|
[1]
|
Teitelbaum, I. (2021) Peritoneal Dialysis. New England Journal of Medicine, 385, 1786-1795. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
骆雅咏, 董哲毅, 林雯文, 等. 营养评估方法在慢性肾脏病患者中的应用研究进展[J]. 解放军医学杂志, 2024, 49(12): 1437-1443.
|
|
[3]
|
管运才. 多糖腹膜透析液的制备与质量研究[D]: [硕士学位论文]. 南京: 南京大学, 2016.
|
|
[4]
|
Kiebalo, T., Holotka, J., Habura, I. and Pawlaczyk, K. (2020) Nutritional Status in Peritoneal Dialysis: Nutritional Guidelines, Adequacy and the Management of Malnutrition. Nutrients, 12, Article No. 1715. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Rippe, B. and Venturoli, D. (2007) Peritoneal Transport Kinetics with Amino Acid-Based and Glucose-Based Peritoneal Dialysis Solutions. Peritoneal Dialysis International: Journal of the International Society for Peritoneal Dialysis, 27, 518-522. [Google Scholar] [CrossRef]
|
|
[6]
|
王军, 贾忠辉, 俞雨生. 氨基酸腹膜透析液在腹膜透析营养不良患者中的应用前景[J]. 医学研究生学报, 2004(6): 554-557.
|
|
[7]
|
Faller, B., Aparicio, M., Faict, D., De Vos, C., de Précigout, V., Larroumet, N., et al. (1995) Clinical Evaluation of an Optimized 1.1% Amino-Acid Solution for Peritoneal Dialysis. Nephrology Dialysis Transplantation, 10, 1432-1437. [Google Scholar] [CrossRef]
|
|
[8]
|
Jones, M., Hagen, T., Boyle, C., Vonesh, E., Hamburger, R., Charytan, C., et al. (1998) Treatment of Malnutrition with 1.1% Amino Acid Peritoneal Dialysis Solution: Results of a Multicenter Outpatient Study. American Journal of Kidney Diseases, 32, 761-769. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Taylor, G.S., Patel, V., Spencer, S., Fluck, R.J. and McIntyre, C.W. (2002) Long-Term Use of 1.1% Amino Acid Dialysis Solution in Hypoalbuminemic Continuous Ambulatory Peritoneal Dialysis Patients. Clinical Nephrology, 58, 445-450. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Hsiung, J., Kleine, C., Naderi, N., Park, C., Soohoo, M., Moradi, H., et al. (2019) Association of Pre-End-Stage Renal Disease Serum Albumin with Post-End-Stage Renal Disease Outcomes among Patients Transitioning to Dialysis. Journal of Renal Nutrition, 29, 310-321. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Chan, W. (2021) Chronic Kidney Disease and Nutrition Support. Nutrition in Clinical Practice, 36, 312-330. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Park, M.S., Choi, S.R., Song, Y.S., Yoon, S.Y., Lee, S.Y. and Han, D.S. (2006) New Insight of Amino Acid-Based Dialysis Solutions. Kidney International, 70, S110-S114. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Stegmayr, B. (2017) Dialysis Procedures Alter Metabolic Conditions. Nutrients, 9, Article No. 548. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Li, F.K., Chan, L.Y.Y., Woo, J.C.Y., Ho, S.K.N., Lo, W.K., Lai, K.N., et al. (2003) A 3-Year, Prospective, Randomized, Controlled Study on Amino Acid Dialysate in Patients on CAPD. American Journal of Kidney Diseases, 42, 173-183. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Iyasere, O., Nagar, R., Jesus-Silva, J.A., Pepereke, S., MacConaill, K., Eid, A., et al. (2021) The Impact of Amino Acid Dialysate on Anthropometric Measures in Adult Patients on Peritoneal Dialysis: A Systematic Review and Meta-Analysis. Peritoneal Dialysis International: Journal of the International Society for Peritoneal Dialysis, 42, 314-323. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
刘红, 程铭, 姜琳, 等. 氨基酸腹膜透析对腹膜透析患者生化指标、透析效能及营养状况的影响[J]. 临床和实验医学杂志, 2020, 19(13): 1387-1390.
|
|
[17]
|
孙彬, 李雪芹, 马强. 氨基酸腹膜透析对腹膜透析患者透析效能和营养状况的影响[J]. 中国医药导刊, 2019, 21(1): 21-24.
