从miRNA到中性粒细胞外诱捕网:脓毒血症调节机制研究的最新进展
From miRNA to Neutrophil Extracellular Traps: Recent Advances in the Regulatory Mechanisms of Sepsis
DOI: 10.12677/acm.2026.161076, PDF, HTML, XML,   
作者: 孟令超:济宁医学院临床医学院(附属医院),山东 济宁;邵一鸣*:广西医科大学第一附属医院烧伤整形科,广西 南宁
关键词: 中性粒细胞中性粒细胞外诱捕网microRNA脓毒血症Neutrophilic Granulocyte Neutrophil Extracellular Traps microRNA Sepsis
摘要: 中性粒细胞作为人体的第一道防线,他们被迅速动员到免疫反应的位置,是非特异性免疫的重要组成部分,中性粒细胞发挥功能主要通过三条途径:吞噬、脱颗粒、中性粒细胞外诱捕网(NETs)。NETs是2004年发现的一种巨大的细胞外网状结构。胞浆蛋白和颗粒蛋白构成NETs。脓毒血症时,大量NETs释放,抗感染的同时进一步放大炎症级联反应,导致组织受损加重,致使病情进一步加重。所以,熟悉NETs的生成及其抑制的分子机制对于开展治疗脓毒症的治疗方法至关重要,本文总结最新与NETs形成相关的microRNA (miRNA)列表,并根据其作用机制进行分类,并阐明其作用原理,据最新研究发现,miR-155、miR-1696、miR-7、miR-223、miR-146a、miR-142a-3p、miR-3146、miR-505、miR-4512、miR-15b-5p、miR-16-5p、miR-26b-5p、miR-125a-3p和miR-378a-3p通过不同机制调控脓毒症的NETs形成与释放,影响患者器官损害成都及存活率。
Abstract: Neutrophils, as the body’s first line of defense, are rapidly mobilized to sites of immune response and serve as a crucial component of nonspecific immunity. Neutrophils primarily exert their functions through three pathways: phagocytosis, degranulation, and neutrophil extracellular traps (NETs). NETs, discovered in 2004, are large extracellular web-like structures composed of cytoplasmic and granular proteins. During sepsis, massive NETs release helps combat infection but simultaneously amplifies the inflammatory cascade, leading to aggravated tissue damage and worsening of the condition. Therefore, understanding the molecular mechanisms governing NET formation and inhibition is essential for developing sepsis treatments. This article summarizes the latest list of miRNAs associated with NET formation, categorizes them based on their mechanisms of action, and clarifies their functional principles. According to recent research, miR-155, miR-1696, miR-7, miR-223, miR-146a, miR-142a-3p, miR-3146, miR-505, miR-4512, miR-15b-5p, miR-16-5p, miR-26b-5p, miR-125a-3p, and miR-378a-3p regulate the formation and release of NETs in sepsis through various mechanisms, impacting the extent of organ damage and patient survival.
文章引用:孟令超, 邵一鸣. 从miRNA到中性粒细胞外诱捕网:脓毒血症调节机制研究的最新进展[J]. 临床医学进展, 2026, 16(1): 561-565. https://doi.org/10.12677/acm.2026.161076

1. 介绍

中性粒细胞是人体重要的免疫细胞,在血液循环中,中性粒细胞存活时间较短,但是,在炎症期间,中性粒细胞的寿命因被刺激、激活而显著增加[1]。中性粒细胞被激活,最先到达炎症部位,借助吞噬或释放颗粒酶、蛋白质、氧化剂、外诱捕网NETs、等迅速杀死病原体[2]。中性粒细胞外诱捕网[NETs]在中性粒细胞抗感染中发挥着关键作用。被激活的中性粒细胞在细胞外释放染色质网和细胞内颗粒蛋白,称为NETs。脓毒症时大量的炎症因子持续释放,导致NETs释放量明显增加,在杀死病原体的同时,导致组织器官进一步的损害(如低血压、低氧血症、凝血障碍、多器官功能障碍) [3] [4]。NETs的生成方式及生成途径逐步明朗,但是NETs的调控机制仍不完善。

miRNA是动物、植物和一些病毒种的小非编码RNA,他们在mRNA水平上调控基因表达。参与细胞的生理、病理以及脓毒血症时NETs的产生及释放。最近的研究发现,miR-3164/PAD4调节NETosis,减轻气道炎症和逆转气道重塑,microRNA-140-5p通过红细胞相关因子、去乙醯化酶加重动脉粥样硬化[5] [6]。参与NETosis分子途径的miRNAs有14种,分别是miR-155、miR-1696、miR-7、miR-223、miR-146a、miR-142a-3p、miR-3146、miR-505、miR-4512、miR-15b-5p、miR-16-5p、miR-26b-5p、miR-125a-3p和miR-378a-3p、microRNA (miRNA)。因此明确microRNA调控NETS的机制,能为脓毒血症的治疗提供新的靶点。

