极/超早产儿早期使用氢化可的松的研究进展
Research Advances in the Early Use of Hydrocortisone for Extremely/Very Preterm Infants
DOI: 10.12677/acm.2026.161107, PDF, HTML, XML,   
作者: 胡 微, 史 源*:重庆医科大学附属儿童医院新生儿科,儿童青少年健康与疾病国家临床医学研究中心,儿童发育疾病研究教育部重点实验室,儿童感染与免疫罕见病重庆市重点实验室,重庆
关键词: 早产儿氢化可的松有效性安全性Preterm Infant Hydrocortisone Efficacy Safety
摘要: 极/超早产儿生后由于下丘脑–垂体–肾上腺轴功能发育不成熟,易发生短暂肾上腺皮质功能不全。氢化可的松具有抗炎、改善血管通透性及稳定血流动力学等作用,临床上早期应用于低血压防治、预防支气管肺发育不良等,但其使用所带来的不良反应也限制了其应用,目前氢化可的松使用的获益风险比仍尚未明确。本文综述了氢化可的松的药理作用、药代动力学、临床应用现状及相关不良反应,以期为极/超早产儿早期使用氢化可的松提供循证证据和临床策略。
Abstract: Due to immaturity of the hypothalamic‑pituitary‑adrenal axis, very preterm and extremely preterm infants are at risk of transient adrenal insufficiency. Hydrocortisone, with its anti‑inflammatory properties, ability to improve vascular permeability, and hemodynamic‑stabilizing effects, is clinically utilized for the early management of hypotension and for the prevention of bronchopulmonary dysplasia in this population. However, the associated adverse effects constrain its broader application, and the overall benefit‑risk balance of hydrocortisone remains uncertain. This review comprehensively examines the pharmacological characteristics, pharmacokinetics, current clinical uses, and relevant adverse effects of hydrocortisone, aiming to provide evidence‑based insights and practical strategies to guide its judicious early administration in very and extremely preterm infants.
文章引用:胡微, 史源. 极/超早产儿早期使用氢化可的松的研究进展[J]. 临床医学进展, 2026, 16(1): 803-810. https://doi.org/10.12677/acm.2026.161107

1. 引言

随着围产医学与新生儿重症救治技术的显著进步,胎龄小于32周或出生体重小于1500克的极/超早产儿的存活率正逐步提升[1] [2]。然而,存活率提高的同时也使此类患儿的特殊生理问题愈发凸显,由于其下丘脑–垂体–肾上腺(hypothalamic-pituitary-adrenal, HPA)轴功能发育不成熟,发生短暂性肾上腺皮质功能不全(transient adreno-cortical insufficiency of prematurity, TAP)现象的风险极高[3],TAP不仅可能引发循环功能衰竭、内环境紊乱等急性并发症,更与支气管肺发育不良(bronchopulmonary dysplasia, BPD)、早产儿视网膜病变(Retinopathy of prematurity, ROP)及神经功能损伤等严重并发症密切相关[4] [5]。临床数据显示,TAP多见于胎龄 < 30周的早产儿,通常发生于生后早期,持续时间较少超过生后14天[3] [6]。针对这一关键临床问题,近年来多项研究表明,生后一周内对极/超早产儿预防性或治疗性使用氢化可的松,可降低出院前死亡率、提高无BPD存活率、促进动脉导管闭合,并对稳定血流动力学、调节糖代谢、辅助ROP治疗产生积极影响[7]-[11]。基于此,本文旨在综述极/超早产儿早期应用氢化可的松的有效性及安全性。