|
|
[18]
|
Kopple, J.D., Bernard, D., Messana, J., Swartz, R., Bergström, J., Lindholm, B., et al. (1995) Treatment of Malnourished CAPD Patients with an Amino Acid Based Dialysate. Kidney International, 47, 1148-1157. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Misra, M., Reaveley, D.A., Ashworth, J., Muller, B., Seed, M. and Brown, E.A. (1997) Six-Month Prospective Cross-Over Study to Determine the Effects of 1.1% Amino Acid Dialysate on Lipid Metabolism in Patients on Continuous Ambulatory Peritoneal Dialysis. Peritoneal Dialysis International: Journal of the International Society for Peritoneal Dialysis, 17, 279-286. [Google Scholar] [CrossRef]
|
|
[20]
|
Ikizler, T.A., Burrowes, J.D., Byham-Gray, L.D., Campbell, K.L., Carrero, J., Chan, W., et al. (2020) KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update. American Journal of Kidney Diseases, 76, S1-S107. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
ter Wee, P.M. and van Ittersum, F.J. (2007) The New Peritoneal Dialysis Solutions: Friends Only, or Foes in Part? Nature Clinical Practice Nephrology, 3, 604-612. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Li, P.K.T., Culleton, B.F., Ariza, A., Do, J., Johnson, D.W., Sanabria, M., et al. (2013) Randomized, Controlled Trial of Glucose-Sparing Peritoneal Dialysis in Diabetic Patients. Journal of the American Society of Nephrology, 24, 1889-1900. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Bonomini, M., Zammit, V., Divino-Filho, J.C., Davies, S.J., Di Liberato, L., Arduini, A., et al. (2020) The Osmo-Metabolic Approach: A Novel and Tantalizing Glucose-Sparing Strategy in Peritoneal Dialysis. Journal of Nephrology, 34, 503-519. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Jagirdar, R.M., Pitaraki, E., Rouka, E., Papazoglou, E.D., Bartosova, M., Zebekakis, P., et al. (2023) Differential Effects of Biocompatible Peritoneal Dialysis Fluids on Human Mesothelial and Endothelial Cells in 2d and 3d Phenotypes. Artificial Organs, 48, 484-494. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Kumar, P.S., Mauriello, C.T., Hair, P.S., Rister, N.S., Lawrence, C., Raafat, R.H., et al. (2015) Glucose-Based Dialysis Fluids Inhibit Innate Defense against Staphylococcus Aureus. Molecular Immunology, 67, 575-583. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Tobudic, S., Harrison, N., Forstner, C., Kussman, M. and Burgmann, H. (2017) Effect of Peritoneal Dialysis Fluids on Activity of Echinocandins against Candida Spp. Biofilm. Medical Mycology, 55, 790-793. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Tjiong, H.L., Swart, R., van den Berg, J.W. and Fieren, M.W. (2009) Amino Acid-Based Peritoneal Dialysis Solutions for Malnutrition: New Perspectives. Peritoneal Dialysis International: Journal of the International Society for Peritoneal Dialysis, 29, 384-393. [Google Scholar] [CrossRef]
|
|
[28]
|
Kuok, M.C.I., Chow, C.K.J., Chan, N.M. and Chan, W.K.Y. (2025) Improvement of Lactic Acidosis in Pyruvate Dehydrogenase Complex Deficiency Using Custom-Made Amino Acid-Based Dialysate for Peritoneal Dialysis. Pediatric Nephrology, 40, 2201-2203. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Lui, S.L., Yung, S., Yim, A., Wong, K.M., Tong, K.L., Wong, K.S., et al. (2012) A Combination of Biocompatible Peritoneal Dialysis Solutions and Residual Renal Function, Peritoneal Transport, and Inflammation Markers: A Randomized Clinical Trial. American Journal of Kidney Diseases, 60, 966-975. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Yung, S., Lui, S.L., Ng, C.K.F., Yim, A., Ma, M.K.M., Lo, K.Y., et al. (2015) Impact of a Low-Glucose Peritoneal Dialysis Regimen on Fibrosis and Inflammation Biomarkers. Peritoneal Dialysis International: Journal of the International Society for Peritoneal Dialysis, 35, 147-158. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Li, P.K.T., Dorval, M., Johnson, D.W., Rutherford, P., Shutov, E., Story, K., et al. (2015) The Benefit of a Glucose-Sparing PD Therapy on Glycemic Control Measured by Serum Fructosamine in Diabetic Patients in a Randomized, Controlled Trial (Impendia). Nephron, 129, 233-240. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Szeto, C.C. and Johnson, D.W. (2017) Low GDP Solution and Glucose-Sparing Strategies for Peritoneal Dialysis. Seminars in Nephrology, 37, 30-42. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Tjiong, H.L., Swart, R., Van den Berg, J.W. and Fieren, M.W. (2008) Dialysate as Food as an Option for Automated Peritoneal Dialysis. Clinical Kidney Journal, 1, iv36-iv40. [Google Scholar] [CrossRef] [PubMed]
|