|
[1]
|
Li, X., Zhuge, Z., Carvalho, L.R.R.A., Braga, V.A., Lucena, R.B., Li, S., et al. (2022) Inorganic Nitrate and Nitrite Ameliorate Kidney Fibrosis by Restoring Lipid Metabolism via Dual Regulation of AMP-Activated Protein Kinase and the AKT-PGC1α Pathway. Redox Biology, 51, Article ID: 102266. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Reidy, K., Kang, H.M., Hostetter, T. and Susztak, K. (2014) Molecular Mechanisms of Diabetic Kidney Disease. Journal of Clinical Investigation, 124, 2333-2340. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Grgic, I., Duffield, J.S. and Humphreys, B.D. (2011) The Origin of Interstitial Myofibroblasts in Chronic Kidney Disease. Pediatric Nephrology, 27, 183-193. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Humphreys, B.D., Lin, S., Kobayashi, A., Hudson, T.E., Nowlin, B.T., Bonventre, J.V., et al. (2010) Fate Tracing Reveals the Pericyte and Not Epithelial Origin of Myofibroblasts in Kidney Fibrosis. The American Journal of Pathology, 176, 85-97. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
李旭萍, 马鸿斌, 马海兰. 中医药抗肾脏纤维化的研究进展[J]. 中成药, 2023, 45(12): 4036-4041.
|
|
[6]
|
王玲. 滋肾益气方联合厄贝沙坦对糖尿病肾病肾脏纤维化指标和炎症因子的影响[J]. 中华中医药学刊, 2019, 37(4): 940-943.
|
|
[7]
|
马园园, 陈高峰, 黄恺, 等. 肾间质纤维化过程中HA/CD44表达变化[J]. 中国中西医结合肾病杂志, 2019, 20(9): 759-762, 848.
|
|
[8]
|
Meran, S. and Steadman, R. (2011) Fibroblasts and Myofibroblasts in Renal Fibrosis. International Journal of Experimental Pathology, 92, 158-167. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Pisoschi, A.M. and Pop, A. (2015) The Role of Antioxidants in the Chemistry of Oxidative Stress: A Review. European Journal of Medicinal Chemistry, 97, 55-74. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
林千愉, 李梦洁, 梁栋, 等. 核因子E2相关因子2介导的氧化应激在糖尿病肾脏疾病肾纤维化中的研究进展[J]. 中国糖尿病杂志, 2023, 31(8): 627-631.
|
|
[11]
|
Glorieux, C. and Buc Calderon, P. (2024) Targeting Catalase in Cancer. Redox Biology, 77, Article ID: 103404. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Halliwell, B., Gutteridge, J.M. and Cross, C.E. (1992) Free Radicals, Antioxidants, and Human Disease: Where Are We Now? Journal of Laboratory and Clinical Medicine, 119, 598-620.
|
|
[13]
|
Moreno-Macias, H. and Romieu, I. (2014) Effects of Antioxidant Supplements and Nutrients on Patients with Asthma and Allergies. Journal of Allergy and Clinical Immunology, 133, 1237-1244. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Chaudhary, M.R., Chaudhary, S., Sharma, Y., Singh, T.A., Mishra, A.K., Sharma, S., et al. (2023) Aging, Oxidative Stress and Degenerative Diseases: Mechanisms, Complications and Emerging Therapeutic Strategies. Biogerontology, 24, 609-662. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Stenvinkel, P., Chertow, G.M., Devarajan, P., Levin, A., Andreoli, S.P., Bangalore, S., et al. (2021) Chronic Inflammation in Chronic Kidney Disease Progression: Role of NRF2. Kidney International Reports, 6, 1775-1787. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Xing, L., Guo, H., Meng, S., Zhu, B., Fang, J., Huang, J., et al. (2021) Klotho Ameliorates Diabetic Nephropathy by Activating NRF2 Signaling Pathway in Podocytes. Biochemical and Biophysical Research Communications, 534, 450-456. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
黄润宇, 黎婷, 范雪琪, 等. 基于HIF-1α通路探讨中药肾康灵对CKD大鼠肾脏氧化应激和纤维化程度的影响[J]. 中国民族民间医药, 2025, 34(8): 24-28, 39.
|
|
[18]
|
Ubaid, S., Rumman, M., Singh, B. and Pandey, S. (2021) Role of Silent Information Regulator 1 (SIRT1) in Regulating Oxidative Stress and Inflammation. Inflammation, 43, 1589-1598.
