儿童房间隔缺损手术治疗的研究现状
Current State of Research on Surgical Procedures for Atrial Septal Defects in Children
DOI: 10.12677/acm.2026.161099, PDF, HTML, XML,   
作者: 张修雄威, 代江涛*:重庆医科大学附属儿童医院胸心外科,儿童少年健康与疾病国家临床医学研究中心,儿童发育疾病研究教育部重点实验室,结构性出生缺陷与器官修复重建重庆市重点实验室,重庆
关键词: 房间隔缺损儿童患者介入封堵手术治疗研究进展Atrial Septal Defect Pediatric Patient Transcatheter Closure Surgical Treatment Research Progress
摘要: 房间隔缺损(atrial septal defect, ASD)是常见的先天性心脏病之一。随着医疗技术的飞速发展,儿童患者的治疗策略已从传统的体外循环下胸部正中切口外科手术修补,发展为包括体外循环下右侧腋下ASD手术修补,体外循环胸腔镜辅助下ASD修补,经股静脉X线引导下或食管超声引导下介入封堵等多种模式并存的局面。本综述旨在系统回顾ASD手术治疗的背景与现状,对比国内外研究进展,分析不同治疗方法及适应症、优缺点及选择策略,并展望机器人辅助下手术、可降解封堵器等未来发展趋势。
Abstract: Atrial Septal Defect (ASD) is one of the common congenital heart diseases. With the rapid advancement of medical technology, the treatment strategies for pediatric patients have evolved from the traditional surgical repair via median sternotomy under cardiopulmonary bypass. Currently, a coexisting landscape of multiple modalities has emerged, including surgical repair via a right subaxillary approach under cardiopulmonary bypass, thoracoscopy-assisted ASD repair under cardiopulmonary bypass, and transcatheter closure via the femoral vein under fluoroscopic or transesophageal echocardiographic guidance. This review aims to systematically delineate the background and current state of surgical interventions for ASD, compare domestic and international research progress, analyze the different treatment methods along with their indications, advantages, disadvantages, and selection strategies. Furthermore, it will explore future trends, such as robot-assisted surgery and biodegradable occluders.
文章引用:张修雄威, 代江涛. 儿童房间隔缺损手术治疗的研究现状[J]. 临床医学进展, 2026, 16(1): 743-751. https://doi.org/10.12677/acm.2026.161099

1. 引言

ASD作为最常见的先天性心脏病之一,约占所有先天性心脏病的7%~10%。其病理生理学核心在于心房水平的左向右分流。这种分流虽然在心功能代偿期临床症状轻微,但存在长期危害。持续的血流动力学异常导致右心容量负荷过重,进而引发右心房、右心室进行性扩大、肺动脉主干扩张及肺动脉压力渐进性增高[1] [2]。若不进行有效干预,最终将导致不可逆的肺血管梗阻性病变,即艾森曼格综合征(Eisenmenger’s Syndrome),此时患者将失去手术矫治机会,预后极差[1]。此外,长期存在的ASD还与成年后房性心律失常、心力衰竭、卒中风险增加以及栓塞等严重并发症密切相关[3] [4]。因此,对所有存在血流动力学意义的ASD,相比较于成年期,在儿童期进行积极的治疗干预以阻断这一恶性进程能显著改善远期预后[1] [5]

2. 治疗格局的转变

从治疗发展史来看,在经导管介入技术被广泛采纳之前,传统体外循环下心内直视修补术是治愈ASD的唯一手段。自1953年John Gibbon首次成功应用体外循环实施ASD修补术以来,外科技术历经数十年的发展与优化,已成为极其成熟和可靠的技术,其治疗效果得到了广泛验证,被誉为治疗的“金标准”[1] [6]。然而,外科手术需要胸骨正中切开、建立体外循环,不可避免地带来较大的手术创伤、较长的恢复时间以及潜在的神经系统并发症风险。

治疗方法的革命性转变发生在20世纪90年代末。1997年,Masura等人首次报道了采用Amplatzer房间隔封堵器经导管成功闭合ASD,这标志着ASD治疗进入了微创介入新时代[7]。此后,经导管介入技术及其器械得到了飞速发展和广泛应用。Butera等的多中心研究显示,介入治疗较传统外科手术具有显著优势:主要并发症发生率降低,住院时间缩短至1~2天,且无需体外循环支持[8]。由于完全闭合率相同,但住院时间较短且发病率较低[9],因此经导管封堵中央型ASD是手术修复的安全有效的替代方案[6] [10]

