[38]进一步探究了TyG预测MetS的准确性,结果显示,TyG在识别MetS方面展现出很高的诊断准确性,男性的AUC为0.90 (特异性79%,灵敏度为82%),女性的AUC为0.87 (特异性85%,灵敏度81%)。因此综合以上研究,TyG不仅能预测MetS,且较其他指标准确性更高,可成为预测MetS发生风险的优秀指标。

4.3. TyG与代谢相关脂肪性肝病

代谢相关脂肪性肝病(metabolic dysfunction-associated steatotic liver disease, MASLD),既往称非酒精脂肪肝,是全球最常见的慢性肝病,也是健康人体检转氨酶升高的主要病因[39] [40]。据估计,全球MASLD的总患病率约32.4% [39],且因T2DM、肥胖等疾病人数的逐年增加,MASLD的患病率不断增加,极大加重疾病负担[41]。脂肪变性是MASLD的特征,早期通过增加身体活动、饮食干预可逆转[42],但因MASLD早期往往没有症状,随着疾病进展,可能出现脂肪性肝炎、肝纤维化、肝硬化甚至肝癌[43]

因MASLD的发生发展与IR密切相关[44],TyG在MASLD相关研究中受到关注。研究指出TyG是MASLD的可靠预测标志物。例如,Su等[45]结合NHANES数据库和孟德尔随机化分析,结果显示,TyG是MASLD的独立危险因素。Liu等[46]的研究也支持这一点,且研究指出随着TyG升高,MASLD发病率增加。一项研究发现TyG筛查单纯脂肪变性和MASLD具有高敏感性[47]。TyG筛查单纯脂肪变性的最佳截断值为4.58(敏感性0.94,特异性0.69),筛查MASLD的最佳截断值为4.59(敏感性0.87,特异性0.69)。除了筛查MASLD,研究[44]还发现TyG能够预测患病人群的肝纤维化进展,高基线的TyG可能促进肝纤维化。因此,TyG是预测MASLD的有效替代指标。

4.4. TyG与动脉粥样硬化性心血管疾病

心血管疾病(cardiovascular disease, CVD)是全球死亡和疾病负担增加的主要原因,而动脉粥样硬化性心血管疾病(atherosclerotic cardiovascular disease, ASCVD)是CVD的最主要部分,包括冠状动脉疾病(coronary artery disease, CAD)、缺血性卒中、外周动脉疾病三类,其中冠状动脉疾病及缺血性卒中是导致死亡和残疾的主要原因[48]-[50]。研究显示,2019年ASCVD占总死亡人数的22%以及2.455亿残疾人调整生命年[49],其中代谢功能障碍被认为是主要因素[51]。众所周知,血糖和血脂代谢异常是ASCVD发生的主要危险因素。因此,识别血糖、血脂等代谢性危险因素对ASCVD的预防至关重要。

IR是ASCVD发生发展的关键因素[52]。作为评估IR的有效指标,研究证实TyG是预测ASCVD发生风险的有效指标。例如,Hong等[53]对国家健康信息数据库(the national health information database, NHID)进行分析,结果显示,TyG有助于早期识别ASCVD高风险个体,且TyG为最高四分位数组的受试者相较于最低四分位数组发生中风、心肌梗死以及两者同时发生的风险更高,HR值分别为1.259、1.313、1.282。Ding等[54]的荟萃分析表明,高TyG水平与高ASCVD发生风险独立相关。上述研究的研究结局为缺血性卒中和心肌梗死,没有单独评估TyG与外周血管疾病(peripheral arterial disease, PAD)的关系。Sun等[55]研究发现TyG与PAD呈U型相关:当TyG为8.67时,PAD发生风险最低,与CAD和缺血性卒中的相关性与上述研究结果一致。TyG还与CAD的死亡率相关。Wang等[56]对5425名重症CAD患者数据进行分析,结果显示,TyG与重症CAD患者的短期(30天)和长期(365天)全因死亡率显著相关:TyG越高,短期和长期的全因死亡率越高,且这种关系在短期全因死亡率风险评估中更显著。这提示对重症患者的代谢紊乱进行早期干预可改善患者的生存结果。Fiorentino等[57]发现TyG可评估血管动脉粥样硬化和血管硬度,TyG为9.19时可用于评估血管动脉粥样硬化的存在(AUC = 0.739,灵敏度82.5%,特异性59.2%),为8.99可用于评估血管硬度(AUC = 0.579,灵敏度74.4%,特异性41.7%)。