2. 氢化可的松的药理作用

近年来对氢化可的松的药理机制研究日益深入,其作用途径已被多维度阐明,核心在于通过调控生理通路实现对多系统的保护与调节效应。在循环系统中,氢化可的松的作用呈现多靶点特征:一方面通过增加心血管肾上腺素能受体密度、上调心肌血管紧张素受体基因表达、逆转儿茶酚胺长期暴露所致的受体脱敏,以及抑制一氧化氮合成等途径增加心血管调节能力[12] [13];另一方面通过改善毛细血管通透性、增加细胞内钙等方式[14],强化心血管系统对外源性及内源性血管活性物质的反应性,最终实现升血压、稳定血流动力学的关键作用;此外,其抗炎作用可以抑制花生四烯酸释放和前列腺素合成,这一机制也为促进动脉导管闭合提供了重要支撑[15]。在呼吸系统方面,氢化可的松的核心作用围绕炎症调控展开,通过靶向核因子-kB (NF-kB)与环氧化酶-2 (COX-2)信号通路[7],发挥抗炎、免疫调节、稳定细胞膜及调控细胞因子分泌等多重作用,进而减轻肺部炎症损伤,改善呼吸功能[16] [17]。在代谢方面,氢化可的松通过减少糖原合成、促进糖异生并降低外周组织对葡萄糖的摄取和利用,从而参与血糖调控,维持血糖稳态[18] [19]。此外,氢化可的松还具有稳定血脑屏障结构、降低白质损伤风险、以及抑制氧化应激与细胞凋亡通路等作用,对神经系统发育产生积极影响,为早产儿神经发育提供保护[20]

氢化可的松的药代动力学特征在新生儿中呈现显著的发育依赖性,这一特点影响临床用药策略。该药物半衰期短,组织分布广泛,药代动力学过程受胎龄、肝肾功能成熟度及临床疾病状态的影响,相较于地塞米松等长效糖皮质激素,氢化可的松在新生儿体内的清除率较高,主要经肝脏代谢后通过肾脏排泄[20]。但早产儿肝肾功能尚未发育成熟,药物代谢与排泄能力受限,导致药物暴露量存在较大的个体差异,尤其在极低出生体重儿中易出现蓄积风险,导致游离药物浓度升高,这一现象在增强药理效应的同时也增加了不良反应的发生率[21]。因此,临床应用中需依据患儿体重、胎龄及治疗效果动态调整剂量,实施个体化给药方案,并密切监测血糖、电解质及血压等核心代谢及循环指标,以实现疗效与安全性的平衡。

3. 氢化可的松在极/超早产儿中的应用

3.1. 预防性应用

3.1.1. 低血压的预防

新生儿低血压定义为平均动脉压低于同胎龄新生儿平均动脉压的第10百分位数(适用于胎龄 < 30周、生后3天内的早产儿) [22],是极/超早产儿群体中常见且严重的并发症,其发生与脑室内出血、脑室周围白质软化及影响神经系统发育等不良结局相关[6]。多项研究表明,生后预防性使用氢化可的松有助于稳定循环功能并降低后续血管活性药物的使用需求。Efird等的研究表明,生后使用氢化可的松(1 mg/kg q12h*2天,0.3 mg/kg q12h*3天,总剂量5.8 mg/kg)可以减少对其他血管加压药的使用需求[23];Watterberg等的试验进一步指出,预防性使用氢化可的松(0.5 mg/kg q12h*12天,0.5 mg/kg qd*3天,总剂量13.5 mg/kg)能有效提升患儿的平均动脉压[24];Baud等的研究也支持该结论,其采用的方案(0.5 mg/kg q12h*7天,0.5 mg/kg qd*3天,总剂量8.5 mg/kg)显著减少了多巴胺类药物的使用[25]

3.1.2. BPD的预防

BPD是极/超早产儿常见的慢性肺部疾病,发生率达8%~35%,可导致远期肺功能损伤和严重的长期神经发育障碍[26],多项研究已经论证了氢化可的松预防BPD的有效性。Watterberg与Bonsante等的两项研究结果均表明,生后使用氢化可的松(1 mg/kg*9天,0.5 mg/kg*3天,总剂量10.5 mg/kg)提高了患儿无BPD生存的可能性[27] [28];虽然Watterberg等的研究未明确得出使用氢化可的松(1 mg/kg*12天,0.5 mg/kg*3天,总剂量13.5 mg/kg)能提升整体无BPD的生存率,但发现对暴露于绒毛膜羊膜炎的婴儿使用该方案可显著降低死亡率并提高无BPD的生存率[24];Peltoniemi等则观察到,早期使用氢化可的松(2 mg/kg*2天,1.5 mg/kg*2天,0.75 mg/kg*6天,总剂量11.5 mg/kg)可提升皮质醇水平偏低患儿无BPD生存率[29];此外,Hochwald等的研究显示,采用氢化可的松治疗(首剂2 mg/kg,1 mg/kg q6h*3剂,0.5 mg/kg q6h*4剂,总剂量7 mg/kg)可降低BPD发生率[30];Shah、Baud、Briscoe、Petrishka-Lozenska等多人多项研究也共同支持,生后预防性使用氢化可的松(0.5 mg/kg q12h*7天,0.5 mg/kg qd*3天,总剂量8.5 mg/kg)有助于提高无BPD生存率[9] [25] [31] [32]。尽管现有研究尚未明确氢化可的松用于预防BPD的确切剂量,但临床共识已逐渐倾向于采用低剂量(1~2 mg/kg/d)及低总剂量方案,在保证疗效的同时降低不良反应风险。