3. 治疗方法与选择策略

ASD的治疗已形成一个多层次、个体化的技术体系。每种技术都有其明确的定位和优劣,其选择取决于解剖学特征、患者个体情况及医疗资源等。

3.1. 正中开胸切口体外循环下行房间隔缺损修补

这是治疗ASD的传统方式,该术式将胸骨正中切开,建立体外循环,在完全暴露心脏的绝佳手术视野下将心脏停跳后直接缝合或补片修补缺损,适用于各种类型的ASD,特别是介入封堵无法处理的原发孔型,上、下腔型,冠状静脉窦型ASD,以及巨大缺损、边缘极度缺乏和合并需手术矫正的其他心内畸形,如部分性肺静脉异位引流等[1] [11] [12]

相比于微创介入,正中开胸手术需胸骨正中长切口,创伤较大,住院时间和完全康复时间远长于介入治疗。胸骨切开引起的疼痛如果管理不当,会导致呼吸系统并发症、住院时间延长和慢性疼痛[13],尤其是对于幼儿[14],胸骨畸形愈合是其主要晚期并发症。

尽管介入治疗蓬勃发展,但正中开胸手术仍不可完全替代,在现代心脏外科的条件下,其手术死亡率已低于1% [1]。对于简单中央型ASD,其与介入封堵的远期生存率无差异,但对生活质量的影响显著,因此在术式的选择上,其优先地位应限定于复杂病例。

3.2. 右侧腋下切口体外循环下行房间隔缺损修补

此术式同样需建立体外循环,在受限的视野下完成直视修补,其彻底性、可靠性与正中开胸无异,是传统外科在微创理念下的发展,目标是在不牺牲手术彻底性的前提下改善美观。适用于不满足介入条件,有外科手术指征但对胸前正中切口美观有强烈诉求的患者。通常要求患者体型适中,肺功能良好且无严重胸腔粘连。Yaliniz等[15]的对比研究表明,该技术通过右侧腋下约3 cm~5 cm切口完成手术,既保留了直视手术的精确性,又显著降低了胸壁损伤:术中出血量减少,术后引流量下降,且美容效果显著改善。特别适合对美容效果要求较高的患者群体,可改善心理适应能力[16]

然而该技术操作空间狭窄,技术要求高,可能导致体外循环和主动脉阻断时间延长,增加某些并发症的风险,如膈神经损伤、肋间神经损伤、右肺挫伤、翼状肩胛骨、肋骨融合等。术野暴露特殊,对患者的条件也有一定要求,随着体重指数及年龄的增加,肋间隙和主动脉之间的距离变长,若选择右侧腋下入路,体外循环插管会有一定困难[15]。故对于体重大于30 kg以上的患儿,可采用胸腔镜辅助下在腋前线第4肋间,或腋中线第4、5肋间进行体外循环下房间隔缺损修补术。综上所述,不能一味地追求切口的美观而将患儿置于更大的风险。

不同于国外对于先进外科技术的研究,对经右侧腋下小切口外科手术的总结体现了中国医生在外科微创化方面的深入探索[14] [17]

3.3. 经右侧股静脉X射线下房间隔缺损封堵

此技术是经导管介入封堵的经典和标准方法,将导管经股静脉或颈静脉送入心腔,在影像引导下于缺损处释放封堵器来完成闭合。其主要适用于中央型ASD,理想解剖条件包括缺损边缘≥5 mm,距离上、下腔静脉≥7 mm,有足够的边缘组织来确保封堵器不会脱落或影响重要结构,缺损最大伸展直径通常在38 mm以内[18]。该方法微创性极佳,仅需穿刺股静脉,体表无疤痕且恢复迅速,术后住院时间显著缩短[8],患者能快速回归正常生活,故对于解剖学适配的中央型ASD可优先考虑,避免外科手术创伤。

此技术缺点也较为明显,封堵器存在脱落并栓塞血管的风险以及发生心脏侵蚀的可能,电离辐射的暴露对正处于生长发育期的儿童患者及长期操作的术者团队存在潜在健康风险[19] [20];造影剂对肾功能不全患者需谨慎[21],且对解剖结构依赖性强,不适用于边缘薄弱或短小的ASD。

3.4. 经右侧股静脉通过食管超声引导下ASD封堵

该方法的适应症与X线下封堵技术基本重叠,尤其优先适用于对辐射高度敏感的群体,如婴幼儿、孕妇及年轻女性[20]。经颈静脉途径则是一种重要的补救性入路,专门用于下腔静脉中断或缺如等罕见血管畸形的患者。该方法彻底消除了辐射和造影剂造成肾损伤的风险,且经食管超声(transesophageal echocardiography, TEE)能提供比X线更清晰的软组织结构成像,可实时监测封堵装置释放的整个过程,特别是在确保装置正确放置、确定装置是否完全释放、验证残余分流以及监测瓣膜反流[22]。相比较于X射线引导下的介入封堵,在心脏外科于手术室进行TEE引导操作时,若发现介入封堵困难,可立刻转为体外循环下外科修补,因此在同样微创的情况下,此技术在心脏外科已成为常规甚至首选方案。