4.5. TyG与肌少症、肌少性肥胖

肌少症是一种以肌肉质量和力量降低为特征的疾病[58],当肌少症与肥胖共存时称为肌少性肥胖[59]。根据2022年全球流行病学调查显示肌少症的患病率约10%~27% [60],肌少性肥胖的患病率为7.9%~23% [61]。研究证实肌少症、肌少性肥胖分别与糖尿病、代谢综合征、心血管疾病等疾病风险增加相关,成为威胁人类健康的重要公共卫生问题[62]-[65]。IR是肌少症、肌少性肥胖发生的重要机制[2]。骨骼肌作为胰岛素作用的主要靶器官,在调节糖代谢过程中起着重要作用。IR发生时,全身组织器官的糖脂代谢紊乱,这造成肌肉分解增强及脂肪堆积增加[66],而骨骼肌减少进一步加重IR,形成恶性循环。

有关TyG与肌少症的关系存在争议。Yang等[67]的研究显示TyG与肌少症的发生呈正相关,且在不伴MetS和T2DM人群中相关性更显著。一项单中心横断面研究通过对非糖尿病性的血液透析患者进行分析,结果提示升高的TyG与肌少症发生风险增加相关[68]。但一项队列研究结果显示TyG与肌少症呈负相关[69]。同样,Li等[70]对460例非糖尿病中年、老年中国女性的数据进行分析,结果显示,较高的TyG及TyG-BMI可预防肌少症。这可能是由于不同数据来源的样本比例、种族、调查方法的差异以及使用的数据库的差异造成。

研究指出TyG升高与肌少性肥胖的发生风险正相关。例如,Xu等[71]的研究发现,TyG及其相关指标与肌少性肥胖的发生率显著正相关。Zhao等[72]的研究结果与之相同,且TyG对肌少性肥胖的影响不受年龄、性别及其他临床并发症的影响。一项对韩国60岁以上人群开展的研究发现,TyG是肌少性肥胖的有效预测指标[73]。随着TyG增加,男女的肥胖率和肌少症发病率增加,男性和女性肌少性肥胖的TyG临界值分别为8.72和8.67。此外,研究[74]发现TyG与肌少性肥胖患者的全因死亡呈U型相关,提示TyG在中等水平能降低肌少性肥胖的全因死亡率。

5. 总结及展望

IR是许多代谢性疾病的重要病理机制,因此准确评估IR对疾病的早期发现和治疗有重要意义。TyG是评估IR的良好指标,具有简单易获取的优点。尽管存在METS-IR等包含肥胖参数的综合指标,但总体而言,TyG在简便性、普适性和证据支持方面仍展现出优势。TyG与多种代谢性疾病相关,对糖尿病及并发症、代谢综合征、代谢相关脂肪性肝病、动脉粥样硬化性心血管病以及肌少症和肌少性肥胖有预测价值,甚至能预测心血管疾病的全因死亡。有研究还发现TyG与甲状腺疾病、多囊卵巢综合征相关[75] [76]。关于TyG在不同疾病中的诊断阈值各不相同,目前尚无统一定论。关于TyG的相关研究多基于数据库进行,国内外数据库差异较大,导致研究结果存在差异,未来需要更多大型临床和基础研究进一步探究TyG与代谢相关疾病的关系,以及在不同疾病中TyG的参考范围或诊断阈值,为TyG在实际临床工作中广泛运用提供理论支持。目前,对肌少症及肌少性肥胖作为代谢相关疾病的研究还比较少,未来需要更多研究进一步探究肌少症、肌少性肥胖与IR的关系。