3.1.3. 预防性用药的其他潜在影响

除低血压与BPD外,氢化可的松在极/超早产儿其他并发症的管理中也展现出潜在价值。在动脉导管未闭防治方面,Baud等的研究发现预防性使用氢化可的松可降低动脉导管未闭的手术结扎率[25];Shaffer等的Meta分析也指出,预防性用药能减少早产儿出院前死亡率以及动脉导管未闭的治疗率[33]。在新生儿坏死性小肠结肠炎防治领域,De Luca等的荟萃分析发现氢化可的松的使用与该病发生率下降相关[34],这一效果可能与其维持血压、促进动脉导管闭合,进而增加肠系膜血管灌注有关,但该机制仍需大型对照试验验证。此外,Petrishka-Lozenska等的回顾性研究提示,用于预防BPD的产后早期低剂量氢化可的松的使用可能降低极早产儿ROP的治疗风险[32],然而这一结论同样有待更高质量研究进一步证实。

3.2. 治疗性应用

对于已出现低血压甚至休克的早产儿,氢化可的松在难治性病例中的治疗作用已受到关注,既往文献报道,大约26%到48%的低血压新生儿对常规容量复苏、血管升压药物及正性肌力药物治疗效果不明显,而对皮质类固醇治疗敏感[35]。Pak C Ng等开展的一项双盲随机对照研究证实,采用应激剂量氢化可的松(1 mg/kg q8h*5天,总剂量15 mg/kg)可有效改善顽固性低血压[36];Hochwald等的研究进一步显示,与安慰剂相比,氢化可的松治疗组(首剂2 mg/kg,1 mg/kg q6h*3剂,0.5 mg/kg q6h*4剂,总剂量7 mg/kg)的平均动脉压显著升高,且多巴胺的使用剂量与时间均更短[30];然而Dudeja等的研究则指出,当氢化可的松治疗组(1 mg/kg q6h*2天,1 mg/kg q12h*3天,总剂量18 mg/kg)与安慰剂组同时在接受血管活性药物治疗时,两组间主要结局未显示出统计学差异,可能与较高的交叉用药率有关[37]

综合现有研究可见,目前氢化可的松治疗早产儿低血压的剂量尚无统一标准,加拿大一项调查显示,新生儿科医师实际使用氢化可的松剂量范围波动较大,通常为1~5 mg/kg/d [38]。尽管病情严重的早产儿可能需要更高剂量,但剂量与不良预后之间的关联仍需深入探究,因此临床实践中必须严谨选择氢化可的松的剂量,权衡治疗获益与潜在风险。

4. 氢化可的松的药物不良反应

4.1. 消化系统不良反应

尽管氢化可的松的临床有效性已得到诸多证实,但其潜在安全风险仍需重视,尤其是在自发性肠穿孔与感染风险方面。既往开展的两项随机对照试验因试验组的新生儿自发性肠穿孔风险增高而提前终止[24] [28],回顾性分析表明,该风险可能与氢化可的松的使用及早期联用吲哚美辛存在叠加效应相关[39];与此同时,另一项禁止早期使用布洛芬的试验表明,早期使用低剂量氢化可的松并未增加自发性肠穿孔的发生率,但试验组患儿的晚发败血症发生率有所上升,且这一现象在胎龄24~25周的亚组中表现尤为突出[25]