该方法的缺点是TEE探头可能造成咽喉部损伤,甚至有食道损伤的风险[23],且存在无法完全替代X线的情况,在遇到急性并发症如封堵器脱落栓塞血管时,纯超声检测难以定位,此时需转为X线下或体外循环下进行。

3.5. 经右侧股静脉通过心内超声引导下ASD封堵

该技术是国内研究者在ASD介入治疗方面对超声引导技术的优化与推广,展现了强大的创新能力和技术适应性。该方法的适应症与X线下封堵技术基本重叠,在减少辐射暴露和避免全身麻醉和食管损伤方面,中国走在了世界前列。Zhong等人在2022年发表的中国专家共识充分证明了心腔内超声(intracardiac echocardiography, ICE)引导下实现“零射线”ASD封堵术的普遍安全性和可行性[20]

ICE是将超声探头经股静脉穿刺送入心房内,探头悬浮于右心房中部进行功能和解剖结构的探测[24]。无需全身麻醉和气管插管,可仅在局麻下完成[25]。由于ICE探头周围为心房内血液,其探测不受心脏周围结构的影响,故能提供更加清晰的图像质量。这一技术避免了传统X射线的辐射伤害和TEE所存在的食道损伤风险,极大提升了手术的安全性,尤其是对儿童和孕妇的友好度,标志着中国在超声介入领域的技术领先。Mullen等[26]的研究团队通过前瞻性队列研究发现,与传统TEE相比,ICE引导 ASD 的闭合方面具有相同的准确性和可靠性,此外,ICE在检测潜在不良事件和指导补救措施方面的敏感性和特异性可增加介入手术的安全性和耐受性。

但是,ICE虽可实现零射线和局部麻醉,考虑到儿童患者的特殊性,往往也需采取全身麻醉。虽然ICE对患者的创伤小,但成本高昂,且图像全局观有时不及TEE,故介入治疗方式的选择需经过权衡,而非具有单一的完美方案。并且全球与 ICE 相关的权威临床研究较少,缺乏大量临床研究支持[20]

3.6. 可降解封堵器在介入封堵中的应用

欧美国家在基础研究、器械原始创新和尖端外科技术整合方面持续引领潮流。国外企业致力于研发下一代封堵器,以解决现有金属器械的远期潜在风险。如金属离子释放、组织侵蚀、心内结构影响等。Mullen等人于2006年首次报道了可降解封堵器的人体植入更是革命性的突破[27]

其适应症及操作流程同传统介入封堵,但植入物为可在数年内被人体逐渐吸收的材料(如聚左旋乳酸),其目标是植入物被吸收并被健康的天然组织取代,使心脏恢复正常生理解剖结构,理论上可消除金属离子释放、永久性压迫、影响未来心脏MRI检查等问题,特别适用于青少年及预期寿命长的患者。

然而,其安全性和有效性完全依赖于材料降解与组织再生在时间和强度上的完美匹配,早期产品可能存在骨架断裂、降解产物免疫炎症反应等问题[28]。若降解过快、组织生长过慢或生长不全,术后可能出现残余分流甚至脱落,最终导致封堵失败。目前缺乏超长期的随访数据证实其终极可靠性。

3.7. 治疗决策的考量因素

当前ASD的治疗决策绝非单一因素决定,而应由多学科团队共同完成。

缺损的解剖学基础是决定治疗方式的最基本因素,包括缺损的大小、位置、边缘的质量与缺损数量、是否多发等,并依赖于精确的影像学评估。患者方面,年龄与体重决定了各种手术入路的可行性,而临床症状、是否存在肺动脉高压及其程度、是否合并的其他心内畸形、是否合并其他器官疾病也是治疗决策的重要考量因素。此外,患儿及其家属对创伤大小、疤痕美观、费用支出、辐射风险以及不同技术的远期预后的认知和价值观必须得到充分尊重和沟通。

4. 相关并发症与并发症的处理

4.1. 外科手术相关

针对所有外科修补顺利的ASD,腋下切口与正中切口在术中出血、手术时间、主动脉阻断时间、ICU住院时间和总住院时长方面无明显差别[17] [29],在术后并发症观察和随访方面,发生部分并发症(胸腔积液、气胸和皮下气肿等)的患儿多因术后常规放置胸腔引流而无需特殊干预便自行愈合。而右侧腋下入路出现切口愈合不良、肋间隙变窄、翼状肩胛骨、膈膨升和肺不张的发生率高于正中开胸,分别可能与术中视野暴露困难而过度撑开皮肤、关胸时肋骨缝线牵拉过紧、臂丛神经损伤、膈神经损伤、对肺部的机械压迫和膈肌麻痹有关。且部分女性患儿后期出现双侧乳房不对称,多因为手术切口过度延长或靠近乳晕导致。膈肌麻痹多数可自行恢复,严重者需行膈肌折叠术,神经损伤需营养神经药物和康复理疗。总的来说,术中对皮肤切口的设计、神经的保护以及精细的术中操作和缝合技术是防止以上并发症的关键。