NOTES

*通讯作者。

参考文献

[1] 中华医学会糖尿病学分会. 胰岛素抵抗相关临床问题专家共识(2022版) [J]. 中华糖尿病杂志, 2022, 14(12): 1210-1215.
[2] Cleasby, M.E., Jamieson, P.M. and Atherton, P.J. (2016) Insulin Resistance and Sarcopenia: Mechanistic Links between Common Co-morbidities. Journal of Endocrinology, 229, R67-R81. [Google Scholar] [CrossRef] [PubMed]
[3] Hong, S. and Choi, K.M. (2020) Sarcopenic Obesity, Insulin Resistance, and Their Implications in Cardiovascular and Metabolic Consequences. International Journal of Molecular Sciences, 21, Article 494. [Google Scholar] [CrossRef] [PubMed]
[4] Bonora, E., Targher, G., Alberiche, M., Bonadonna, R.C., Saggiani, F., Zenere, M.B., et al. (2000) Homeostasis Model Assessment Closely Mirrors the Glucose Clamp Technique in the Assessment of Insulin Sensitivity: Studies in Subjects with Various Degrees of Glucose Tolerance and Insulin Sensitivity. Diabetes Care, 23, 57-63. [Google Scholar] [CrossRef] [PubMed]
[5] Sun, Y., Ji, H., Sun, W., An, X. and Lian, F. (2025) Triglyceride Glucose (TyG) Index: A Promising Biomarker for Diagnosis and Treatment of Different Diseases. European Journal of Internal Medicine, 131, 3-14. [Google Scholar] [CrossRef] [PubMed]
[6] Simental-Mendía, L.E., Rodríguez-Morán, M. and Guerrero-Romero, F. (2008) The Product of Fasting Glucose and Triglycerides as Surrogate for Identifying Insulin Resistance in Apparently Healthy Subjects. Metabolic Syndrome and Related Disorders, 6, 299-304. [Google Scholar] [CrossRef] [PubMed]
[7] Guerrero-Romero, F., Simental-Mendía, L.E., González-Ortiz, M., Martínez-Abundis, E., Ramos-Zavala, M.G., Hernández-González, S.O., et al. (2010) The Product of Triglycerides and Glucose, a Simple Measure of Insulin Sensitivity. Comparison with the Euglycemic-Hyper-Insulinemic Clamp. The Journal of Clinical Endocrinology & Metabolism, 95, 3347-3351. [Google Scholar] [CrossRef] [PubMed]
[8] Yu, L., Li, Y., Ma, R., Guo, H., Zhang, X., Yan, Y., et al. (2022) Construction of a Personalized Insulin Resistance Risk Assessment Tool in Xinjiang Kazakhs Based on Lipid-and Obesity-Related Indices. Risk Management and Healthcare Policy, 15, 631-641. [Google Scholar] [CrossRef] [PubMed]
[9] Du, T., Yuan, G., Zhang, M., Zhou, X., Sun, X. and Yu, X. (2014) Clinical Usefulness of Lipid Ratios, Visceral Adiposity Indicators, and the Triglycerides and Glucose Index as Risk Markers of Insulin Resistance. Cardiovascular Diabetology, 13, Article No. 146. [Google Scholar] [CrossRef] [PubMed]
[10] Hirschler, V., Molinari, C., Edit, S., Miorin, C., Bocco, P., Guntsche, Z., et al. (2022) Ability of TyG Index as a Marker of Insulin Resistance in Argentinean School Children. Frontiers in Pediatrics, 10, Article 885242. [Google Scholar] [CrossRef] [PubMed]
[11] Song, K., Park, G., Lee, H.S., Choi, Y., Oh, J.S., Choi, H.S., et al. (2021) Prediction of Insulin Resistance by Modified Triglyceride Glucose Indices in Youth. Life, 11, Article 286. [Google Scholar] [CrossRef] [PubMed]
[12] Zheng, Y., Yin, G., Chen, F., Lin, L. and Chen, Y. (2022) Evaluation of Triglyceride Glucose Index and Homeostasis Model of Insulin Resistance in Patients with Polycystic Ovary Syndrome. International Journal of Womens Health, 14, 1821-1829. [Google Scholar] [CrossRef] [PubMed]
[13] Bello-Chavolla, O.Y., Almeda-Valdes, P., Gomez-Velasco, D., Viveros-Ruiz, T., Cruz-Bautista, I., Romo-Romo, A., et al. (2018) METS-IR, a Novel Score to Evaluate Insulin Sensitivity, Is Predictive of Visceral Adiposity and Incident Type 2 Diabetes. European Journal of Endocrinology, 178, 533-544. [Google Scholar] [CrossRef] [PubMed]
