|
[1]
|
谢和平, 高峰, 鞠杨, 等. 深地煤炭资源流态化开采理论与技术构想[J]. 煤炭学报, 2017, 42(3): 547-556.
|
|
[2]
|
赵岩龙, 李喧喧, 张傲雪, 等. 人工智能在数字岩心技术上的应用进展及前景[J]. 特种油气藏, 2025, 32(5): 10-18.
|
|
[3]
|
王宗礼, 娄钰, 潘继平. 中国油气资源勘探开发现状与发展前景[J]. 国际石油经济, 2017, 25(3): 1-6.
|
|
[4]
|
田佳丽, 王惠民, 刘星星, 等. 基于NMR耦合实时渗流的砂岩渗透特性研究[J]. 岩土工程学报, 2022, 44(9): 1671-1678.
|
|
[5]
|
刘向君, 朱洪林, 梁利喜. 基于微CT技术的砂岩数字岩石物理实验[J]. 地球物理学报, 2014, 57(4): 1133-1140.
|
|
[6]
|
吴翔, 肖占山, 张永浩, 等. 多尺度数字岩石建模进展与展望[J]. 吉林大学学报(地球科学版), 2024, 54(5): 1736-1751.
|
|
[7]
|
闫天宇. 数字岩心多尺度融合方法研究[D]: [硕士学位论文]. 成都: 西南石油大学, 2024.
|
|
[8]
|
刘学锋, 张伟伟, 孙建孟. 三维数字岩心建模方法综述[J]. 地球物理学进展, 2013, 28(6): 3066-3072.
|
|
[9]
|
肖飞, 李戈理, 陈玉林, 等. 数字岩石构建方法及应用前景[J]. 测井技术, 2021, 45(3): 240-245.
|
|
[10]
|
刘洋, 王春生, 孙启冀, 等. 低渗砂岩储层数字岩心构建及渗流模拟[J]. 断块油气田, 2017, 24(6): 817-821.
|
|
[11]
|
汪新光, 郇金来, 彭小东, 等. 基于数字岩心的致密砂岩储层孔隙结构与渗流机理[J]. 油气地质与采收率, 2022, 29(6): 22-30.
|
|
[12]
|
Wang, C., Tian, L., Sun, C., Deng, Y., Zhou, Y. and Nie, X. (2025) Multi-Scale Characterization of Tight Carbonate Rocks Based on Digital Cores. Frontiers in Earth Science, 13, Article ID: 1538316. [Google Scholar] [CrossRef]
|
|
[13]
|
Dong, H. and Blunt, M.J. (2009) Pore-Network Extraction from Micro-Computerized-Tomography Images. Physical Review E, 80, Article 036307. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Ju, Y., Huang, Y., Zheng, J., Qian, X., Xie, H. and Zhao, X. (2017) Multi-Thread Parallel Algorithm for Reconstructing 3D Large-Scale Porous Structures. Computers & Geosciences, 101, 10-20. [Google Scholar] [CrossRef]
|
|
[15]
|
侯世伟, 吕寻庆, 孟素云, 等. 致密储层裂缝气水微观渗流过程研究[J]. 石油实验地质, 2025, 47(3): 671-679.
|
|
[16]
|
王平全, 陶鹏, 刘建仪, 等. 基于数字岩心的低渗透储层微观渗流机理研究[J]. 非常规油气, 2016, 3(6): 1-5.
|
|
[17]
|
Yasin, Q., Liu, B., Sun, M., Sohail, G.M., Ismail, A., Wood, D.A., et al. (2025) Digital Core Modeling for Multimineral Segmentation of Lacustrine Shale Oil Using FE-SEM and Kiu-Net. Fuel, 398, Article 135474. [Google Scholar] [CrossRef]
|
|
[18]
|
Chen, H., He, X., Teng, Q., Sheriff, R.E., Feng, J. and Xiong, S. (2020) Super-Resolution of Real-World Rock Microcomputed Tomography Images Using Cycle-Consistent Generative Adversarial Networks. Physical Review E, 101, Article 23305. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Zhang, T., Shen, T., Hu, G., Lu, F. and Du, X. (2024) Stochastic Reconstruction of Digital Cores Using Two-Discriminator Vae-Gan. Geoenergy Science and Engineering, 236, Article 212744. [Google Scholar] [CrossRef]
|
|
[20]
|
Zhou, L., Sun, H., Liu, L., Zhang, L., Imani, G., Yao, J., et al. (2025) Microscopic Flow Simulation of Shale Multi-Scale Digital Core Based on Image Classification. International Journal of Heat and Mass Transfer, 252, Article 127438. [Google Scholar] [CrossRef]
|
|
[21]
|
Zhang, Y., Bi, J., Han, C., Xu, L., Xiang, H., Kong, H., et al. (2025) Lightweight Two Dimensional Multi-Scale Large Kernel Attention Network for Super-Resolution of Digital Rock. GeoInformatica, 29, 465-490. [Google Scholar] [CrossRef]
|
|
[22]
|
冯雪健, 沈永星, 周动, 等. 基于CT数字岩心深度学习的煤裂隙分布识别研究[J]. 煤炭科学技术, 2023, 51(8): 97-104.