在胸骨并发症方面,正中开胸发生胸骨哆开、胸骨愈合不良以及鸡胸和漏斗胸畸形的几率明显高于腋下入路[30] [31],胸骨畸形可影响患儿的肺功能发育以及患儿远期的心理健康。正中开胸胸骨并发症的发生,可能与感染、机械稳定性及患者自身条件密切相关。使用摆动锯将胸骨锯开时应沿中线精准锯开胸骨,避免偏斜损伤肋软骨或造成骨折。骨蜡止血应适度,过量使用可能抑制骨愈合并成为感染灶。对于不稳定的胸骨或大年龄的患儿可在术中采用钢丝环扎固定,后期再行钢丝取出术。小年龄患儿使用可吸收缝线(如PDS线)进行缝合,避免钢丝切割柔嫩的骨组织,并允许一定程度的生长。对于术后发生漏斗胸畸形的患儿,Nuss手术已被证明是先天性心脏病手术后修复漏斗胸的一种安全有效方法,尽管胸骨下粘连的剥离可能增加心脏损伤的风险[32]。有文献表明,术后的疼痛控制、呼吸道管理以及运动限制可有效减少胸廓的反常运动[13],在一定程度降低胸骨哆开和再手术率。

4.2. 介入封堵相关

在所有类型的介入封堵术的并发症中,相比于较为常见的因为解剖条件不佳和封堵器选择过小而导致的术后早期封堵器脱落栓塞来说,封堵器心脏侵蚀是一种罕见但可危及生命的严重晚期并发症,侵蚀指封堵器磨损、穿透心房壁或主动脉壁。封堵器放置后侵蚀发生率估计约为0.1%~0.3% [33],其发生并非偶然,而是与明确的高危解剖因素密切相关,主要包括主动脉侧边缘缺乏或短小、封堵器尺寸过大[34]、缺损本身为大房缺[35]和儿童及低体重患者。多项回顾性研究指出,超过90%的侵蚀病例存在主动脉侧边缘不足,尤其是前缘或上缘缺失的问题[36] [37]。大型ASD本身意味着周边组织可能更菲薄,支撑力更差。同时,儿童患者的心脏组织更柔嫩、生长活跃,且其心脏与植入物之间的相对尺寸和动态关系随生长发育变化,使得他们更易发生机械摩擦和侵蚀,小年龄是多个研究公认的风险因素[38]-[40]

心脏侵蚀的处理是心脏急症,患者常出现突发胸痛、呼吸困难、晕厥或心包填塞症状。一经怀疑,经胸或经食道超声心动图是首选检查,可发现心包积液、封堵器位置异常或与主动脉的异常交通,心脏CT可提供更精确的三维空间关系评估。若出现心包填塞,立即行心包穿刺引流以稳定血流动力学。而急诊体外循环下外科手术是唯一根治手段。

5. 展望

近年来,使用达芬奇手术系统的机器人手术越来越多地应用于广泛的外科专业。1999年,美国首次进行了机器人心脏手术,是机器人手术的最早应用之一[41],在复杂ASD和需要外科干预的病例中,国外中心在机器人手术系统的应用上更为普及和成熟,机器人辅助下的ASD修补术能够通过1~3个微小孔道完成心内精细操作,将外科手术的微创化推向了新的高度[42]。机器人心脏外科手术已被用于修复和置换二尖瓣、修补房间隔缺损、植入左心室起搏导线和切除心内肿瘤[43]。在报道的一例机器人辅助房间隔缺损修补手术中,体外循环通过外周血管插管实现,然后在机械臂的辅助下在直视下进行缝合闭合[44]。其技术难度和成本限制了推广,关于机器人技术在心胸外科领域的使用有待进一步的发展[45] [46]

可降解封堵器由生物可吸收材料制成,其在植入后提供临时支架作用促进自身组织内皮化,可完全降解,无异物永久留存,恢复了心脏的正常解剖和生长潜能,理论上消除了所有金属植入物的远期风险。不幸的是,目前的生物可吸收封堵器存在降解和内皮化效率不匹配、降解不同步、弹性较差、可塑性差,这导致了可吸收封堵器需进一步优化,因此生物可吸收封堵器尚未得到认可和广泛应用[47]。现代新型的产品如中国的MemoSorb,美国的BioSTAR已成功完成人体植入和早期临床试验,结果显示出了良好的安全性和有效性,但仍缺乏长期随访的数据,安全性和有效性需得到进一步验证[48],并有望在未来改变ASD介入治疗的格局。