[14] McLaughlin, T., Abbasi, F., Cheal, K., Chu, J., Lamendola, C. and Reaven, G. (2003) Use of Metabolic Markers to Identify Overweight Individuals Who Are Insulin Resistant. Annals of Internal Medicine, 139, 802-809. [Google Scholar] [CrossRef] [PubMed]
[15] Yang, L., Feng, Y., Wang, Y., Liu, C. and Gao, D. (2024) Relationship between Four Insulin Resistance Surrogates and Regression to Normoglycemia from Prediabetes among Chinese Adults: A Longitudinal Cohort Study. Endocrine, 86, 980-993. [Google Scholar] [CrossRef] [PubMed]
[16] Lee, Y.C., Lee, J.W. and Kwon, Y.J. (2022) Comparison of the Triglyceride Glucose (TyG) Index, Triglyceride to High-Density Lipoprotein Cholesterol (TG/HDL-C) Ratio, and Metabolic Score for Insulin Resistance (METS-IR) Associated with Periodontitis in Korean Adults. Therapeutic Advances in Chronic Disease, 13, Article 20406223221122671. [Google Scholar] [CrossRef] [PubMed]
[17] Li, X., Xue, Y., Dang, Y., Liu, W., Wang, Q., Zhao, Y., et al. (2022) Association of Non-Insulin-Based Insulin Resistance Indices with Risk of Incident Prediabetes and Diabetes in a Chinese Rural Population: A 12-Year Prospective Study. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 15, 3809-3819. [Google Scholar] [CrossRef] [PubMed]
[18] Mu, X., Wu, A., Hu, H., Yang, M. and Zhou, H. (2024) Correlation between Alternative Insulin Resistance Indexes and Diabetic Kidney Disease: A Retrospective Study. Endocrine, 84, 136-147. [Google Scholar] [CrossRef] [PubMed]
[19] Zhu, Y.Y., He, J.B., Li, X., et al. (2022) Comparing the Effectiveness of Different Indicators of Insulin Resistance in Predicting Diabetes among Adults with Sarcopenia from the NHANES (1999-2018). Medicine, 13, 1-15.
[20] Duan, M.X., Zhao, X., Li, S.L., et al. (2024) Metabolic Score for Insulin Resistance (METS-IR) Predicts All-Cause and Cardiovascular Mortality in the General Population: Evidence from NHANES 2001-2018. Cardiovascular Diabetology, 23, Article No. 243. [Google Scholar] [CrossRef] [PubMed]
[21] Magliano, D.J., Boyko, E.J. and IDF Diabetes Atlas 10th Edition Scientific Committee (2021) IDF Diabetes Atlas. 10th Edition, International Diabetes Federation.
[22] Kahn, S.E. (2003) The Relative Contributions of Insulin Resistance and Beta-Cell Dysfunction to the Pathophysiology of Type 2 Diabetes. Diabetologia, 46, 3-19. [Google Scholar] [CrossRef] [PubMed]
[23] Wang, Z., Zhao, L. and He, S. (2021) Triglyceride-Glucose Index as Predictor for Future Type 2 Diabetes Mellitus in a Chinese Population in Southwest China: A 15-Year Prospective Study. Endocrine, 72, 124-131. [Google Scholar] [CrossRef] [PubMed]
[24] Lee, D.Y., Lee, E.S., Kim, J.H., Park, S.E., Park, C., Oh, K., et al. (2016) Predictive Value of Triglyceride Glucose Index for the Risk of Incident Diabetes: A 4-Year Retrospective Longitudinal Study. PLOS ONE, 11, e0163465. [Google Scholar] [CrossRef] [PubMed]
[25] Kim, J.A., Kim, J., Roh, E., Hong, S., Lee, Y., Baik, S.H., et al. (2021) Triglyceride and Glucose Index and the Risk of Gestational Diabetes Mellitus: A Nationwide Population-Based Cohort Study. Diabetes Research and Clinical Practice, 171, Article 108533. [Google Scholar] [CrossRef] [PubMed]