4.2. 神经系统不良反应

氢化可的松对早产儿远期神经发育的影响是当前临床应用中备受关注且存在争议的核心问题。动物实验研究表明,单独使用选择性糖皮质激素治疗时,因脑部盐皮质激素受体持续空缺可导致神经元凋亡,而同时给予皮质醇则能抑制该细胞凋亡过程,此现象可能源于氢化可的松同时具有盐皮质激素和糖皮质激素活性,使其相较于地塞米松等选择性糖皮质激素类似物具有更安全的神经学风险[40]-[42]。临床研究层面,多项研究呈现积极趋势:一项系统评价指出,氢化可的松可显著降低死亡或主要神经感觉障碍风险[8];另一项荟萃分析则证实,其对存活者脑瘫结局无显著不良影响[33];对PREMILOC试验患儿的5岁结局数据进行分析发现,氢化可的松可能在儿童期的工作记忆、信息保持能力、发育和发展等方面具有潜在益处[43]。神经影像学研究同样提供了支持证据,早期氢化可的松暴露既未显著增加脑白质损伤或中重度脑损伤的发生率[44],也未引起主要脑区白质微结构或神经环路的显著改变[45]。但需注意的是,尽管现有研究结果偏向有利,但目前所有针对预防性使用氢化可的松的随机对照试验,在试验设计或统计效能上均不足以检测出可能存在的、虽微小但具有临床意义的神经发育差异[46] [47]。因此,越多越多研究者呼吁针对早期氢化可的松疗法的远期神经发展结局开展更深入的研究[48] [49]

4.3. 其他系统不良反应

氢化可的松引起其他系统不良反应亦不容忽视。其使用可导致高血糖,同时通过影响水盐及电解质平衡,引起水钠潴留、低钾血症、高钠血症及钙磷排泄增加,进而诱发水肿、高血压、骨矿化不良甚至肾钙质沉着等并发症[18]。Watterberg等的研究指出,晚期使用氢化可的松会增加新发高血压及需降压药物治疗的风险,同时高血糖发生率也显著升高[50];STOP-BPD试验也报告了类似结果,该试验中氢化可的松使用组高血糖(包括需胰岛素治疗的高血糖)风险增加[51]。此外,氢化可的松使用可抑制蛋白质合成与骨形成,并促进骨钙流失,可能导致肌肉萎缩、生长迟滞及骨质疏松性骨折等的风险增高[19]

5. 未来展望

极/超早产儿因HPA轴发育不成熟,容易发生TAP,氢化可的松凭借其独特的药理特性,在稳定血流动力学、预防BPD、提高无BPD存活率及降低出院前死亡率等方面展现出临床价值,但同时可能增加胃肠道穿孔等不良反应的风险,因此,其使用必须基于个体化的风险与获益评估。在临床应用中,应在明确用药目的基础上,综合评估患儿胎龄与出生体重、病情严重程度、循环情况及合并症,并结合医疗机构的监测与管理条件,实施个体化治疗及动态调整。

近年来相关研究不断增加,但现有证据仍有限,目前仅有一项大型随机对照试验报告了其使用的临床获益及5年随访的安全性数据,因此现行临床指南对预防性氢化可的松使用仍持谨慎态度。未来研究亟需围绕适用人群的风险分层、最佳剂量与给药方案、对脑结构与神经发育的长期影响,以及其他重要远期安全性结局等关键科学问题开展高质量研究,以期为极/超早产儿氢化可的松的早期合理应用提供更为明确和可靠的循证依据。