|
|
[23]
|
王玥天, 秦瑞宝, 魏丹, 等. 基于深度学习的数字岩心多尺度多组分融合建模方法研究[J]. 地球物理学报, 2025, 68(10): 3974-3991.
|
|
[24]
|
赵久玉, 蔡建超. 基于Unet++网络的数字岩心图像分割泛化能力[J]. 中国石油大学学报(自然科学版), 2024, 48(2): 118-125.
|
|
[25]
|
Liu, M. and Mukerji, T. (2022) Multiscale Fusion of Digital Rock Images Based on Deep Generative Adversarial Networks. Geophysical Research Letters, 49, e2022GL098342. [Google Scholar] [CrossRef]
|
|
[26]
|
Zhang, T., Xia, P. and Du, Y. (2021) 3D Pore Space Reconstruction Using Deep Residual Deconvolution Networks. Computational Geosciences, 25, 1605-1620. [Google Scholar] [CrossRef]
|
|
[27]
|
张平, 王登科, 于充, 等. 基于工业CT扫描的数字煤心构建过程及裂缝形态表征[J]. 河南理工大学学报(自然科学版), 2019, 38(6): 10-16.
|
|
[28]
|
牛银涛. 页岩多组分数字岩心重构及微观渗流规律研究[D]: [硕士学位论文]. 大庆: 东北石油大学, 2024.
|
|
[29]
|
朱伟, 赵峦啸, 王一戎. 碳酸盐岩溶蚀缝洞储层数字岩石建模与弹性模拟[J]. 煤田地质与勘探, 2025, 53(8): 181-192.
|
|
[30]
|
杨峰, 王昊, 黄波, 等. 基于CT扫描的致密砂岩渗流特征及应力敏感性研究[J]. 地质力学学报, 2019, 25(4): 475-482.
|
|
[31]
|
刘合, 任义丽, 李欣, 等. 岩心智能识别技术内涵与展望[J]. 石油学报, 2024, 45(8): 1296-1308.
|
|
[32]
|
杨沛, 胡望水, 崔莺莺, 等. 基于多尺度CT扫描的长岭凹陷青一段储层特征及渗流机理[J]. 断块油气田, 2025, 32(2): 211-220.
|
|
[33]
|
王晓琦, 金旭, 李建明, 等. 聚焦离子束扫描电镜在石油地质研究中的综合应用[J]. 电子显微学报, 2019, 38(3): 303-319.
|
|
[34]
|
方辉煌, 桑树勋, 刘世奇, 等. 基于微米焦点CT技术的煤岩数字岩石物理分析方法——以沁水盆地伯方3号煤为例[J]. 煤田地质与勘探, 2018, 46(5): 167-174.
|
|
[35]
|
Qian, Y., Gao, P., Fang, X., Sun, F., Cai, Y. and Zhou, Y. (2022) Microstructure Characterization Techniques for Shale Reservoirs: A Review. Frontiers in Earth Science, 10, Article ID: 930474. [Google Scholar] [CrossRef]
|
|
[36]
|
Zhang, Y., Li, D., Xin, G. and Ren, S. (2023) A Review of Molecular Models for Gas Adsorption in Shale Nanopores and Experimental Characterization of Shale Properties. ACS Omega, 8, 13519-13538. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Sun, M., Yu, B., Hu, Q., Yang, R., Zhang, Y., Li, B., et al. (2018) Pore Structure Characterization of Organic-Rich Niutitang Shale from China: Small Angle Neutron Scattering (SANS) Study. International Journal of Coal Geology, 186, 115-125. [Google Scholar] [CrossRef]
|
|
[38]
|
张晓祎. 页岩油气储层孔隙结构表征新方法研究[D]: [硕士学位论文]. 北京: 中国科学院大学(中国科学院渗流流体力学研究所), 2021.