[26] Yao, H., Sun, Z., Yuan, W., Shao, C., Cai, H., Li, L., et al. (2022) Relationship between the Triglyceride-Glucose Index and Type 2 Diabetic Macroangiopathy: A Single-Center Retrospective Analysis. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 15, 3483-3497. [Google Scholar] [CrossRef] [PubMed]
[27] Lv, L., Zhou, Y., Chen, X., Gong, L., Wu, J., Luo, W., et al. (2021) Relationship between the Tyg Index and Diabetic Kidney Disease in Patients with Type-2 Diabetes Mellitus. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 14, 3299-3306. [Google Scholar] [CrossRef] [PubMed]
[28] Low, S., Pek, S., Moh, A., Ang, K., Khoo, J., Shao, Y., et al. (2022) Triglyceride-Glucose Index Is Prospectively Associated with Chronic Kidney Disease Progression in Type 2 Diabetes—Mediation by Pigment Epithelium-Derived Factor. Diabetes and Vascular Disease Research, 19, Article 14791641221113784. [Google Scholar] [CrossRef] [PubMed]
[29] Gao, Y.M., Chen, W.J., Deng, Z.L., et al. (2023) Association between Triglyceride-Glucose Index and Risk of End-Stage Renal Disease in Patients with Type 2 Diabetes Mellitus and Chronic Kidney Disease. Frontiers in Endocrinology, 14, Article 1150980. [Google Scholar] [CrossRef] [PubMed]
[30] Neelam, K., Aung, K.C.Y., Ang, K., Tavintharan, S., Sum, C.F. and Lim, S.C. (2023) Association of Triglyceride Glucose Index with Prevalence and Incidence of Diabetic Retinopathy in a Singaporean Population. Clinical Ophthalmology, 17, 445-454. [Google Scholar] [CrossRef] [PubMed]
[31] Yao, L., Wang, X., Zhong, Y., Wang, Y., Wu, J., Geng, J., et al. (2021) The Triglyceride-Glucose Index Is Associated with Diabetic Retinopathy in Chinese Patients with Type 2 Diabetes: A Hospital-Based, Nested, Case-Control Study. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 14, 1547-1555. [Google Scholar] [CrossRef] [PubMed]
[32] Jeyaseeli, A., R, G., Mathivanan, D. and Prabagaran, A. (2023) Assessment of Triglyceride Glucose Index in Type 2 Diabetes Mellitus Patients with and without Cardiac Autonomic Neuropathy. Cureus, 15, e42541. [Google Scholar] [CrossRef] [PubMed]
[33] Chen, W., Wang, X., Jiang, Q., Wu, J., Shi, W., Wang, X., et al. (2023) Association between Triglyceride Glucose Index and Severity of Diabetic Foot Ulcers in Type 2 Diabetes Mellitus. Journal of Foot and Ankle Research, 16, Article 68 [Google Scholar] [CrossRef] [PubMed]
[34] Rochlani, Y., Pothineni, N.V., Kovelamudi, S. and Mehta, J.L. (2017) Metabolic Syndrome: Pathophysiology, Management, and Modulation by Natural Compounds. Therapeutic Advances in Cardiovascular Disease, 11, 215-225. [Google Scholar] [CrossRef] [PubMed]
[35] Saklayen, M.G. (2018) The Global Epidemic of the Metabolic Syndrome. Current Hypertension Reports, 20, Article No. 12. [Google Scholar] [CrossRef] [PubMed]
[36] Kang, S.W., Kim, S.K., Kim, Y.S. and Park, M. (2023) Risk Prediction of the Metabolic Syndrome Using TyG Index and SNPs: A 10-Year Longitudinal Prospective Cohort Study. Molecular and Cellular Biochemistry, 478, 39-45. [Google Scholar] [CrossRef] [PubMed]
[37] Wan, H., Cao, H. and Ning, P. (2024) Superiority of the Triglyceride Glucose Index over the Homeostasis Model in Predicting Metabolic Syndrome Based on NHANES Data Analysis. Scientific Reports, 14, Article No. 15499. [Google Scholar] [CrossRef] [PubMed]
