|
[1]
|
王炫凯, 曲宝成, 艾孜买提∙阿合麦提, 等. 磺胺类药物残留危害及其检测方法的研究进展[J]. 四川畜牧兽医, 2021, 48(8): 32-36.
|
|
[2]
|
谢全模. 饮用水源地水体中抗生素类的污染特征及其处理工程技术示范[D]: [博士学位论文]. 广州: 华南理工大学, 2020.
|
|
[3]
|
Dutta, J. and Mala, A.A. (2020) Removal of Antibiotic from the Water Environment by the Adsorption Technologies: A Review. Water Science and Technology, 82, 401-426. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Junaid, M., Zainab, S.M., Xu, N., Sadaf, M., Malik, R.N. and Wang, J. (2022) Antibiotics and Antibiotic Resistant Genes in Urban Aquifers. Current Opinion in Environmental Science & Health, 26, Article ID: 100324. [Google Scholar] [CrossRef]
|
|
[5]
|
Tian, S., Zhang, C., Huang, D., Wang, R., Zeng, G., Yan, M., et al. (2020) Recent Progress in Sustainable Technologies for Adsorptive and Reactive Removal of Sulfonamides. Chemical Engineering Journal, 389, Article ID: 123423. [Google Scholar] [CrossRef]
|
|
[6]
|
Conde-Cid, M., Álvarez-Esmorís, C., Paradelo-Núñez, R., Nóvoa-Muñoz, J.C., Arias-Estévez, M., Álvarez-Rodríguez, E., et al. (2018) Occurrence of Tetracyclines and Sulfonamides in Manures, Agricultural Soils and Crops from Different Areas in Galicia (NW Spain). Journal of Cleaner Production, 197, 491-500. [Google Scholar] [CrossRef]
|
|
[7]
|
2020年中国兽用抗菌药使用情况报告[N]. 中国畜牧兽医报, 2021-11-14(003).
|
|
[8]
|
徐子文, 董梦阳, 刘喜娟, 等. Cu2+共存对磺胺嘧啶在土壤中吸附的影响[J]. 中国环境科学, 2021, 41(6): 2773-2779.
|
|
[9]
|
Pei, H., Wang, L., Xia, X., Dong, C., Tan, B., Zhang, Y., et al. (2024) Sulfamethoxazole Stress Endangers the Gut Health of Sea Cucumber (Apostichopus japonicus) and Affects Host Metabolism. Ecotoxicology and Environmental Safety, 273, Article ID: 116099. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
陈安杰. 吉林省段典型河流水中抗生素污染状况和风险趋势的研究[D]: [硕士学位论文]. 长春: 东北师范大学, 2024.
|
|
[11]
|
Chaturvedi, P., Singh, A., Chowdhary, P., Pandey, A. and Gupta, P. (2021) Occurrence of Emerging Sulfonamide Resistance (Sul1 and Sul2) Associated with Mobile Integrons-Integrase (Inti1 and Inti2) in Riverine Systems. Science of the Total Environment, 751, Article ID: 142217. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Rolbiecki, D., Harnisz, M., Korzeniewska, E., Jałowiecki, Ł. and Płaza, G. (2020) Occurrence of Fluoroquinolones and Sulfonamides Resistance Genes in Wastewater and Sludge at Different Stages of Wastewater Treatment: A Preliminary Case Study. Applied Sciences, 10, Article 5816. [Google Scholar] [CrossRef]
|
|
[13]
|
孙德军. 畜产品中磺胺类药物残留危害及检测技术的研究进展[J]. 饲料工业, 2023, 44(9): 73-80.
|
|
[14]
|
Białk-Bielińska, A., Stolte, S., Arning, J., Uebers, U., Böschen, A., Stepnowski, P., et al. (2011) Ecotoxicity Evaluation of Selected Sulfonamides. Chemosphere, 85, 928-933. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
刘丽丽, 吕鹏, 闫艳春. 磺胺二甲嘧啶对斑马鱼胚胎的急性毒性作用[J]. 中国渔业质量与标准, 2018, 8(1): 34-39.
|
|
[16]
|
Faleye, A.C., Adegoke, A.A., Ramluckan, K., Fick, J., Bux, F. and Stenström, T.A. (2019) Concentration and Reduction of Antibiotic Residues in Selected Wastewater Treatment Plants and Receiving Waterbodies in Durban, South Africa. Science of the Total Environment, 678, 10-20. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Dinh, Q.T., Moreau-Guigon, E., Labadie, P., Alliot, F., Teil, M., Blanchard, M., et al. (2017) Occurrence of Antibiotics in Rural Catchments. Chemosphere, 168, 483-490. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Ferreiro, C., Gómez-Motos, I., Lombraña, J.I., de Luis, A., Villota, N., Ros, O., et al. (2020) Contaminants of Emerging Concern Removal in an Effluent of Wastewater Treatment Plant under Biological and Continuous Mode Ultrafiltration Treatment. Sustainability, 12, Article 725. [Google Scholar] [CrossRef]
|
|
[19]
|
张文斌, 赵晶, 张秀, 等. 重庆市水环境中抗生素的污染特征及其风险评价[J]. 生态毒理学报, 2023, 18(6): 314-324.
