|
[1]
|
Colotta, F., Re, F., Polentarutti, N., Sozzani, S. and Mantovani, A. (1992) Modulation of Granulocyte Survival and Programmed Cell Death by Cytokines and Bacterial Products. Blood, 80, 2012-2020. [Google Scholar] [CrossRef]
|
|
[2]
|
Rosales, C. (2020) Neutrophils at the Crossroads of Innate and Adaptive Immunity. Journal of Leukocyte Biology, 108, 377-396. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Castanheira, F.V.S. and Kubes, P. (2019) Neutrophils and Nets in Modulating Acute and Chronic Inflammation. Blood, 133, 2178-2185. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Papayannopoulos, V. (2018) Neutrophil Extracellular Traps in Immunity and Disease. Nature Reviews Immunology, 18, 134-147. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
He, L., Qiang, R. and Li, W. (2025) The miR-3164/PAD4 Axis Regulates NETosis to Prevent Airway Inflammation and Remodeling through the TLR2/NF-κB Signaling Pathway. European Journal of Medical Research, 30, Article No. 947. [Google Scholar] [CrossRef]
|
|
[6]
|
Liu, Q., Ren, K., Liu, S., Li, W., Huang, C. and Yang, X. (2019) Microrna-140-5p Aggravates Hypertension and Oxidative Stress of Atherosclerosis via Targeting NRF2 and SIRT2. International Journal of Molecular Medicine, 43, 839-849. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Hussein, K. (2012) Pathobiologie des microRNA-Systems. Der Pathologe, 33, 70-78. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Zheng, K., Li, H., Huang, H. and Qiu, M. (2012) MicroRNAs and Glial Cell Development. The Neuroscientist, 18, 114-118. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Wang, X., Gu, H., Qin, D., Yang, L., Huang, W., Essandoh, K., et al. (2015) Exosomal miR-223 Contributes to Mesenchymal Stem Cell-Elicited Cardioprotection in Polymicrobial Sepsis. Scientific Reports, 5, Article No. 13721. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Zhang, L., Liao, Y. and Tang, L. (2019) Microrna-34 Family: A Potential Tumor Suppressor and Therapeutic Candidate in Cancer. Journal of Experimental & Clinical Cancer Research, 38, Article No. 53. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D.S., et al. (2004) Neutrophil Extracellular Traps Kill Bacteria. Science, 303, 1532-1535. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Fuchs, T.A., Abed, U., Goosmann, C., Hurwitz, R., Schulze, I., Wahn, V., et al. (2007) Novel Cell Death Program Leads to Neutrophil Extracellular Traps. The Journal of Cell Biology, 176, 231-241. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Remijsen, Q., Kuijpers, T.W., Wirawan, E., Lippens, S., Vandenabeele, P. and Vanden Berghe, T. (2011) Dying for a Cause: NETosis, Mechanisms behind an Antimicrobial Cell Death Modality. Cell Death & Differentiation, 18, 581-588. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Huang, J., Hong, W., Wan, M. and Zheng, L. (2022) Molecular Mechanisms and Therapeutic Target of Netosis in Diseases. MedComm, 3, e162. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Burgener, S.S. and Schroder, K. (2020) Neutrophil Extracellular Traps in Host Defense. Cold Spring Harbor Perspectives in Biology, 12, a037028. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Zou, S., Han, X., Luo, S., Tan, Q., Huang, H., Yao, Z., et al. (2024) Bay-117082 Treats Sepsis by Inhibiting Neutrophil Extracellular Traps (Nets) Formation through Down-Regulating NLRP3/N-GSDMD. International Immunopharmacology, 141, Article 112805. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Liu, X., Arfman, T., Wichapong, K., Reutelingsperger, C.P.M., Voorberg, J. and Nicolaes, G.A.F. (2021) PAD4 Takes Charge during Neutrophil Activation: Impact of PAD4 Mediated NET Formation on Immune‐Mediated Disease. Journal of Thrombosis and Haemostasis, 19, 1607-1617. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Singhal, A. and Kumar, S. (2021) Neutrophil and Remnant Clearance in Immunity and Inflammation. Immunology, 165, 22-43. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Yousefi, S., Mihalache, C., Kozlowski, E., Schmid, I. and Simon, H.U. (2009) Viable Neutrophils Release Mitochondrial DNA to Form Neutrophil Extracellular Traps. Cell Death & Differentiation, 16, 1438-1444. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Goggs, R., Jeffery, U., LeVine, D.N. and Li, R.H.L. (2020) Neutrophil-Extracellular Traps, Cell-Free DNA, and Immunothrombosis in Companion Animals: A Review. Veterinary Pathology, 57, 6-23. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Al-Kuraishy, H.M., Al-Gareeb, A.I., Al-Hussaniy, H.A., Al-Harcan, N.A.H., Alexiou, A. and Batiha, G.E. (2022) Neutrophil Extracellular Traps (Nets) and COVID-19: A New Frontiers for Therapeutic Modality. International Immunopharmacology, 104, Article 108516. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Barreiro, O., Vicente-Manzanares, M., Urzainqui, A., Yáñez-Mó, M. and Sánchez-Madrid, F. (2004) Interactive Protrusive Structures during Leukocyte Adhesion and Transendothelial Migration. Frontiers in Bioscience, 9, 1849-1863. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Saffarzadeh, M., Juenemann, C., Queisser, M.A., Lochnit, G., Barreto, G., Galuska, S.P., et al. (2012) Neutrophil Extracellular Traps Directly Induce Epithelial and Endothelial Cell Death: A Predominant Role of Histones. PLOS ONE, 7, e32366. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Hawez, A., Al-Haidari, A., Madhi, R., Rahman, M. and Thorlacius, H. (2019) miR-155 Regulates PAD4-Dependent Formation of Neutrophil Extracellular Traps. Frontiers in Immunology, 10, Article No. 2462. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Moutabian, H., Radi, U.K., Saleman, A.Y., Adil, M., Zabibah, R.S., Chaitanya, M.N.L., et al. (2023) MicroRNA-155 and Cancer Metastasis: Regulation of Invasion, Migration, and Epithelial-to-Mesenchymal Transition. Pathology-Research and Practice, 250, Article 154789. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Jiao, Y., Li, W., Wang, W., Tong, X., Xia, R., Fan, J., et al. (2020) Platelet-Derived Exosomes Promote Neutrophil Extracellular Trap Formation during Septic Shock. Critical Care, 24, Article No. 380. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Chen, L., Wang, Q., Wang, G., Wang, H., Huang, Y., Liu, X., et al. (2013) miR‐16 Inhibits Cell Proliferation by Targeting IGF1R and the Raf1-MEK1/2-ERK1/2 Pathway in Osteosarcoma. FEBS Letters, 587, 1366-1372. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Yang, Z., Wang, S., Yin, K., Zhang, Q. and Li, S. (2021) miR‐1696/GPx3 Axis Is Involved in Oxidative Stress Mediated Neutrophil Extracellular Traps Inhibition in Chicken Neutrophils. Journal of Cellular Physiology, 236, 3688-3699. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Liao, T., Chen, Y., Tang, K., Chen, P., Liu, H. and Chen, D. (2021) MicroRNA-223 Inhibits Neutrophil Extracellular Traps Formation through Regulating Calcium Influx and Small Extracellular Vesicles Transmission. Scientific Reports, 11, Article No. 15676. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Shan, L., Yang, D., Feng, F., Zhu, D. and Li, X. (2021) miR‐3146 Induces Neutrophil Extracellular Traps to Aggravate Gout Flare. Journal of Clinical Laboratory Analysis, 35, e24032. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Surendran, V., Rutledge, D., Colmon, R. and Chandrasekaran, A. (2021) A Novel Tumor-Immune Microenvironment (Time)-on-Chip Mimics Three Dimensiosnal Neutrophil-Tumor Dynamics and Neutrophil Extracellular Traps (NETs)-Mediated Collective Tumor Invasion. Biofabrication, 13, Article 035029. [Google Scholar] [CrossRef] [PubMed]
|