6. 结论

儿童房间隔缺损的治疗已进入一个多元化、微创化的时代。经导管介入封堵因其卓越的疗效和微创特性,已成为中央型ASD的首选治疗。而体外循环下外科手术修补ASD因其处理的彻底性和广泛的适应性,在处理复杂ASD方面仍具有不可动摇的地位,在保证可靠性的原则上也在向微创化发展,如右侧腋下小切口、机器人辅助等,在保证疗效的同时改善美容效果和青少年心理适应情况等恢复体验[16] [17] [29]。治疗决策应基于“心脏团队”的评估,个体化地选择最有利于患者的方案。未来,机器人技术的普及和可降解封堵器技术的成熟将进一步推动该领域向更微创、更安全、更省力的方向发展。

NOTES

*通讯作者。

参考文献

[1] Geva, T., Martins, J.D. and Wald, R.M. (2014) Atrial Septal Defects. The Lancet, 383, 1921-1932. [Google Scholar] [CrossRef] [PubMed]
[2] Borow, K.M. and Karp, R. (1990) Atrial Septal Defect. New England Journal of Medicine, 323, 1698-1700. [Google Scholar] [CrossRef] [PubMed]
[3] Shah, D., Azhar, M., Oakley, C.M., Cleland, J.G.F. and Nihoyannopoulos, P. (1994) Natural History of Secundum Atrial Septal Defect in Adults after Medical or Surgical Treatment: A Historical Prospective Study. Heart, 71, 224-228. [Google Scholar] [CrossRef] [PubMed]
[4] Brida, M., Chessa, M., Celermajer, D., Li, W., Geva, T., Khairy, P., et al. (2022) Atrial Septal Defect in Adulthood: A New Paradigm for Congenital Heart Disease. European Heart Journal, 43, 2660-2671. [Google Scholar] [CrossRef] [PubMed]
[5] Murphy, J.G., Gersh, B.J., McGoon, M.D., Mair, D.D., Porter, C.J., Ilstrup, D.M., et al. (1990) Long-Term Outcome after Surgical Repair of Isolated Atrial Septal Defect. New England Journal of Medicine, 323, 1645-1650. [Google Scholar] [CrossRef] [PubMed]
[6] Ooi, Y.K., Kelleman, M., Ehrlich, A., Glanville, M., Porter, A., Kim, D., et al. (2016) Transcatheter versus Surgical Closure of Atrial Septal Defects in Children: A Value Comparison. JACC: Cardiovascular Interventions, 9, 79-86. [Google Scholar] [CrossRef] [PubMed]
[7] Masura, J., Gavora, P., Formanek, A. and Hijazi, Z.M. (1997) Transcatheter Closure of Secundum Atrial Septal Defects Using the New Self-Centering Amplatzer Septal Occluder: Initial Human Experience. Catheterization and Cardiovascular Diagnosis, 42, 388-393. [Google Scholar] [CrossRef] [PubMed]
[8] Butera, G., Biondi-Zoccai, G., Sangiorgi, G., Abella, R., Giamberti, A., Bussadori, C., et al. (2011) Percutaneous versus Surgical Closure of Secundum Atrial Septal Defects: A Systematic Review and Meta-Analysis of Currently Available Clinical Evidence. EuroIntervention, 7, 377-385. [Google Scholar] [CrossRef] [PubMed]
[9] Berger, F., Vogel, M., Alexi-Meskishvili, V. and Lange, P.E. (1999) Comparison of Results and Complications of Surgical and Amplatzer Device Closure of Atrial Septal Defects. The Journal of Thoracic and Cardiovascular Surgery, 118, 674-680. [Google Scholar] [CrossRef] [PubMed]
[10] Du, Z., Hijazi, Z.M., Kleinman, C.S., Silverman, N.H. and Larntz, K. (2002) Comparison between Transcatheter and Surgical Closure of Secundum Atrial Septal Defect in Children and Adults: Results of a Multicenter Nonrandomized Trial. Journal of the American College of Cardiology, 39, 1836-1844. [Google Scholar] [CrossRef] [PubMed]
[11] Krumsdorf, U., Ostermayer, S., Billinger, K., Trepels, T., Zadan, E., Horvath, K., et al. (2004) Incidence and Clinical Course of Thrombus Formation on Atrial Septal Defect and Patient Foramen Ovale Closure Devices in 1,000 Consecutive Patients. Journal of the American College of Cardiology, 43, 302-309. [Google Scholar] [CrossRef] [PubMed]
[12] Feltes, T.F., Bacha, E., Beekman, R.H., Cheatham, J.P., Feinstein, J.A., Gomes, A.S., et al. (2011) Indications for Cardiac Catheterization and Intervention in Pediatric Cardiac Disease: A Scientific Statement from the American Heart Association. Circulation, 123, 2607-2652. [Google Scholar] [CrossRef] [PubMed]