[38] Nabipoorashrafi, S.A., Seyedi, S.A., Rabizadeh, S., Ebrahimi, M., Ranjbar, S.A., Reyhan, S.K., et al. (2022) The Accuracy of Triglyceride-Glucose (TyG) Index for the Screening of Metabolic Syndrome in Adults: A Systematic Review and Meta-Analysis. Nutrition, Metabolism and Cardiovascular Diseases, 32, 2677-2688. [Google Scholar] [CrossRef] [PubMed]
[39] Lou, T.W., Yang, R.X. and Fan, J.G. (2024) The Global Burden of Fatty Liver Disease: The Major Impact of China. Hepatobiliary Surgery and Nutrition, 13, 119-123. [Google Scholar] [CrossRef] [PubMed]
[40] Cusi, K., Isaacs, S., Barb, D., Basu, R., Caprio, S., Garvey, W.T., et al. (2022) American Association of Clinical Endocrinology Clinical Practice Guideline for the Diagnosis and Management of Nonalcoholic Fatty Liver Disease in Primary Care and Endocrinology Clinical Settings: Co-Sponsored by the American Association for the Study of Liver Diseases (AASLD). Endocrine Practice, 28, 528-562. [Google Scholar] [CrossRef] [PubMed]
[41] Khanmohammadi, S., Ramos-Molina, B. and Kuchay, M.S. (2023) NOD-Like Receptors in the Pathogenesis of Metabolic (Dysfunction)-Associated Fatty Liver Disease: Therapeutic Agents Targeting Nod-Like Receptors. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 17, Article 102788. [Google Scholar] [CrossRef] [PubMed]
[42] El-Agroudy, N.N., Kurzbach, A., Rodionov, R.N., O’Sullivan, J., Roden, M., Birkenfeld, A.L., et al. (2019) Are Lifestyle Therapies Effective for NAFLD Treatment? Trends in Endocrinology & Metabolism, 30, 701-709. [Google Scholar] [CrossRef] [PubMed]
[43] Khanmohammadi, S. and Kuchay, M.S. (2022) Toll-Like Receptors and Metabolic (Dysfunction)-Associated Fatty Liver Disease. Pharmacological Research, 185, Article 106507. [Google Scholar] [CrossRef] [PubMed]
[44] Khamseh, M.E., Malek, M., Jahangiri, S., Nobarani, S., Hekmatdoost, A., Salavatizadeh, M., et al. (2024) Insulin Resistance/Sensitivity Measures as Screening Indicators of Metabolic-Associated Fatty Liver Disease and Liver Fibrosis. Digestive Diseases and Sciences, 69, 1430-1443. [Google Scholar] [CrossRef] [PubMed]
[45] Su, Z., Xue, J., Sun, J., Ding, Y. and Ji, C. (2025) Triglyceride Glucose Index as a Causal Risk Factor for Metabolic Dysfunction-Associated Fatty Liver Disease: Evidence from the National Health and Nutrition Examination Survey 2017-2020 and Mendelian Randomization. European Journal of Gastroenterology & Hepatology, 37, 1292-1301. [Google Scholar] [CrossRef
[46] Liu, C., Li, C., Fu, J., Bai, L., Wang, M., Song, P., et al. (2025) Association between the Tyg Index and MAFLD and Its Subtypes: A Population-Based Cross-Sectional Study. BMC Gastroenterology, 25, Article No. 652. [Google Scholar] [CrossRef
[47] Simental-Mendia, L.E., Simental-Mendia, E., Rodriguez-Hernandez, H., et al. (2016) The Product of Triglycerides and Glucose as Biomarker for Screening Simple Steatosis and NASH in Asymptomatic Women. Annals of Hepatology, 15, 715-720.
[48] Wunderer, F., Traeger, L., Sigurslid, H.H., Meybohm, P., Bloch, D.B. and Malhotra, R. (2020) The Role of Hepcidin and Iron Homeostasis in Atherosclerosis. Pharmacological Research, 153, Article 104664. [Google Scholar] [CrossRef] [PubMed]
[49] Roth, G.A., Mensah, G.A., Johnson, C.O., et al. (2020) Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update from the GBD 2019 Study. Journal of the American College of Cardiology, 76, 2982-3021.
[50] Ouyang, J., Wang, H. and Huang, J. (2023) The Role of Lactate in Cardiovascular Diseases. Cell Communication and Signaling, 21, Article No. 317. [Google Scholar] [CrossRef] [PubMed]