NOTES

*通讯作者。

参考文献

[1] Stoll, B.J., Hansen, N.I., Bell, E.F., Walsh, M.C., Carlo, W.A., Shankaran, S., et al. (2015) Trends in Care Practices, Morbidity, and Mortality of Extremely Preterm Neonates, 1993-2012. JAMA, 314, 1039-1051. [Google Scholar] [CrossRef] [PubMed]
[2] Apostolidi, D.M., Kapetanidi, M., Vretou, E., Sarantaki, A., Lykeridou, K., Karampas, G., et al. (2025) Morbidity and Mortality Trends in Preterm Neonates at the Limits of Viability: Retrospective Observations from One Greek Hospital. Life, 15, Article 708. [Google Scholar] [CrossRef] [PubMed]
[3] Ng, P.C. (2000) The Fetal and Neonatal Hypothalamic-Pituitary-Adrenal Axis. Archives of Disease in Childhood-Fetal and Neonatal Edition, 82, F250-F254. [Google Scholar] [CrossRef] [PubMed]
[4] de Boer, A., van Beek, P.E., Andriessen, P., Groenendaal, F., Hogeveen, M., Meijer, J.S., et al. (2023) Opportunities and Challenges of Prognostic Models for Extremely Preterm Infants. Children, 10, Article 1712. [Google Scholar] [CrossRef] [PubMed]
[5] Schmidt, B., Roberts, R.S., Davis, P.G., et al. (2015) Prediction of Late Death or Disability at Age 5 Years Using a Count of 3 Neonatal Morbidities in Very Low Birth Weight Infants. Journal of Pediatrics, 167, 982-6.e2.
[6] Ng, P.C., Lee, C.H., Lam, C.W.K., Ma, K.C., Fok, T.F., Chan, I.H.S., et al. (2004) Transient Adrenocortical Insufficiency of Prematurity and Systemic Hypotension in Very Low Birthweight Infants. Archives of Disease in Childhood - Fetal and Neonatal Edition, 89, F119-F126. [Google Scholar] [CrossRef] [PubMed]
[7] Baud, O., Torchin, H., Butin, M., Flamant, C. and Nuytten, A. (2025) Prophylactic Low-Dose Hydrocortisone in Neonates Born Extremely Preterm: Current Knowledge and Future Challenges. Pediatric Research, 98, 65-71. [Google Scholar] [CrossRef] [PubMed]
[8] Doyle, L.W., Cheong, J.L., Hay, S., Manley, B.J., Halliday, H.L. and Soll, R. (2021) Early (<7 Days) Systemic Postnatal Corticosteroids for Prevention of Bronchopulmonary Dysplasia in Preterm Infants. Cochrane Database of Systematic Reviews, No. 10, CD001146. [Google Scholar] [CrossRef] [PubMed]
[9] Shah, S.D., Shukla, S., Nandula, P.S., Vice, S., Elgendy, M., Gautam, S., et al. (2024) Prophylactic Early Low-Dose Hydrocortisone and Survival without Bronchopulmonary Dysplasia among Extremely Preterm Infants Born at 22-27 Weeks’ Gestation. Journal of Perinatology, 44, 947-952. [Google Scholar] [CrossRef] [PubMed]
[10] de Souza, M., Melika, R., Thebaud, B., Barrowman, N.J., Tsampalieros, A. and Lemyre, B. (2024) Effects of Prophylactic Hydrocortisone in a Tertiary Canadian Nicu. Archives of Disease in Childhood-Fetal and Neonatal Edition, 109, 342-342. [Google Scholar] [CrossRef] [PubMed]
[11] Marinelli, K.C., Lyden, E.R. and Peeples, E.S. (2021) Clinical Risk Factors for the Development of Late-Onset Circulatory Collapse in Premature Infants. Pediatric Research, 89, 968-973. [Google Scholar] [CrossRef] [PubMed]
[12] Watterberg, K.L. (2016) Hydrocortisone Dosing for Hypotension in Newborn Infants: Less Is More. The Journal of Pediatrics, 174, 23-26.e1. [Google Scholar] [CrossRef] [PubMed]
[13] Ogasawara, K., Sato, M., Hashimoto, K., Imamura, T., Go, H. and Hosoya, M. (2018) A Polymorphism in the Glucocorticoid Receptor Gene Is Associated with Refractory Hypotension in Premature Infants. Pediatrics & Neonatology, 59, 251-257. [Google Scholar] [CrossRef] [PubMed]