|
|
[39]
|
Shu, Y., Xu, Y., Jiang, S., Zhang, L., Zhao, X., Pan, Z., et al. (2020) Effect of Particle Size on Pore Characteristics of Organic-Rich Shales: Investigations from Small-Angle Neutron Scattering (SANS) and Fluid Intrusion Techniques. Energies, 13, Article 6049. [Google Scholar] [CrossRef]
|
|
[40]
|
Lu, Y., Yang, F., Bai, T., Han, B., Lu, Y. and Gao, H. (2022) Shale Oil Occurrence Mechanisms: A Comprehensive Review of the Occurrence State, Occurrence Space, and Movability of Shale Oil. Energies, 15, Article 9485. [Google Scholar] [CrossRef]
|
|
[41]
|
郭雪晶, 何顺利, 陈胜, 等. 基于纳米CT及数字岩心的页岩孔隙微观结构及分布特征研究[J]. 中国煤炭地质, 2016, 28(2): 28-34.
|
|
[42]
|
庞伟. 采用多点地质统计法重构页岩的数字岩心[J]. 天然气工业, 2017, 37(9): 71-78.
|
|
[43]
|
Garum, M., Glover, P.W.J., Lorinczi, P., Micklethwaite, S. and Hassanpour, A. (2021) Integration of Multiscale Imaging of Nanoscale Pore Microstructures in Gas Shales. Energy & Fuels, 35, 10721-10732. [Google Scholar] [CrossRef]
|
|
[44]
|
崔利凯, 孙建孟, 闫伟超, 等. 基于多分辨率图像融合的多尺度多组分数字岩心构建[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1904-1912.
|
|
[45]
|
Sun, B., Hou, S., Zeng, S., Bai, X., Zhang, S. and Zhang, J. (2020) 3D Characterization of Porosity and Minerals of Low-Permeability Uranium-Bearing Sandstone Based on Multi-Resolution Image Fusion. Nuclear Science and Techniques, 31, 117-136. [Google Scholar] [CrossRef]
|
|
[46]
|
Wang, H.T., Wang, L., Lai, F.Q., et al. (2020) Investigation of Image Segmentation Effect on the Accuracy of Reconstructed Digital Core Models of Coquina Carbonate. Applied Geophysics, 17, 501-512. [Google Scholar] [CrossRef]
|
|
[47]
|
王海涛, 王丽, 赖富强, 等. 图像分割对生物灰岩数字岩心模型准确性的研究[J]. 应用地球物理学, 2020, 17(4): 501-512.
|
|
[48]
|
宋帅兵, 张通. 各向异性多孔介质数字岩心模型重构通用算法[J]. 地球物理学报, 2023, 66(11): 4765-4780.
|
|
[49]
|
吴玉其, 林承焰, 任丽华, 等. 基于多点地质统计学的数字岩心建模[J]. 中国石油大学学报(自然科学版), 2018, 42(3): 12-21.
|
|
[50]
|
刘磊, 姚军, 孙海, 等. 考虑微裂缝的数字岩心多点统计学构建方法[J]. 科学通报, 2018, 63(30): 3146-3157.
|
|
[51]
|
王付勇, 赵久玉. 基于深度学习的数字岩心图像重构及其重构效果评价[J]. 中南大学学报(自然科学版), 2022, 53(11): 4412-4424.
|
|
[52]
|
Li, B., Nie, X., Cai, J., Zhou, X., Wang, C. and Han, D. (2022) U-Net Model for Multi-Component Digital Rock Modeling of Shales Based on CT and QEMSCAN Images. Journal of Petroleum Science and Engineering, 216, Article 110734. [Google Scholar] [CrossRef]
|
|
[53]
|
杨川. 基于Res-Unet的Micro-CT数字岩芯孔喉特征提取及三维结构重建[D]: [硕士学位论文]. 西安: 西安石油大学, 2023.
|
|
[54]
|
刘博伟, 李彦来, 杨磊, 等. 基于格子玻尔兹曼方法的数字岩心孔隙流动模拟[J]. 新疆石油天然气, 2020, 16(1): 45-50.
|
|
[55]
|
王晨晨, 姚军, 杨永飞, 等. 基于格子玻尔兹曼方法的碳酸盐岩数字岩心渗流特征分析[J]. 中国石油大学学报(自然科学版), 2012, 36(6): 94-98.
|
|
[56]
|
孔强夫, 周灿灿, 张艳, 等. 基于数字岩心岩石电性数值模拟方法综述[J]. 地球物理学进展, 2015, 30(2): 718-724.
|
|
[57]
|
王静怡, 周志军, 魏华彬, 等. 基于页岩孔隙网络模型的油水两相流动模拟[J]. 岩性油气藏, 2021, 33(5): 148-154.
|
|
[58]
|
Fatt, I. (1957) Capillarity-Permeability-The Network Model of Porous Media-I. Capillary Pressure Characteristics.
|
|
[59]
|
赵玲, 石雪, 夏惠芬. 数字岩心孔隙网络模型的构建方法[J]. 科学技术与工程, 2018, 18(26): 32-38.