[13] Maeßen, T., Korir, N., Van de Velde, M., Kennes, J., Pogatzki-Zahn, E. and Joshi, G.P. (2023) Pain Management after Cardiac Surgery via Median Sternotomy: A Systematic Review with Procedure-Specific Postoperative Pain Management (PROSPECT) Recommendations. European Journal of Anaesthesiology, 40, 758-768. [Google Scholar] [CrossRef] [PubMed]
[14] Luo, F. and Bu, H. (2022) Strategies to Evaluate Early Sternal Stability after Median Sternotomy in Young Children. The Annals of Thoracic Surgery, 114, 1987-1988. [Google Scholar] [CrossRef] [PubMed]
[15] Yaliniz, H., Topcuoglu, M.S., Gocen, U., Atalay, A., Keklik, V., Basturk, Y., et al. (2015) Comparison between Minimal Right Vertical Infra-Axillary Thoracotomy and Standard Median Sternotomy for Repair of Atrial Septal Defects. Asian Journal of Surgery, 38, 199-204. [Google Scholar] [CrossRef] [PubMed]
[16] Vida, V.L., Tessari, C., Fabozzo, A., Padalino, M.A., Barzon, E., Zucchetta, F., et al. (2013) The Evolution of the Right Anterolateral Thoracotomy Technique for Correction of Atrial Septal Defects: Cosmetic and Functional Results in Prepubescent Patients. The Annals of Thoracic Surgery, 95, 242-247. [Google Scholar] [CrossRef] [PubMed]
[17] Li, F., Cheng, T., Yan, M., Li, T., Zhang, T., Huang, Y., et al. (2024) Analysis of the Therapeutic Effect of Right Mid-Axillary Approach in the Surgical Treatment of ASD and VSD in Children. Journal of Cardiothoracic Surgery, 19, Article No. 587. [Google Scholar] [CrossRef] [PubMed]
[18] Baumgartner, H., Bonhoeffer, P., De Groot, N.M.S., de Haan, F., Deanfield, J.E., Galie, N., et al. (2010) ESC Guidelines for the Management of Grown-Up Congenital Heart Disease (New Version 2010): The Task Force on the Management of Grown-Up Congenital Heart Disease of the European Society of Cardiology (ESC). European Heart Journal, 31, 2915-2957. [Google Scholar] [CrossRef] [PubMed]
[19] Bacher, K., Bogaert, E., Lapere, R., De Wolf, D. and Thierens, H. (2005) Patient-Specific Dose and Radiation Risk Estimation in Pediatric Cardiac Catheterization. Circulation, 111, 83-89. [Google Scholar] [CrossRef] [PubMed]
[20] Jingquan, Z., Deyong, L., Huimin, C., Hua, F., Xuebin, H., Chenyang, J., et al. (2022) Intracardiac Echocardiography Chinese Expert Consensus. Frontiers in Cardiovascular Medicine, 9, Article ID: 1012731. [Google Scholar] [CrossRef] [PubMed]
[21] Nijssen, E.C., Rennenberg, R.J., Nelemans, P.J., Essers, B.A., Janssen, M.M., Vermeeren, M.A., et al. (2017) Prophylactic Hydration to Protect Renal Function from Intravascular Iodinated Contrast Material in Patients at High Risk of Contrast-Induced Nephropathy (AMACING): A Prospective, Randomised, Phase 3, Controlled, Open-Label, Non-Inferiority Trial. The Lancet, 389, 1312-1322. [Google Scholar] [CrossRef] [PubMed]
[22] Xu, W., Shou, X., Li, J., Yu, J., Zhang, Z., Yu, J., et al. (2018) Non-Fluoroscopic Percutaneous Transcatheter Closure of Atrial Septal Defects in Children under Transesophageal Echocardiographic Guidance. World Journal of Pediatrics, 14, 378-382. [Google Scholar] [CrossRef] [PubMed]
[23] Freitas-Ferraz, A.B., Bernier, M., Vaillancourt, R., Ugalde, P.A., Nicodème, F., Paradis, J., et al. (2020) Safety of Transesophageal Echocardiography to Guide Structural Cardiac Interventions. Journal of the American College of Cardiology, 75, 3164-3173. [Google Scholar] [CrossRef] [PubMed]