[14] Kantake, M., Ohkawa, N., Iwasaki, T., Ikeda, N., Awaji, A., Saito, N., et al. (2018) Postnatal Relative Adrenal Insufficiency Results in Methylation of the Glucocorticoid Receptor Gene in Preterm Infants: A Retrospective Cohort Study. Clinical Epigenetics, 10, Article No. 66. [Google Scholar] [CrossRef] [PubMed]
[15] Hamrick, S.E.G., Sallmon, H., Rose, A.T., Porras, D., Shelton, E.L., Reese, J., et al. (2020) Patent Ductus Arteriosus of the Preterm Infant. Pediatrics, 146, e20201209. [Google Scholar] [CrossRef] [PubMed]
[16] Czock, D., Keller, F., Rasche, F.M. and Häussler, U. (2005) Pharmacokinetics and Pharmacodynamics of Systemically Administered Glucocorticoids. Clinical Pharmacokinetics, 44, 61-98. [Google Scholar] [CrossRef] [PubMed]
[17] Raissy, H.H., Kelly, H.W., Harkins, M. and Szefler, S.J. (2013) Inhaled Corticosteroids in Lung Diseases. American Journal of Respiratory and Critical Care Medicine, 187, 798-803. [Google Scholar] [CrossRef] [PubMed]
[18] McKay, L.I. and Cidlowski, J.A. (2003) Physiologic and Pharmacologic Effects of Corticosteroids. In: Kufe, D.W., Pollock, R.E., Weichselbaum, R.R., Bast, R.C., Gansler, T.S., Holland, J.F. and Frei, E., Eds., Holland-Frei Cancer Medicine, 6th Edition, BC Decker.
https://www.ncbi.nlm.nih.gov/books/NBK13780/
[19] Hindmarsh, P.C. and Geertsma, K. (2017) Hydrocortisone. In: Hindmarsh, P.C. and Geertsma, K., Eds., Congenital Adrenal Hyperplasia, Elsevier, 231-249. [Google Scholar] [CrossRef
[20] Gilfillan, M.A., Kiladejo, A. and Bhandari, V. (2025) Current and Emerging Therapies for Prevention and Treatment of Bronchopulmonary Dysplasia in Preterm Infants. Pediatric Drugs, 27, 539-562. [Google Scholar] [CrossRef] [PubMed]
[21] Shinwell, E.S., Gurevitz, P. and Portnov, I. (2021) Current Evidence for Prenatal and Postnatal Corticosteroids in Preterm Infants. Archives of Disease in Childhood-Fetal and Neonatal Edition, 107, 121-125. [Google Scholar] [CrossRef] [PubMed]
[22] 邵肖梅, 叶鸿瑁, 丘小汕. 实用新生儿科学[M]. 北京: 人民卫生出版社, 2018: 738.
[23] Efird, M.M., Heerens, A.T., Gordon, P.V., Bose, C.L. and Young, D.A. (2005) A Randomized-Controlled Trial of Prophylactic Hydrocortisone Supplementation for the Prevention of Hypotension in Extremely Low Birth Weight Infants. Journal of Perinatology, 25, 119-124. [Google Scholar] [CrossRef] [PubMed]
[24] Watterberg, K.L., Gerdes, J.S., Cole, C.H., Aucott, S.W., Thilo, E.H., Mammel, M.C., et al. (2004) Prophylaxis of Early Adrenal Insufficiency to Prevent Bronchopulmonary Dysplasia: A Multicenter Trial. Pediatrics, 114, 1649-1657. [Google Scholar] [CrossRef] [PubMed]
[25] Baud, O., Maury, L., Lebail, F., Ramful, D., El Moussawi, F., Nicaise, C., et al. (2016) Effect of Early Low-Dose Hydrocortisone on Survival without Bronchopulmonary Dysplasia in Extremely Preterm Infants (PREMILOC): A Double-Blind, Placebo-Controlled, Multicentre, Randomised Trial. The Lancet, 387, 1827-1836. [Google Scholar] [CrossRef] [PubMed]
[26] Higgins, R.D., Jobe, A.H., Koso-Thomas, M., Bancalari, E., Viscardi, R.M., Hartert, T.V., et al. (2018) Bronchopulmonary Dysplasia: Executive Summary of a Workshop. The Journal of Pediatrics, 197, 300-308. [Google Scholar] [CrossRef] [PubMed]
[27] Watterberg, K.L., Gerdes, J.S., Gifford, K.L. and Lin, H. (1999) Prophylaxis against Early Adrenal Insufficiency to Prevent Chronic Lung Disease in Premature Infants. Pediatrics, 104, 1258-1263. [Google Scholar] [CrossRef] [PubMed]