2. miRNA的生物途径

大多数成熟的miRNA序列位于非编码RNA的内含子或外显子以及pre-mRNADE内含子中。长度约为18~24个核苷酸,在转录基因表达中发挥功能。这些核苷酸被整合到RNA诱导的沉默复合体(RISC)中[7]。这些复合物通过miRNA与靶基因的信使RNA (mRNA)的3-0非翻译区结合,抑制其翻译或者降解mRNA。根据研究显示,miRNA在许多生物学功能中的重要作用,如发育、细胞分化、胚胎发生、代谢、器官发生和凋亡,同时还参与了许多疾病的发生、发展[8]-[10]

3. NETs

NETs最早是在2004年被发现的,是由Brinkman和其同事观察到激活的中性粒细胞可以通过释放中性粒细胞弹性蛋白酶(NE)、髓过氧化物酶(MPO)、组蛋白等组成的网状结构[11]。NETosis被定义为中性粒细胞程序性细胞死亡的新机制,是区别凋亡和坏死的[12] [13]。NETosis有三种不同的类型,自杀性NETosis:通过增加细胞内的Ca2+,提高蛋白激酶C和NADPH氧化酶的活性,从而导致活性氧的生成,在活性氧的作用机制下,MPO活化,导致染色质浓缩、和核膜的破裂,抗菌蛋白排放到细胞外,导致中性粒细胞死亡[14]-[16]。存活式NETosis:保持完整的质膜和核膜,并且保留抗炎功能[17]。其功能的激活不依靠活性氧的活化,。肽精氨酸脱亚胺酶4 (PAD4)激活后,组蛋白被瓜氨酸化,染色质去浓缩发生。DNA-蛋白复合物被包裹在囊泡中并被排出细胞外形成NETs,发挥抗炎作用[18]。含有线粒体DNA的存活式NETosis,也是依靠活性氧的活化来发挥其功能[19]

4. 脓毒血症中的NETs是一把双刃剑

脓毒血症中NETs抗感染功能,其通过独有的网状结构与抗菌蛋白结合,使其具备捕获和杀死病原菌,在感染期间,NETs依靠限制细菌播散、物理捕捉、降解发挥其抗感染的活性,NETs细胞外带负电荷,可以与许多微生物相结合,而其蛋白与带负电荷的病毒蛋白相结合,然后被抗菌蛋白消灭[20] [21]。同时,NETs还可通过清除病原体减轻炎症反应。然而,随着NETs的过度释放,其组蛋白和酶会造成自身组织及器官的损伤,如组蛋白会破坏及杀伤内皮细胞,导致血管通透性增加和微血栓形成,加重多器官功能障碍[22]。研究表明NET过度释放,会产出细胞毒性组蛋白,介导肺泡上皮细胞及内皮细胞的死亡,加重肺损伤及呼吸衰竭[23]