[24] Cao, Q., Zabal, C., Koenig, P., Sandhu, S. and Hijazi, Z.M. (2005) Initial Clinical Experience with Intracardiac Echocardiography in Guiding Transcatheter Closure of Perimembranous Ventricular Septal Defects: Feasibility and Comparison with Transesophageal Echocardiography. Catheterization and Cardiovascular Interventions, 66, 258-267. [Google Scholar] [CrossRef] [PubMed]
[25] Medford, B.A., Taggart, N.W., Cabalka, A.K., Cetta, F., Reeder, G.S., Hagler, D.J., et al. (2014) Intracardiac Echocardiography during Atrial Septal Defect and Patent Foramen Ovale Device Closure in Pediatric and Adolescent Patients. Journal of the American Society of Echocardiography, 27, 984-990. [Google Scholar] [CrossRef] [PubMed]
[26] Mullen, M.J., Dias, B.F., Walker, F., Siu, S.C., Benson, L.N. and McLaughlin, P.R. (2003) Intracardiac Echocardiography Guided Device Closure of Atrial Septal Defects. Journal of the American College of Cardiology, 41, 285-292. [Google Scholar] [CrossRef] [PubMed]
[27] Mullen, M.J., Hildick-Smith, D., De Giovanni, J.V., Duke, C., Hillis, W.S., Morrison, W.L., et al. (2006) Biostar Evaluation Study (Best): A Prospective, Multicenter, Phase I Clinical Trial to Evaluate the Feasibility, Efficacy, and Safety of the BioSTAR Bioabsorbable Septal Repair Implant for the Closure of Atrial-Level Shunts. Circulation, 114, 1962-1967. [Google Scholar] [CrossRef] [PubMed]
[28] Happel, C.M., Laser, K.T., Sigler, M., Kececioglu, D., Sandica, E. and Haas, N.A. (2015) Single Center Experience: Implantation Failures, Early, and Late Complications after Implantation of a Partially Biodegradable ASD/PFO‐Device (Biostar®). Catheterization and Cardiovascular Interventions, 85, 990-997. [Google Scholar] [CrossRef] [PubMed]
[29] Luo, H., Wang, J., Qiao, C., Zhang, X., Zhang, W. and Song, L. (2014) Evaluation of Different Minimally Invasive Techniques in the Surgical Treatment of Atrial Septal Defect. The Journal of Thoracic and Cardiovascular Surgery, 148, 188-193. [Google Scholar] [CrossRef] [PubMed]
[30] Hong, Z., Chen, Q., Lin, Z., Zhang, G., Chen, L., Zhang, Q., et al. (2018) Surgical Repair via Submammary Thoracotomy, Right Axillary Thoracotomy and Median Sternotomy for Ventricular Septal Defects. Journal of Cardiothoracic Surgery, 13, Article No. 47. [Google Scholar] [CrossRef] [PubMed]
[31] Luo, Z., Chen, Q., Yu, L., Chen, L. and Huang, Z. (2020) Comparative Study between Surgical Repair of Atrial Septal Defect via Median Sternotomy, Right Submammary Thoracotomy, and Right Vertical Infra-Axillary Thoracotomy. Brazilian Journal of Cardiovascular Surgery, 35, 285-290. [Google Scholar] [CrossRef] [PubMed]
[32] Li, S., Tang, S., Tong, Q., Yang, Y., Yang, L., Li, S., et al. (2014) Nuss Repair of Pectus Excavatum after Surgery for Congenital Heart Disease: Experience from a Single Institution. The Journal of Thoracic and Cardiovascular Surgery, 148, 657-661. [Google Scholar] [CrossRef] [PubMed]
[33] Crawford, G.B., Brindis, R.G., Krucoff, M.W., Mansalis, B.P. and Carroll, J.D. (2012) Percutaneous Atrial Septal Occluder Devices and Cardiac Erosion: A Review of the Literature. Catheterization and Cardiovascular Interventions, 80, 157-167. [Google Scholar] [CrossRef] [PubMed]
[34] Amin, Z. (2014) Echocardiographic Predictors of Cardiac Erosion after Amplatzer Septal Occluder Placement. Catheterization and Cardiovascular Interventions, 83, 84-92. [Google Scholar] [CrossRef] [PubMed]
[35] Podnar, T., Martanovič, P., Gavora, P. and Masura, J. (2001) Morphological Variations of Secundum‐Type Atrial Septal Defects: Feasibility for Percutaneous Closure Using Amplatzer Septal Occluders. Catheterization and Cardiovascular Interventions, 53, 386-391. [Google Scholar] [CrossRef] [PubMed]