[28] Bonsante, F., Latorre, G., Iacobelli, S., Forziati, V., Laforgia, N., Esposito, L., et al. (2007) Early Low-Dose Hydrocortisone in Very Preterm Infants: A Randomized, Placebo-Controlled Trial. Neonatology, 91, 217-221. [Google Scholar] [CrossRef] [PubMed]
[29] Peltoniemi, O., Kari, M.A., Heinonen, K., Saarela, T., Nikolajev, K., Andersson, S., et al. (2005) Pretreatment Cortisol Values May Predict Responses to Hydrocortisone Administration for the Prevention of Bronchopulmonary Dysplasia in High-Risk Infants. The Journal of Pediatrics, 146, 632-637. [Google Scholar] [CrossRef] [PubMed]
[30] Hochwald, O., Palegra, G. and Osiovich, H. (2014) Adding Hydrocortisone as 1st Line of Inotropic Treatment for Hypotension in Very Low Birth Weight Infants. The Indian Journal of Pediatrics, 81, 808-810. [Google Scholar] [CrossRef] [PubMed]
[31] Briscoe, A., Piyasena, C. and Meau-Petit, V. (2022) Tolerance of Hydrocortisone Prophylaxis Administration in Extreme Preterm Neonates: Experience of a Single UK Level III Neonatal Unit. Early Human Development, 171, Article 105630. [Google Scholar] [CrossRef] [PubMed]
[32] Petrishka-Lozenska, M., Pivodic, A., Flisberg, A., Hansen-Pupp, I., Smith, L.E.H., Lundgren, P., et al. (2025) Association between Early Postnatal Hydrocortisone and Retinopathy of Prematurity in Extremely Preterm Infants. Neonatology, 122, 329-338. [Google Scholar] [CrossRef] [PubMed]
[33] Shaffer, M.L., Baud, O., Lacaze-Masmonteil, T., Peltoniemi, O.M., Bonsante, F. and Watterberg, K.L. (2019) Effect of Prophylaxis for Early Adrenal Insufficiency Using Low-Dose Hydrocortisone in Very Preterm Infants: An Individual Patient Data Meta-Analysis. The Journal of Pediatrics, 207, 136-142.e5. [Google Scholar] [CrossRef] [PubMed]
[34] De Luca, D., Ferraioli, S., Watterberg, K.L., Baud, O. and Gualano, M.R. (2024) Hydrocortisone in Very Preterm Neonates for BPD Prevention: Meta-Analysis and Effect Size Modifiers. Archives of Disease in Childhood-Fetal and Neonatal Edition, 109, 481-487. [Google Scholar] [CrossRef] [PubMed]
[35] Verma, R.P., Dasnadi, S., Zhao, Y. and Chen, H.H. (2017) A Comparative Analysis of Ante-and Postnatal Clinical Characteristics of Extremely Premature Neonates Suffering from Refractory and Non-Refractory Hypotension: Is Early Clinical Differentiation Possible? Early Human Development, 113, 49-54. [Google Scholar] [CrossRef] [PubMed]
[36] Ng, P.C., Lee, C.H., Bnur, F.L., Chan, I.H.S., Lee, A.W.Y., Wong, E., et al. (2006) A Double-Blind, Randomized, Controlled Study of a “Stress Dose” of Hydrocortisone for Rescue Treatment of Refractory Hypotension in Preterm Infants. Pediatrics, 117, 367-375. [Google Scholar] [CrossRef] [PubMed]
[37] Dudeja, S., Saini, S.S., Sundaram, V., Dutta, S., Sachdeva, N. and Kumar, P. (2025) Early Hydrocortisone Verses Placebo in Neonatal Shock: A Double Blind Randomized Controlled Trial. Journal of Perinatology, 45, 342-349. [Google Scholar] [CrossRef] [PubMed]
[38] Kharrat, A., Diambomba, Y. and Jain, A. (2024) Corticosteroid Use in Neonatal Hypotension: A Survey of Canadian Neonatologists. Pediatrics & Neonatology, 65, 451-456. [Google Scholar] [CrossRef] [PubMed]
[39] Stavel, M., Wong, J., Cieslak, Z., Sherlock, R., Claveau, M. and Shah, P.S. (2017) Effect of Prophylactic Indomethacin Administration and Early Feeding on Spontaneous Intestinal Perforation in Extremely Low-Birth-Weight Infants. Journal of Perinatology, 37, 188-193. [Google Scholar] [CrossRef] [PubMed]