|
|
[19]
|
Meng, X., Nikolic-Paterson, D.J. and Lan, H.Y. (2016) TGF-β: The Master Regulator of Fibrosis. Nature Reviews Nephrology, 12, 325-338. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Kishi, S., Nagasu, H., Kidokoro, K. and Kashihara, N. (2023) Oxidative Stress and the Role of Redox Signalling in Chronic Kidney Disease. Nature Reviews Nephrology, 20, 101-119. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Ebert, T., Neytchev, O., Witasp, A., Kublickiene, K., Stenvinkel, P. and Shiels, P.G. (2021) Inflammation and Oxidative Stress in Chronic Kidney Disease and Dialysis Patients. Antioxidants & Redox Signaling, 35, 1426-1448. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Li, X., Shan, Q., Wu, X., Miao, H. and Zhao, Y. (2024) Gut Microbiota Regulates Oxidative Stress and Inflammation: A Double-Edged Sword in Renal Fibrosis. Cellular and Molecular Life Sciences, 81, Article No. 480. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Morris, G., Gevezova, M., Sarafian, V. and Maes, M. (2022) Redox Regulation of the Immune Response. Cellular & Molecular Immunology, 19, 1079-1101. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Joffre, J. and Hellman, J. (2021) Oxidative Stress and Endothelial Dysfunction in Sepsis and Acute Inflammation. Antioxidants & Redox Signaling, 35, 1291-1307. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Lan, H. (2022) Macrophage-myofibroblast Transition in Kidney Disease. Integrative Medicine in Nephrology and Andrology, 9, 12. [Google Scholar] [CrossRef]
|
|
[26]
|
Komada, T. and Muruve, D.A. (2019) The Role of Inflammasomes in Kidney Disease. Nature Reviews Nephrology, 15, 501-520. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
郭倩, 王倩, 郭帅, 等. 桃红四物汤加味对糖尿病肾病大鼠肾损伤的影响[J]. 世界中医药, 2025, 20(1): 44-50, 60.
|
|
[28]
|
Tamura, K., Miyato, H., Kanamaru, R., Sadatomo, A., Takahashi, K., Ohzawa, H., et al. (2023) Activated Neutrophils Inhibit Chemotactic Migration of Activated T Lymphocytes to CXCL11 by Multiple Mechanisms. Cellular Immunology, 384, Article ID: 104663. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Sun, L., Wang, X., Saredy, J., Yuan, Z., Yang, X. and Wang, H. (2020) Innate-Adaptive Immunity Interplay and Redox Regulation in Immune Response. Redox Biology, 37, Article ID: 101759. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Doedens, A.L., Phan, A.T., Stradner, M.H., Fujimoto, J.K., Nguyen, J.V., Yang, E., et al. (2013) Hypoxia-Inducible Factors Enhance the Effector Responses of CD8+ T Cells to Persistent Antigen. Nature Immunology, 14, 1173-1182. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Devadas, S., Zaritskaya, L., Rhee, S.G., Oberley, L. and Williams, M.S. (2002) Discrete Generation of Superoxide and Hydrogen Peroxide by T Cell Receptor Stimulation: Selective Regulation of Mitogen-Activated Protein Kinase Activation and Fas Ligand Expression. The Journal of Experimental Medicine, 195, 59-70. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Pelicano, H., Xu, R., Du, M., Feng, L., Sasaki, R., Carew, J.S., et al. (2006) Mitochondrial Respiration Defects in Cancer Cells Cause Activation of Akt Survival Pathway through a Redox-Mediated Mechanism. The Journal of Cell Biology, 175, 913-923. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Kamiński, M.M., Sauer, S.W., Klemke, C., Süss, D., Okun, J.G., Krammer, P.H., et al. (2010) Mitochondrial Reactive Oxygen Species Control T Cell Activation by Regulating IL-2 and IL-4 Expression: Mechanism of Ciprofloxacin-Mediated Immunosuppression. The Journal of Immunology, 184, 4827-4841. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Chen, X., Song, M., Zhang, B. and Zhang, Y. (2016) Reactive Oxygen Species Regulate T Cell Immune Response in the Tumor Microenvironment. Oxidative Medicine and Cellular Longevity, 2016, Article ID: 1580967. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Rendra, E., Riabov, V., Mossel, D.M., Sevastyanova, T., Harmsen, M.C. and Kzhyshkowska, J. (2019) Reactive Oxygen Species (ROS) in Macrophage Activation and Function in Diabetes. Immunobiology, 224, 242-253. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Wang, Y., Branicky, R., Noë, A. and Hekimi, S. (2018) Superoxide Dismutases: Dual Roles in Controlling ROS Damage and Regulating ROS Signaling. Journal of Cell Biology, 217, 1915-1928. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Sakamoto, T. and Imai, H. (2017) Hydrogen Peroxide Produced by Superoxide Dismutase SOD-2 Activates Sperm in Caenorhabditis Elegans. Journal of Biological Chemistry, 292, 14804-14813. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Zhao, H., Zhang, R., Yan, X. and Fan, K. (2021) Superoxide Dismutase Nanozymes: An Emerging Star for Anti-oxidation. Journal of Materials Chemistry B, 9, 6939-6957. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Nguyen, N.H., Tran, G. and Nguyen, C.T. (2019) Anti-Oxidative Effects of Superoxide Dismutase 3 on Inflammatory Diseases. Journal of Molecular Medicine, 98, 59-69. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Teleanu, D.M., Niculescu, A., Lungu, I.I., Radu, C.I., Vladâcenco, O., Roza, E., et al. (2022) An Overview of Oxidative Stress, Neuroinflammation, and Neurodegenerative Diseases. International Journal of Molecular Sciences, 23, Article 5938. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Abdalbagemohammedabdalsadeg, S., Xiao, B., Ma, X., Li, Y., Wei, J., Moosavi-Movahedi, A.A., et al. (2024) Catalase Immobilization: Current Knowledge, Key Insights, Applications, and Future Prospects—A Review. International Journal of Biological Macromolecules, 276, Article ID: 133941. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Sepasi Tehrani, H. and Moosavi-Movahedi, A.A. (2018) Catalase and Its Mysteries. Progress in Biophysics and Molecular Biology, 140, 5-12. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Heck, D.E., Shakarjian, M., Kim, H.D., Laskin, J.D. and Vetrano, A.M. (2010) Mechanisms of Oxidant Generation by Catalase. Annals of the New York Academy of Sciences, 1203, 120-125. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Glorieux, C., Enríquez, C., González, C., Aguirre-Martínez, G. and Buc Calderon, P. (2024) The Multifaceted Roles of NRF2 in Cancer: Friend or Foe? Antioxidants, 13, Article 70. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Goddu, R.N., Henderson, C.F., Young, A.K., Muradian, B.E., Calderon, L., Bleeg, L.H., et al. (2018) Chronic Exposure of the RAW246.7 Macrophage Cell Line to H2O2 Leads to Increased Catalase Expression. Free Radical Biology and Medicine, 126, 67-72. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Handy, D.E. and Loscalzo, J. (2022) The Role of Glutathione Peroxidase-1 in Health and Disease. Free Radical Biology and Medicine, 188, 146-161. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
徐睿, 雍军, 郭小平, 等. 芪蒡糖肾方调控Nrf2/Gpx4通路改善糖尿病肾病肾纤维化的机制研究[J/OL]. 海南医学院学报: 1-16. 2026-01-05.[CrossRef]
|
|
[48]
|
马晶晶, 朱翠翠, 黄风玲, 等. 补肾开玄方对糖尿病肾病大鼠肾纤维化的作用及其机制研究[J]. 中医药学报, 2024, 52(12): 32-37.
|
|
[49]
|
罗根艳, 董林菲, 杨栋梁, 等. 苯扎贝特对糖尿病肾病小鼠肾组织的保护作用[J]. 中国临床药理学杂志, 2025, 41(6): 828-833.
|
|
[50]
|
韩晓瑜, 李嘉斌, 丁杰英, 等. 姜黄素对糖尿病肾病小鼠肾脏自噬及氧化应激的影响[J]. 中成药, 2021, 43(6): 1598-1602.
|
|
[51]
|
张雨帆, 姜敏敏. 温肾培元降毒汤联合复方α-酮酸片对慢性肾衰竭患者的肾保护效果观察及机制初探[J]. 中国中西医结合肾病杂志, 2024, 25(7): 586-590.
|
|
[52]
|
王华, 钱君怡, 杨杨, 等. 安和参地丸对气阴两虚证糖尿病肾病患者血糖控制、氧化应激、肾功能的影响及作用机制分析[J]. 辽宁中医杂志, 2025, 52(5): 112-116.
|
|
[53]
|
黄笛, 谭颖颖. 真武汤治疗慢性肾脏病的研究进展[J]. 商洛学院学报, 2022, 36(4): 8-15.
|
|
[54]
|
张兴坤, 张丽, 张宗礼. 张宗礼醒脾通三焦法治疗慢性肾功能衰竭经验[J]. 中国中医基础医学杂志, 2017, 23(5): 717-719.