5. MiRNA在脓毒血症中对NETs的调控

miR-155通过调控PAD4介导蛋白瓜氨酸化的调控从而影响NETs形成[24]。miR-155通过直接或间接靶向与上皮–间质转移、迁移和侵袭相关的基因,在癌症转移中发挥重要作用,特别是在结肠癌、肾癌、胰腺癌和白血病中[25]。然而,在中性粒细胞中靶向miR-155及其对脓毒血症发生、进展的潜在积极影响,应在未来的研究中进一步研究。另有研究认为更高水平的miR-146a抑制中性粒细胞中的超氧化物歧化酶2,从而促进活性氧的增加,从而促进NETs的形成。NETs潜在调节剂miR-505可以促进NETs的形成。miR-378a-3p和miR-15b-5p,它们调节PI3K/Akt途径,参与自噬和NETosis的形成。此外,HL-60细胞经miR-378a-3p和miR-15b-5p模拟物孵卵后,显示出与3-磷酸肌醇依赖性蛋白激酶1 (PDK1)表达直接相关的更高的NETs形成能力[26]。miR-1696通过抑制谷胱甘肽过氧化物酶干扰[MAPKs]和PIK3A/Akt通路,调节NETs的形成。miR-16-5p的表达可影响,从而影响RAF1 (Raf-1原癌基因,丝氨酸/苏氨酸激酶)和PIK3R1 (磷酸肌醇-3激酶调节亚基1)。RAF1与MAPK/细胞外信号调节激酶/NADPH氧化酶2 (MEK/ERK/NOX2)通路相关。而PIK3R1与PI3K/Akt/mTOR通路相关,与自噬相关,间接与NETosis生成相关[27] [28]。miR-223可阻断钙离子流入细胞内和IL-18依赖活性氧的生成,抑制NETs的形成。对痛风患者的研究表明,中性粒细胞中miR-3146的高表达通常伴随着大量的NETs [29]。在小鼠实验中的数据提示,miR-3146拮抗剂治疗(miRNAs的反义序列,特异性抑制剂)抑制活性氧和sirt1依赖性NET的形成[30]。然而,在这些研究中,实验都没有在人类或人类原代细胞上进行。因此,建议开发人类特异性模型。例如:类器官与器官芯片:利用人多能干细胞分化中性粒细胞,在更接近人体胜利环境中研究miRNA调控作用,人源化小鼠模型:将人源中性粒细胞或造血干细胞移植到免疫缺陷小鼠中国,建立人源性NETosis模型,来验证miRNA靶向调控NETosis [31]

6. 总结和展望

脓毒血症发病机制复杂且无有效的诊断方式及治疗方案,疾病的预后转归很大程度上依赖于及时识别和早期的干预。NETs与脓毒症的预后有着密切的关系,其中NETs的MPO-DNA含量与脓毒症序贯器官衰竭评分(SOFA)呈正相关,降低脓毒血症对NETs的形成至关重要。据早期的研究发现,在脓毒血症早期使用DNA酶和抗菌药物治疗,可以明显提高脓毒血症小鼠生存率,并减少重要脏器功能障碍的发生。因此,联合治疗在脓毒血症能显著提高脓毒血症患者的预后,其中NETs靶向药物的治疗尤为重要。miRNA分子的调控功能及其表达谱的鉴定在临床上越来越重要。miRNA作为脓毒症NETosis的有效调控因子,同时参与炎症、自噬、凋亡等调控途径。

但是miRNA如何精确调控NETosis,例如PAD4、ROS、组蛋白的机制尚不清楚,缺乏直接的靶点验证和相关信号通路的考证。在脓毒血症中miRNA动态调控NETosis的变化规律未给予系统描述。细胞外囊泡携带miRNA被中性粒细胞摄取并调控NETs形成的机制、选择性包装及受体的识别尚不清晰。目前大部分实验研究基于小鼠和细胞模型,人类中性粒细胞miRNA调控NETs实验少之又少。MiRNA作为脓毒血症中NETs关键调控因子,应继续进行靶向传递系统的验证,追踪信号通路,进一步明确调控机制,致力于机制到临床转化取得突破。