|
|
[20]
|
Mac Loughlin, T.M., Bahl, M.F., Flores, F.M., Apartin, C.D., Marino, D.J.G. and Peluso, M.L. (2024) Assessment of Sulfonamide Contamination in Aquatic Environments: A First Report for Argentina and Environmental Risk Assessment. Science of the Total Environment, 934, Article ID: 173139. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Wang, M., Li, J., Zhou, Y., Zhou, W. and Huang, S. (2024) Spatial and Temporal Distribution and Ecological Risk Assessment of Typical Antibiotics in Natural and Wastewater of Jinjiang River Basin. PLOS ONE, 19, e0310865. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Hanna, N., Purohit, M., Diwan, V., Chandran, S.P., Riggi, E., Parashar, V., et al. (2020) Monitoring of Water Quality, Antibiotic Residues, and Antibiotic-Resistant Escherichia Coli in the Kshipra River in India over a 3-Year Period. International Journal of Environmental Research and Public Health, 17, Article 7706. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Suzuki, S., Ogo, M., Takada, H., Seki, K., Mizukawa, K., Kadoya, A., et al. (2021) Contamination of Antibiotics and Sul and Tet(m) Genes in Veterinary Wastewater, River, and Coastal Sea in Thailand. Science of the Total Environment, 791, Article ID: 148423. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Gray, A.D., Todd, D. and Hershey, A.E. (2020) The Seasonal Distribution and Concentration of Antibiotics in Rural Streams and Drinking Wells in the Piedmont of North Carolina. Science of the Total Environment, 710, Article ID: 136286. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
陈昱如, 段艳平, 张智博, 等. 长江经济带水环境中抗生素人体健康风险评价[J]. 中国环境科学, 2023, 43(7): 3713-3729.
|
|
[26]
|
Zhao, K., Li, C., Wang, Q. and Lu, H. (2022) Distribution of Sulfonamide Antibiotics and Resistance Genes and Their Correlation with Water Quality in Urban Rivers (Changchun City, China) in Autumn and Winter. Sustainability, 14, Article 7301. [Google Scholar] [CrossRef]
|
|
[27]
|
李聪, 黄凤寸, 郭军, 等. 黄家湖流域水体抗生素空间分布、源解析及生态健康风险评估[J/OL]. 环境科学, 2025: 1-11.[CrossRef]
|
|
[28]
|
Díaz-Cruz, M.S., García-Galán, M.J. and Barceló, D. (2008) Highly Sensitive Simultaneous Determination of Sulfonamide Antibiotics and One Metabolite in Environmental Waters by Liquid Chromatography-Quadrupole Linear Ion Trap-Mass Spectrometry. Journal of Chromatography A, 1193, 50-59. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
韩迁, 张玉娇, 赖承钺, 等. 成都市典型流域抗生素分布特征及生态风险评价[J]. 生态毒理学报, 2023, 18(2): 395-409.
|
|
[30]
|
刘洁雪, 梁萧, 覃礼堂, 等. 漓江流域桂林市区段有机磷农药和磺胺类抗生素的复合污染及其生态风险[J]. 环境科学研究, 2022, 35(1): 60-69.
|
|
[31]
|
Zainab, S.M., Junaid, M., Rehman, M.Y.A., Lv, M., Yue, L., Xu, N., et al. (2021) First Insight into the Occurrence, Spatial Distribution, Sources, and Risks Assessment of Antibiotics in Groundwater from Major Urban-Rural Settings of Pakistan. Science of the Total Environment, 791, Article ID: 148298. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
陈卫平, 彭程伟, 杨阳, 等. 北京市地下水中典型抗生素分布特征与潜在风险[J]. 环境科学, 2017, 38(12): 5074-5080.
|
|
[33]
|
Karfusehr, C., Kayser, A., te Gempt, R., Hein, A. and Germershausen, L. (2018) Auftreten und Herkunftsbestimmung von Antibiotika in viehstarken Regionen Niedersachsens. Grundwasser, 24, 3-11. [Google Scholar] [CrossRef]
|
|
[34]
|
郭越, 丁萌萌, 董瑞, 等. 地下水中24种磺胺类抗生素检测方法比对研究[J]. 中国环境监测, 2025, 41(2): 188-200.