[36] Amin, Z., Hijazi, Z.M., Bass, J.L., Cheatham, J.P., Hellenbrand, W.E. and Kleinman, C.S. (2004) Erosion of Amplatzer Septal Occluder Device after Closure of Secundum Atrial Septal Defects: Review of Registry of Complications and Recommendations to Minimize Future Risk. Catheterization and Cardiovascular Interventions, 63, 496-502. [Google Scholar] [CrossRef] [PubMed]
[37] Divekar, A., Gaamangwe, T., Shaikh, N., Raabe, M. and Ducas, J. (2005) Cardiac Perforation after Device Closure of Atrial Septal Defects with the Amplatzer Septal Occluder. Journal of the American College of Cardiology, 45, 1213-1218. [Google Scholar] [CrossRef] [PubMed]
[38] Butera, G., Romagnoli, E., Carminati, M., Chessa, M., Piazza, L., Negura, D., et al. (2008) Treatment of Isolated Secundum Atrial Septal Defects: Impact of Age and Defect Morphology in 1,013 Consecutive Patients. American Heart Journal, 156, 706-712. [Google Scholar] [CrossRef] [PubMed]
[39] Petit, C.J., Justino, H., Pignatelli, R.H., Crystal, M.A., Payne, W.A. and Ing, F.F. (2012) Percutaneous Atrial Septal Defect Closure in Infants and Toddlers: Predictors of Success. Pediatric Cardiology, 34, 220-225. [Google Scholar] [CrossRef] [PubMed]
[40] O’Byrne, M.L., Glatz, A.C., Sunderji, S., Mathew, A.E., Goldberg, D.J., Dori, Y., et al. (2014) Prevalence of Deficient Retro-Aortic Rim and Its Effects on Outcomes in Device Closure of Atrial Septal Defects. Pediatric Cardiology, 35, 1181-1190. [Google Scholar] [CrossRef] [PubMed]
[41] Loulmet, D., Carpentier, A., d’Attellis, N., Berrebi, A., Cardon, C., Ponzio, O., et al. (1999) Endoscopic Coronary Artery Bypass Grafting with the Aid of Robotic Assisted Instruments. The Journal of Thoracic and Cardiovascular Surgery, 118, 4-10. [Google Scholar] [CrossRef] [PubMed]
[42] Senay, S., Gullu, A.U., Kocyigit, M., Degirmencioglu, A., Karabulut, H. and Alhan, C. (2014) Robotic Atrial Septal Defect Closure. Multimedia Manual of Cardio-Thoracic Surgery, 2014, mmu014. [Google Scholar] [CrossRef] [PubMed]
[43] Ng, A.T. and Tam, P. (2014) Current Status of Robot-Assisted Surgery. Hong Kong Medical Journal, 20, 241-250. [Google Scholar] [CrossRef] [PubMed]
[44] Güllü, A.Ü., Şenay, Ş., Ersin, E., Demirhisar, Ö., Kocyigit, M. and Alhan, C. (2020) Feasibility of Robotic‐Assisted Atrial Septal Defect Repair in a 6‐Year‐Old Patient. The International Journal of Medical Robotics and Computer Assisted Surgery, 17, e2185. [Google Scholar] [CrossRef] [PubMed]
[45] Xiao, C., Gao, C., Yang, M., Wang, G., Wu, Y., Wang, J., et al. (2014) Totally Robotic Atrial Septal Defect Closure: 7-Year Single-Institution Experience and Follow-Up. Interactive CardioVascular and Thoracic Surgery, 19, 933-937. [Google Scholar] [CrossRef] [PubMed]
[46] Kim, K., Kim, Y.S., Kim, H.R., Kim, H.J., Yoo, J.S., Kim, J.B., et al. (2024) Robotic Repair of Atrial Septal Defect: Pre-Groove Vertical Right Atriotomy Approach. JTCVS Techniques, 28, 73-81. [Google Scholar] [CrossRef] [PubMed]
[47] Wang, S., Li, Z., Wang, Y., Zhao, T., Mo, X., Fan, T., et al. (2023) Transcatheter Closure of Perimembranous Ventricular Septal Defect Using a Novel Fully Bioabsorbable Occluder: Multicenter Randomized Controlled Trial. Science Bulletin, 68, 1051-1059. [Google Scholar] [CrossRef] [PubMed]
[48] Van den Branden, B.J., Post, M.C., Plokker, H.W., ten Berg, J.M. and Suttorp, M.J. (2010) Patent Foramen Ovale Closure Using a Bioabsorbable Closure Device: Safety and Efficacy at 6-Month Follow-Up. JACC: Cardiovascular Interventions, 3, 968-973. [Google Scholar] [CrossRef] [PubMed]