[51] Wang, W., Hu, M., Liu, H., Zhang, X., Li, H., Zhou, F., et al. (2021) Global Burden of Disease Study 2019 Suggests That Metabolic Risk Factors Are the Leading Drivers of the Burden of Ischemic Heart Disease. Cell Metabolism, 33, 1943-1956.e2. [Google Scholar] [CrossRef] [PubMed]
[52] Bornfeldt, K.E. and Tabas, I. (2011) Insulin Resistance, Hyperglycemia, and Atherosclerosis. Cell Metabolism, 14, 575-585. [Google Scholar] [CrossRef] [PubMed]
[53] Hong, S., Han, K. and Park, C.Y. (2020) The Triglyceride Glucose Index Is a Simple and Low-Cost Marker Associated with Atherosclerotic Cardiovascular Disease: A Population-Based Study. BMC Medicine, 18, Article No. 361. [Google Scholar] [CrossRef] [PubMed]
[54] Ding, X., Wang, X., Wu, J., Zhang, M. and Cui, M. (2021) Triglyceride-Glucose Index and the Incidence of Atherosclerotic Cardiovascular Diseases: A Meta-Analysis of Cohort Studies. Cardiovascular Diabetology, 20, Article No. 76. [Google Scholar] [CrossRef] [PubMed]
[55] Sun, J.H., Chen, X.J., He, L. and Zhao, Y.F. (2024) Association between the Triglyceride Glucose Index and Atherosclerotic Cardiovascular Disease in the General Population: Analysis of the National Health and Nutrition Examination Survey 1999-2004. Frontiers in Endocrinology, 15, Article 1376357. [Google Scholar] [CrossRef] [PubMed]
[56] Wang, H., Fu, Q., Xiao, S., Ma, X., Liao, Y., Kang, C., et al. (2024) Predictive Value of the Triglyceride-Glucose Index for Short-and Long-Term All-Cause Mortality in Patients with Critical Coronary Artery Disease: A Cohort Study from the MIMIC-IV Database. Lipids in Health and Disease, 23, Article No. 263. [Google Scholar] [CrossRef] [PubMed]
[57] Fiorentino, T.V., Marini, M.A., Succurro, E., Andreozzi, F. and Sesti, G. (2019) Relationships of Surrogate Indexes of Insulin Resistance with Insulin Sensitivity Assessed by Euglycemic Hyperinsulinemic Clamp and Subclinical Vascular Damage. BMJ Open Diabetes Research & Care, 7, e000911. [Google Scholar] [CrossRef] [PubMed]
[58] Cruz-Jentoft, A.J. and Sayer, A.A. (2019) Sarcopenia. The Lancet, 393, 2636-2646. [Google Scholar] [CrossRef] [PubMed]
[59] Donini, L.M., Busetto, L., Bischoff, S.C., Cederholm, T., Ballesteros-Pomar, M.D., Batsis, J.A., et al. (2022) Definition and Diagnostic Criteria for Sarcopenic Obesity: ESPEN and EASO Consensus Statement. Clinical Nutrition, 41, 990-1000. [Google Scholar] [CrossRef] [PubMed]
[60] Petermann-Rocha, F., Balntzi, V., Gray, S.R., Lara, J., Ho, F.K., Pell, J.P., et al. (2021) Global Prevalence of Sarcopenia and Severe Sarcopenia: A Systematic Review and Meta-Analysis. Journal of Cachexia, Sarcopenia and Muscle, 13, 86-99. [Google Scholar] [CrossRef] [PubMed]
[61] Vieira, F.T., Godziuk, K., Lamarca, F., Melendez-Araújo, M.S., Lima, R.M., Prado, C.M., et al. (2022) Sarcopenic Obesity Diagnosis by Different Criteria Mid to Long-Term Post-Bariatric Surgery. Clinical Nutrition, 41, 1932-1941. [Google Scholar] [CrossRef] [PubMed]
[62] Damluji, A.A., Alfaraidhy, M., AlHajri, N., Rohant, N.N., Kumar, M., Al Malouf, C., et al. (2023) Sarcopenia and Cardiovascular Diseases. Circulation, 147, 1534-1553. [Google Scholar] [CrossRef] [PubMed]
[63] Zhang, H., Lin, S., Gao, T., Zhong, F., Cai, J., Sun, Y., et al. (2018) Association between Sarcopenia and Metabolic Syndrome in Middle-Aged and Older Non-Obese Adults: A Systematic Review and Meta-Analysis. Nutrients, 10, Article 364. [Google Scholar] [CrossRef] [PubMed]