|
|
[35]
|
Arun, S., Xin, L., Gaonkar, O., Neppolian, B., Zhang, G. and Chakraborty, P. (2022) Antibiotics in Sewage Treatment Plants, Receiving Water Bodies and Groundwater of Chennai City and the Suburb, South India: Occurrence, Removal Efficiencies, and Risk Assessment. Science of the Total Environment, 851, Article ID: 158195. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
重点管控新污染物清单(2023年版) [J]. 中华人民共和国国务院公报, 2023(5): 19-24.
|
|
[37]
|
宋豆豆, 李莉, 刘伟婷. 玉米秸秆改性生物炭对磺胺类抗生素的吸附特性[J]. 生态与农村环境学报, 2021, 37(11): 1473-1480.
|
|
[38]
|
Işıtan, A. (2025) Sustainable Adsorption of Amoxicillin and Sulfamethoxazole onto Activated Carbon Derived from Food and Agricultural Waste: Isotherm Modeling and Characterization. Processes, 13, Article 2528. [Google Scholar] [CrossRef]
|
|
[39]
|
Li, Y., Wang, B., Shang, H., Cao, Y., Yang, C., Hu, W., et al. (2023) Influence of Adsorption Sites of Biochar on Its Adsorption Performance for Sulfamethoxazole. Chemosphere, 326, Article ID: 138408. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Wang, Y., Jiao, W., Wang, J., Liu, G., Cao, H. and Lü, J. (2019) Amino-Functionalized Biomass-Derived Porous Carbons with Enhanced Aqueous Adsorption Affinity and Sensitivity of Sulfonamide Antibiotics. Bioresource Technology, 277, 128-135. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
卢晨旭. 新型多孔碳材料对水中磺胺类抗生素的吸附去除研究[D]: [硕士学位论文]. 郑州: 河南工业大学, 2025.
|
|
[42]
|
Ahmed, S.F., Mofijur, M., Nuzhat, S., Chowdhury, A.T., Rafa, N., Uddin, M.A., et al. (2021) Recent Developments in Physical, Biological, Chemical, and Hybrid Treatment Techniques for Removing Emerging Contaminants from Wastewater. Journal of Hazardous Materials, 416, Article ID: 125912. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Munir, M., Wong, K. and Xagoraraki, I. (2011) Release of Antibiotic Resistant Bacteria and Genes in the Effluent and Biosolids of Five Wastewater Utilities in Michigan. Water Research, 45, 681-693. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
彭秋瑜, 刘如玲, 李萌, 等. 序批式反应器改良工艺对海水养殖废水中氮和磺胺嘧啶去除及微生物群落分析[J]. 中国海洋大学学报(自然科学版), 2023, 53(12): 146-154.
|
|
[45]
|
de Souza, D.I., Giacobbo, A., da Silva Fernandes, E., Rodrigues, M.A.S., de Pinho, M.N. and Bernardes, A.M. (2020) Experimental Design as a Tool for Optimizing and Predicting the Nanofiltration Performance by Treating Antibiotic-Containing Wastewater. Membranes, 10, Article 156. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Exall, K., Balakrishnan, V.K., Toito, J. and McFadyen, R. (2013) Impact of Selected Wastewater Constituents on the Removal of Sulfonamide Antibiotics via Ultrafiltration and Micellar Enhanced Ultrafiltration. Science of the Total Environment, 461, 371-376. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
刘东梅, 路连勇, 张杨. 藻菌膜生物反应器处理抗生素废水效能及其膜污染研究[J]. 工业用水与废水, 2024, 55(4): 37-41, 71.
|
|
[48]
|
Gripa, E., Campos, J.C. and da Fonseca, F.V. (2021) Combination of Ozonation and Microfiltration to Condition Landfill Leachate for Reverse Osmosis Treatment. Journal of Water Process Engineering, 43, Article ID: 102264. [Google Scholar] [CrossRef]
|
|
[49]
|
Chen, K., Zhao, S., Lan, H., Xie, T., Wang, H., Chen, Y., et al. (2022) Dual-Electric Layer Nanofiltration Membranes Based on Polyphenol/PEI Interlayer for Highly Efficient Mg2+/Li+ Separation. Journal of Membrane Science, 660, Article ID: 120860. [Google Scholar] [CrossRef]
|
|
[50]
|
Bellona, C., Heil, D., Yu, C., Fu, P. and Drewes, J.E. (2012) The Pros and Cons of Using Nanofiltration in Lieu of Reverse Osmosis for Indirect Potable Reuse Applications. Separation and Purification Technology, 85, 69-76. [Google Scholar] [CrossRef]
|
|
[51]
|
Adams, C., Wang, Y., Loftin, K. and Meyer, M. (2002) Removal of Antibiotics from Surface and Distilled Water in Conventional Water Treatment Processes. Journal of Environmental Engineering, 128, 253-260. [Google Scholar] [CrossRef]
|
|
[52]
|
李文友. 有机酸纳滤膜分离过程中膜污染的控制及清洗[J]. 安徽化工, 2013, 39(4): 17-19.