[40] Crochemore, C., Lu, J., Wu, Y., Liposits, Z., Sousa, N., Holsboer, F., et al. (2005) Direct Targeting of Hippocampal Neurons for Apoptosis by Glucocorticoids Is Reversible by Mineralocorticoid Receptor Activation. Molecular Psychiatry, 10, 790-798. [Google Scholar] [CrossRef] [PubMed]
[41] Hassan, A.H.S., von Rosenstiel, P., Patchev, V.K., Holsboer, F. and Almeida, O.F.X. (1996) Exacerbation of Apoptosis in the Dentate Gyrus of the Aged Rat by Dexamethasone and the Protective Role of Corticosterone. Experimental Neurology, 140, 43-52. [Google Scholar] [CrossRef] [PubMed]
[42] Sloviter, R.S., Sollas, A.L., Dean, E. and Neubort, S. (1993) Adrenalectomy‐Induced Granule Cell Degeneration in the Rat Hippocampal Dentate Gyrus: Characterization of an in Vivo Model of Controlled Neuronal Death. Journal of Comparative Neurology, 330, 324-336. [Google Scholar] [CrossRef] [PubMed]
[43] Trousson, C., Toumazi, A., Bourmaud, A., Biran, V. and Baud, O. (2023) Neurocognitive Outcomes at Age 5 Years after Prophylactic Hydrocortisone in Infants Born Extremely Preterm. Developmental Medicine & Child Neurology, 65, 926-932. [Google Scholar] [CrossRef] [PubMed]
[44] Alison, M., Tilea, B., Toumazi, A., Biran, V., Mohamed, D., Alberti, C., et al. (2020) Prophylactic Hydrocortisone in Extremely Preterm Infants and Brain MRI Abnormality. Archives of Disease in Childhood-Fetal and Neonatal Edition, 105, 520-525. [Google Scholar] [CrossRef] [PubMed]
[45] Dubner, S.E., Rickerich, L., Bruckert, L., Poblaciones, R.V., Sproul, D., Scala, M., et al. (2024) Early, Low-Dose Hydrocortisone and Near-Term Brain Connectivity in Extremely Preterm Infants. Pediatric Research, 95, 1028-1034. [Google Scholar] [CrossRef] [PubMed]
[46] Cummings, J.J. and Pramanik, A.K. (2022) Postnatal Corticosteroids to Prevent or Treat Chronic Lung Disease Following Preterm Birth. Pediatrics, 149, e2022057530. [Google Scholar] [CrossRef] [PubMed]
[47] Sweet, D.G., Carnielli, V.P., Greisen, G., Hallman, M., Klebermass-Schrehof, K., Ozek, E., et al. (2023) European Consensus Guidelines on the Management of Respiratory Distress Syndrome: 2022 Update. Neonatology, 120, 3-23. [Google Scholar] [CrossRef] [PubMed]
[48] Doyle, L.W., Cheong, J.L., Hay, S., Manley, B.J. and Halliday, H.L. (2021) Late (≥7 Days) Systemic Postnatal Corticosteroids for Prevention of Bronchopulmonary Dysplasia in Preterm Infants. Cochrane Database of Systematic Reviews, No. 11, CD001145. [Google Scholar] [CrossRef] [PubMed]
[49] Baud, O., Trousson, C., Biran, V., Leroy, E., Mohamed, D. and Alberti, C. (2018) Two-Year Neurodevelopmental Outcomes of Extremely Preterm Infants Treated with Early Hydrocortisone: Treatment Effect According to Gestational Age at Birth. Archives of Disease in Childhood-Fetal and Neonatal Edition, 104, F30-F35. [Google Scholar] [CrossRef] [PubMed]
[50] Watterberg, K.L., Walsh, M.C., Li, L., Chawla, S., D’Angio, C.T., Goldberg, R.N., et al. (2022) Hydrocortisone to Improve Survival without Bronchopulmonary Dysplasia. New England Journal of Medicine, 386, 1121-1131. [Google Scholar] [CrossRef] [PubMed]
[51] Onland, W., Cools, F., Kroon, A., Rademaker, K., Merkus, M.P., Dijk, P.H., et al. (2019) Effect of Hydrocortisone Therapy Initiated 7 to 14 Days after Birth on Mortality or Bronchopulmonary Dysplasia among Very Preterm Infants Receiving Mechanical Ventilation. JAMA, 321, 354-363. [Google Scholar] [CrossRef] [PubMed]