|
|
[55]
|
袁子阳, 张艳, 张伟, 等. 基于PINK1/Parkin通路探讨线粒体自噬防治心力衰竭作用及中医药治疗进展[J]. 中国实验方剂学杂志, 2024, 30(24): 262-271.
|
|
[56]
|
Gao, P., Du, X., Liu, L., Xu, H., Liu, M., Guan, X., et al. (2021) Astragaloside IV Alleviates Tacrolimus-Induced Chronic Nephrotoxicity via P62-Keap1-Nrf2 Pathway. Frontiers in Pharmacology, 11, Article 610102. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
庄高建, 胡鸿运, 杨英, 等. 基于Klotho研究三七总皂苷对大鼠肾缺血-再灌注损伤的保护机制[J]. 中国中医药信息杂志, 2018, 25(11): 31-35.
|
|
[58]
|
岗尖俄日, 旦知才让, 完么道吉, 等. 白豆蔻对慢性肾衰竭大鼠肾功能的保护作用[J]. 中国老年学杂志, 2024, 44(15): 3817-3820.
|
|
[59]
|
谭金枚, 郭爱莉, 戚本玲, 等. 基于IGF-1R/β-catenin信号通路探讨桑白皮总黄酮对2型糖尿病大鼠肾损伤的保护作用[J]. 中国老年学杂志, 2025, 45(8): 2013-2017.
|
|
[60]
|
Zhang, J., Zhao, X., Zhu, H., Wang, J., Ma, J. and Gu, M. (2022) Crocin Protects the Renal Tubular Epithelial Cells against High Glucose-Induced Injury and Oxidative Stress via Regulation of the SIRT1/Nrf2 Pathway. Iranian Journal of Basic Medical Sciences, 25, 193-197.
|
|
[61]
|
Li, F., Chen, Y., Li, Y., Huang, M. and Zhao, W. (2020) Geniposide Alleviates Diabetic Nephropathy of Mice through AMPK/SIRT1/NF-κB Pathway. European Journal of Pharmacology, 886, Article ID: 173449. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
杨冰, 张尧, 毛竞宇, 等. 基于Nrf2/Keap1/ARE信号通路探讨芪蛭通络方对db/db小鼠肾损伤的影响[J]. 中成药, 2025, 47(1): 73-80.
|
|
[63]
|
王艳, 魏锦萍, 裴妙荣. 四逆汤对肾纤维化大鼠氧化应激反应的干预作用[J]. 山西中医学院学报, 2018, 19(4): 27-29.
|
|
[64]
|
郑健, 艾斯, 杨帆, 等. 肾康灵煎剂对原发性肾病综合征肾虚血瘀证患儿肾损伤的干预作用观察[J]. 中国中西医结合杂志, 2014, 34(5): 541-544.
|
|
[65]
|
徐睿, 李文诗, 孙家乐, 等. 芪蒡糖肾方通过AMPK/SIRT3信号通路调控NLRP3炎症小体改善糖尿病肾病肾损伤的机制研究[J/OL]. 海南医科大学学报: 1-18. 2026-01-05.[CrossRef]
|
|
[66]
|
冯琳琳, 唐思琪, 农运园, 等. 基于代谢组学和网络药理学的当归四逆汤改善寒凝血瘀致肾损伤作用机制研究[J]. 中国中药杂志, 2023, 48(24): 6730-6739.
|
|
[67]
|
Kaur, N., Sharma, A.K., Shakeel, A., Kumar, V., Singh, A., Gupta, A., et al. (2017) Therapeutic Implications of Superoxide Dismutase and Its Importance in Kinase Drug Discovery. Current Topics in Medicinal Chemistry, 17, 2495-2508. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Bauer, G. (2021) Inhibition of Membrane-Associated Catalase, Extracellular ROS/RNS Signaling and Aquaporin/H2O2-Mediated Intracellular Glutathione Depletion Cooperate during Apoptosis Induction in the Human Gastric Carcinoma Cell Line MKN-45. Antioxidants, 10, Article 1585. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Böhm, B., Heinzelmann, S., Motz, M. and Bauer, G. (2015) Extracellular Localization of Catalase Is Associated with the Transformed State of Malignant Cells. Biological Chemistry, 396, 1339-1356. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
宋玮, 郑伟, 张洁, 等. 中药皂苷类成分的体内代谢研究进展[J]. 药学学报, 2018, 53(10): 1609-1619.
|