[64] Chuan, F., Chen, S., Ye, X., Kang, S., Mei, M., Tian, W., et al. (2022) Sarcopenic Obesity Predicts Negative Health Outcomes among Older Patients with Type 2 Diabetes: The Ageing and Body Composition of Diabetes (ABCD) Cohort Study. Clinical Nutrition, 41, 2740-2748. [Google Scholar] [CrossRef] [PubMed]
[65] Poggiogalle, E., Lubrano, C., Sergi, G., Coin, A., Gnessi, L., Mariani, S., et al. (2016) Sarcopenic Obesity and Metabolic Syndrome in Adult Caucasian Subjects. The Journal of Nutrition, Health and Aging, 20, 958-963. [Google Scholar] [CrossRef] [PubMed]
[66] Park, M.J. and Choi, K.M. (2023) Interplay of Skeletal Muscle and Adipose Tissue: Sarcopenic Obesity. Metabolism, 144, Article 155577. [Google Scholar] [CrossRef] [PubMed]
[67] Yang, J., Liu, C., Zhao, S., Wang, L., Wu, G., Zhao, Z., et al. (2024) The Association between the Triglyceride-Glucose Index and Sarcopenia: Data from the NHANES 2011-2018. Lipids in Health and Disease, 23, Article No. 219. [Google Scholar] [CrossRef] [PubMed]
[68] Chen, R., Zhang, L., Zhang, M., Wang, Y., Liu, D., Li, Z., et al. (2022) The Triglyceride-Glucose Index as a Novel Marker Associated with Sarcopenia in Non-Diabetic Patients on Maintenance Hemodialysis. Renal Failure, 44, 1616-1622. [Google Scholar] [CrossRef] [PubMed]
[69] Chen, Y., Liu, C. and Hu, M. (2024) Association between Triglyceride-Glucose Index and Sarcopenia in China: A Nationally Representative Cohort Study. Experimental Gerontology, 190, Article 112419. [Google Scholar] [CrossRef] [PubMed]
[70] Li, M., Liu, Y., Gao, L., Zheng, Y., Chen, L., Wang, Y., et al. (2025) Higher Triglyceride-Glucose Index and Triglyceride Glucose-Body Mass Index Protect against Sarcopenia in Chinese Middle-Aged and Older Non-Diabetic Women: A Cross-Sectional Study. Frontiers in Public Health, 12, Article 1475330. [Google Scholar] [CrossRef] [PubMed]
[71] Xu, C., He, L., Tu, Y., Guo, C., Lai, H., Liao, C., et al. (2024) Longitudinal Analysis of Insulin Resistance and Sarcopenic Obesity in Chinese Middle-Aged and Older Adults: Evidence from Charls. Frontiers in Public Health, 12, Article 1472456. [Google Scholar] [CrossRef] [PubMed]
[72] Zhao, Z., Cai, R., Tao, L., Sun, Y. and Sun, K. (2025) Association between Triglyceride-Glucose Index and Sarcopenic Obesity in Adults: A Population-Based Study. Frontiers in Nutrition, 12, Article 1452512. [Google Scholar] [CrossRef] [PubMed]
[73] Kim, B., Kim, G., Lee, Y., Taniguchi, K., Isobe, T. and Oh, S. (2023) Triglyceride-Glucose Index as a Potential Indicator of Sarcopenic Obesity in Older People. Nutrients, 15, Article 555. [Google Scholar] [CrossRef] [PubMed]
[74] Huang, Q., Du, X., Ouyang, W., Wang, J. and Liu, X. (2025) Relationship between Triglyceride-Glucose Index and All-Cause Mortality in Older Adults with Sarcopenic Obesity. Metabolism Open, 27, Article 100388. [Google Scholar] [CrossRef
[75] Cheng, H., Hu, Y., Zhao, H., Zhou, G., Wang, G., Ma, C., et al. (2023) Exploring the Association between Triglyceride-Glucose Index and Thyroid Function. European Journal of Medical Research, 28, Article No. 508. [Google Scholar] [CrossRef] [PubMed]
[76] Kwon, S., Heo, A. and Chun, S. (2023) Triglyceride and Glucose Index for Identifying Abnormal Insulin Sensitivity in Women with Polycystic Ovary Syndrome. Obstetrics & Gynecology Science, 66, 307-315. [Google Scholar] [CrossRef] [PubMed]