NOTES

*通讯作者。

参考文献

[1] Colotta, F., Re, F., Polentarutti, N., Sozzani, S. and Mantovani, A. (1992) Modulation of Granulocyte Survival and Programmed Cell Death by Cytokines and Bacterial Products. Blood, 80, 2012-2020. [Google Scholar] [CrossRef
[2] Rosales, C. (2020) Neutrophils at the Crossroads of Innate and Adaptive Immunity. Journal of Leukocyte Biology, 108, 377-396. [Google Scholar] [CrossRef] [PubMed]
[3] Castanheira, F.V.S. and Kubes, P. (2019) Neutrophils and Nets in Modulating Acute and Chronic Inflammation. Blood, 133, 2178-2185. [Google Scholar] [CrossRef] [PubMed]
[4] Papayannopoulos, V. (2018) Neutrophil Extracellular Traps in Immunity and Disease. Nature Reviews Immunology, 18, 134-147. [Google Scholar] [CrossRef] [PubMed]
[5] He, L., Qiang, R. and Li, W. (2025) The miR-3164/PAD4 Axis Regulates NETosis to Prevent Airway Inflammation and Remodeling through the TLR2/NF-κB Signaling Pathway. European Journal of Medical Research, 30, Article No. 947. [Google Scholar] [CrossRef
[6] Liu, Q., Ren, K., Liu, S., Li, W., Huang, C. and Yang, X. (2019) Microrna-140-5p Aggravates Hypertension and Oxidative Stress of Atherosclerosis via Targeting NRF2 and SIRT2. International Journal of Molecular Medicine, 43, 839-849. [Google Scholar] [CrossRef] [PubMed]
[7] Hussein, K. (2012) Pathobiologie des microRNA-Systems. Der Pathologe, 33, 70-78. [Google Scholar] [CrossRef] [PubMed]
[8] Zheng, K., Li, H., Huang, H. and Qiu, M. (2012) MicroRNAs and Glial Cell Development. The Neuroscientist, 18, 114-118. [Google Scholar] [CrossRef] [PubMed]
[9] Wang, X., Gu, H., Qin, D., Yang, L., Huang, W., Essandoh, K., et al. (2015) Exosomal miR-223 Contributes to Mesenchymal Stem Cell-Elicited Cardioprotection in Polymicrobial Sepsis. Scientific Reports, 5, Article No. 13721. [Google Scholar] [CrossRef] [PubMed]
[10] Zhang, L., Liao, Y. and Tang, L. (2019) Microrna-34 Family: A Potential Tumor Suppressor and Therapeutic Candidate in Cancer. Journal of Experimental & Clinical Cancer Research, 38, Article No. 53. [Google Scholar] [CrossRef] [PubMed]
[11] Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D.S., et al. (2004) Neutrophil Extracellular Traps Kill Bacteria. Science, 303, 1532-1535. [Google Scholar] [CrossRef] [PubMed]
[12] Fuchs, T.A., Abed, U., Goosmann, C., Hurwitz, R., Schulze, I., Wahn, V., et al. (2007) Novel Cell Death Program Leads to Neutrophil Extracellular Traps. The Journal of Cell Biology, 176, 231-241. [Google Scholar] [CrossRef] [PubMed]
[13] Remijsen, Q., Kuijpers, T.W., Wirawan, E., Lippens, S., Vandenabeele, P. and Vanden Berghe, T. (2011) Dying for a Cause: NETosis, Mechanisms behind an Antimicrobial Cell Death Modality. Cell Death & Differentiation, 18, 581-588. [Google Scholar] [CrossRef] [PubMed]
[14] Huang, J., Hong, W., Wan, M. and Zheng, L. (2022) Molecular Mechanisms and Therapeutic Target of Netosis in Diseases. MedComm, 3, e162. [Google Scholar] [CrossRef] [PubMed]
[15] Burgener, S.S. and Schroder, K. (2020) Neutrophil Extracellular Traps in Host Defense. Cold Spring Harbor Perspectives in Biology, 12, a037028. [Google Scholar] [CrossRef] [PubMed]
[16] Zou, S., Han, X., Luo, S., Tan, Q., Huang, H., Yao, Z., et al. (2024) Bay-117082 Treats Sepsis by Inhibiting Neutrophil Extracellular Traps (Nets) Formation through Down-Regulating NLRP3/N-GSDMD. International Immunopharmacology, 141, Article 112805. [Google Scholar] [CrossRef] [PubMed]
[17] Liu, X., Arfman, T., Wichapong, K., Reutelingsperger, C.P.M., Voorberg, J. and Nicolaes, G.A.F. (2021) PAD4 Takes Charge during Neutrophil Activation: Impact of PAD4 Mediated NET Formation on Immune‐Mediated Disease. Journal of Thrombosis and Haemostasis, 19, 1607-1617. [Google Scholar] [CrossRef] [PubMed]