|
|
[60]
|
杨永飞, 刘志辉, 姚军, 等. 基于叠加数字岩心和孔隙网络模型的页岩基质储层孔隙空间表征方法[J]. 中国科学: 技术科学, 2018, 48(5): 488-498.
|
|
[61]
|
李俊键, 成宝洋, 刘仁静, 等. 基于数字岩心的孔隙尺度砂砾岩水敏微观机理[J]. 石油学报, 2019, 40(5): 594-603.
|
|
[62]
|
赵建鹏, 陈惠, 李宁, 等. 三维数字岩心技术岩石物理应用研究进展[J]. 地球物理学进展, 2020, 35(3): 1099-1108.
|
|
[63]
|
杨永飞, 张琦, 李英文, 等. CO2封存与驱油过程中纳微尺度多相多场渗流机制研究新进展[J]. 天然气工业, 2025, 45(9): 158-175.
|
|
[64]
|
Zhang, L., Kang, Q., Yao, J., Gao, Y., Sun, Z., Liu, H., et al. (2015) Pore Scale Simulation of Liquid and Gas Two-Phase Flow Based on Digital Core Technology. Science China Technological Sciences, 58, 1375-1384. [Google Scholar] [CrossRef]
|
|
[65]
|
Wei, Y., Nie, X., Jin, L., Zhang, C., Zhang, C. and Zhang, Z. (2018) Investigation of Sensitivity of Shale Elastic Properties to Rock Components Based on a Digital Core Technology and Finite Element Method. Arabian Journal of Geosciences, 11, 1-14. [Google Scholar] [CrossRef]
|
|
[66]
|
State Key Laboratory of Coal Mine Disaster Dynamics and Control CUCC, School of Resources and Safety Engineering CUCC, State Key Laboratory of Coal Mine Disaster Dynamics and Control CUCC, et al. (2020) Numerical Simulation of Hydraulic Fracturing Based on Two-Dimensional Surface Fracture Morphology Reconstruction and Combined Finite-discrete Element Method. Journal of Natural Gas Science and Engineering, 82, Article 103479.
|
|
[67]
|
李承峰, 刘乐乐, 孙建业, 等. 基于数字岩心的含水合物石英砂微观渗流有限元分析[J]. 海洋地质前沿, 2020, 36(9): 68-72.
|
|
[68]
|
朱伟, 单蕊, 聂昕, 等. 数字岩心等效弹性参数模拟研究进展[J]. 地球物理学进展, 2022, 37(2): 756-765.
|
|
[69]
|
Wei, X., Qu, D., Zhou, Z., Li, X., Zhu, Y., Hu, S., et al. (2025) Three-Dimensional Refined Discrete Element Numerical Modeling Method and Its Application for Reef Limestone Based on Digital Core Technology. Computers and Geotechnics, 185, Article 107362. [Google Scholar] [CrossRef]
|
|
[70]
|
Lin, R., Ren, L., Zhao, J., Tan, X., Rasouli, V., Wang, X., et al. (2022) Stress and Pressure Dependent Permeability of Shale Rock: Discrete Element Method (DEM) Simulation on Digital Core. Journal of Petroleum Science and Engineering, 208, Article 109797. [Google Scholar] [CrossRef]
|
|
[71]
|
Huang, T., Wang, Z., Zeng, Q. and Dai, A. (2022) A Novel Method for Multiscale Digital Core Reconstruction Based on Regional Superposition Algorithm. Journal of Petroleum Science and Engineering, 212, Article 110302. [Google Scholar] [CrossRef]
|
|
[72]
|
Nabipour, I., Raoof, A., Cnudde, V., Aghaei, H. and Qajar, J. (2024) A Computationally Efficient Modeling of Flow in Complex Porous Media by Coupling Multiscale Digital Rock Physics and Deep Learning: Improving the Tradeoff between Resolution and Field-of-View. Advances in Water Resources, 188, Article 104695. [Google Scholar] [CrossRef]
|
|
[73]
|
Jiang, F., Guo, Y., Tsuji, T., Kato, Y., Shimokawara, M., Esteban, L., et al. (2023) Upscaling Permeability Using Multiscale X‐Ray‐CT Images with Digital Rock Modeling and Deep Learning Techniques. Water Resources Research, 59, e2022WR033267. [Google Scholar] [CrossRef]
|
|
[74]
|
Tian, Y., Wang, D., Xia, J., Ma, Y., Zhang, Y., Li, B., et al. (2025) Digital Rock Modeling of Deformed Multi-Scale Media in Deep Hydrocarbon Reservoirs Based on In-Situ Stress-Loading CT Imaging and U-Net Deep Learning. Marine and Petroleum Geology, 171, Article 107177. [Google Scholar] [CrossRef]
|