|
|
[53]
|
丁国良. 纳滤膜用于水体中的抗生素分离研究进展[J]. 清洗世界, 2021, 37(7): 74-76.
|
|
[54]
|
周明罗. A2/MBBR工艺对喹诺酮类和磺胺类抗生素的强化去除研究[D]: [博士学位论文]. 绵阳: 西南科技大学, 2022.
|
|
[55]
|
殷小伟. 序批式活性污泥反应器对磺胺二甲嘧啶的去除特性研究[D]: [硕士学位论文]. 北京: 中国科学院大学, 2011.
|
|
[56]
|
王琛, 李梦凯, 阎荣雷, 等. 紫外/真空紫外反应器对磺胺类抗生素的去除研究[J]. 中国给水排水, 2016, 32(9): 53-57.
|
|
[57]
|
于澜. 磺胺类抗生素降解菌群的筛选、降解特性与代谢调控机制[D]: [博士学位论文]. 哈尔滨: 哈尔滨工业大学, 2022.
|
|
[58]
|
王巧宁. 魔鬼弧菌L2-2和豚鼠气单胞菌GLB-10对磺胺类抗生素的代谢途径与分子机制研究[D]: [博士学位论文]. 烟台: 中国科学院大学(中国科学院烟台海岸带研究所), 2021.
|
|
[59]
|
李连城. 磺胺类抗生素高效降解菌株筛选及其降解特性研究[D]: [硕士学位论文]. 西安: 西安建筑科技大学, 2020.
|
|
[60]
|
李亚鑫. 基于畜禽粪便无害化处理的磺胺类抗生素高效降解微生物筛选研究[D]: [硕士学位论文]. 荆州: 长江大学, 2024.
|
|
[61]
|
郭晓丹娜, 郭夏丽. 白腐真菌共培养对磺胺二甲基嘧啶降解的影响[J]. 生物技术通报, 2017, 33(5): 197-202.
|
|
[62]
|
崔二苹. 赤铁矿基人工湿地强化去除磺胺类抗生素的机制研究[D]: [博士学位论文]. 北京: 中国农业科学院, 2024.
|
|
[63]
|
张子扬, 刘舒巍, 张璐. 人工湿地去除畜禽养殖废水中磺胺类抗生素抗性基因研究[J]. 环境科学与管理, 2016, 41(5): 89-92.
|
|
[64]
|
李峰. 微生物燃料电池型人工湿地同步去除污水中氮和抗生素的效果及机理研究[D]: [硕士学位论文]. 济南: 济南大学, 2022.
|
|
[65]
|
张艺. 耐低温抗生素降解菌筛选及其应用潜力评价[D]: [硕士学位论文]. 北京: 中国科学院大学, 2022.
|
|
[66]
|
Liu, R., Ma, J., Zheng, X., Zhao, M., Zhu, C. and Shen, Y. (2024) Enhanced Electrochemical Degradation of Aromatic Organic Pollutants through Accelerated Electron Transfer Using Fe-C Structured rGO/Fe-NF. Separation and Purification Technology, 330, Article ID: 125269. [Google Scholar] [CrossRef]
|
|
[67]
|
韩颖, 龚志豪. 生物炭修饰阴极在电芬顿法处理水中磺胺甲恶唑的研究[J]. 环境科技, 2024, 37(3): 25-29.
|
|
[68]
|
Oh, D., Lee, C., Kang, Y. and Chang, Y. (2020) Hydroxylamine-Assisted Peroxymonosulfate Activation Using Cobalt Ferrite for Sulfamethoxazole Degradation. Chemical Engineering Journal, 386, Article ID: 123751. [Google Scholar] [CrossRef]
|
|
[69]
|
刘勇志. 铁单原子催化剂活化过一硫酸盐降解双酚A的效能与机制研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2025.
|
|
[70]
|
金昊, 马富媛, 柴柳英, 等. 臭氧对8种磺胺类抗生素降解效果研究[J]. 生物化工, 2019, 5(2): 57-59.
|
|
[71]
|
马森林. 高硅ZSM-5分子筛协同臭氧强化水中磺胺甲噁唑降解的效能与机制[D]: [硕士学位论文]. 武汉: 华中农业大学, 2020.
|
|
[72]
|
陈颖怡. 基于元素掺杂的苯乙炔铜制备及其光催化降解抗生素的研究[D]: [硕士学位论文]. 广州: 广东工业大学, 2024.
|