[18] Singhal, A. and Kumar, S. (2021) Neutrophil and Remnant Clearance in Immunity and Inflammation. Immunology, 165, 22-43. [Google Scholar] [CrossRef] [PubMed]
[19] Yousefi, S., Mihalache, C., Kozlowski, E., Schmid, I. and Simon, H.U. (2009) Viable Neutrophils Release Mitochondrial DNA to Form Neutrophil Extracellular Traps. Cell Death & Differentiation, 16, 1438-1444. [Google Scholar] [CrossRef] [PubMed]
[20] Goggs, R., Jeffery, U., LeVine, D.N. and Li, R.H.L. (2020) Neutrophil-Extracellular Traps, Cell-Free DNA, and Immunothrombosis in Companion Animals: A Review. Veterinary Pathology, 57, 6-23. [Google Scholar] [CrossRef] [PubMed]
[21] Al-Kuraishy, H.M., Al-Gareeb, A.I., Al-Hussaniy, H.A., Al-Harcan, N.A.H., Alexiou, A. and Batiha, G.E. (2022) Neutrophil Extracellular Traps (Nets) and COVID-19: A New Frontiers for Therapeutic Modality. International Immunopharmacology, 104, Article 108516. [Google Scholar] [CrossRef] [PubMed]
[22] Barreiro, O., Vicente-Manzanares, M., Urzainqui, A., Yáñez-Mó, M. and Sánchez-Madrid, F. (2004) Interactive Protrusive Structures during Leukocyte Adhesion and Transendothelial Migration. Frontiers in Bioscience, 9, 1849-1863. [Google Scholar] [CrossRef] [PubMed]
[23] Saffarzadeh, M., Juenemann, C., Queisser, M.A., Lochnit, G., Barreto, G., Galuska, S.P., et al. (2012) Neutrophil Extracellular Traps Directly Induce Epithelial and Endothelial Cell Death: A Predominant Role of Histones. PLOS ONE, 7, e32366. [Google Scholar] [CrossRef] [PubMed]
[24] Hawez, A., Al-Haidari, A., Madhi, R., Rahman, M. and Thorlacius, H. (2019) miR-155 Regulates PAD4-Dependent Formation of Neutrophil Extracellular Traps. Frontiers in Immunology, 10, Article No. 2462. [Google Scholar] [CrossRef] [PubMed]
[25] Moutabian, H., Radi, U.K., Saleman, A.Y., Adil, M., Zabibah, R.S., Chaitanya, M.N.L., et al. (2023) MicroRNA-155 and Cancer Metastasis: Regulation of Invasion, Migration, and Epithelial-to-Mesenchymal Transition. Pathology-Research and Practice, 250, Article 154789. [Google Scholar] [CrossRef] [PubMed]
[26] Jiao, Y., Li, W., Wang, W., Tong, X., Xia, R., Fan, J., et al. (2020) Platelet-Derived Exosomes Promote Neutrophil Extracellular Trap Formation during Septic Shock. Critical Care, 24, Article No. 380. [Google Scholar] [CrossRef] [PubMed]
[27] Chen, L., Wang, Q., Wang, G., Wang, H., Huang, Y., Liu, X., et al. (2013) miR‐16 Inhibits Cell Proliferation by Targeting IGF1R and the Raf1-MEK1/2-ERK1/2 Pathway in Osteosarcoma. FEBS Letters, 587, 1366-1372. [Google Scholar] [CrossRef] [PubMed]
[28] Yang, Z., Wang, S., Yin, K., Zhang, Q. and Li, S. (2021) miR‐1696/GPx3 Axis Is Involved in Oxidative Stress Mediated Neutrophil Extracellular Traps Inhibition in Chicken Neutrophils. Journal of Cellular Physiology, 236, 3688-3699. [Google Scholar] [CrossRef] [PubMed]
[29] Liao, T., Chen, Y., Tang, K., Chen, P., Liu, H. and Chen, D. (2021) MicroRNA-223 Inhibits Neutrophil Extracellular Traps Formation through Regulating Calcium Influx and Small Extracellular Vesicles Transmission. Scientific Reports, 11, Article No. 15676. [Google Scholar] [CrossRef] [PubMed]
[30] Shan, L., Yang, D., Feng, F., Zhu, D. and Li, X. (2021) miR‐3146 Induces Neutrophil Extracellular Traps to Aggravate Gout Flare. Journal of Clinical Laboratory Analysis, 35, e24032. [Google Scholar] [CrossRef] [PubMed]
[31] Surendran, V., Rutledge, D., Colmon, R. and Chandrasekaran, A. (2021) A Novel Tumor-Immune Microenvironment (Time)-on-Chip Mimics Three Dimensiosnal Neutrophil-Tumor Dynamics and Neutrophil Extracellular Traps (NETs)-Mediated Collective Tumor Invasion. Biofabrication, 13, Article 035029. [Google Scholar] [CrossRef] [PubMed]