|
[1]
|
Coyle, D. and Hampton, L. (2024) 21st Century Progress in Computing. Telecommunications Policy, 48, Article 102649. [Google Scholar] [CrossRef]
|
|
[2]
|
Vaswani, A., Shazeer, N., Parmar, N., et al. (2017) Attention Is All You Need. Advances in Neural Information Processing Systems, 30, 5998-6008.
|
|
[3]
|
Zhao, W.X., Zhou, K., Li, J., et al. (2023) A Survey of Large Language Models. arXiv:2303.18223.
|
|
[4]
|
Hadi, M.U., Qureshi, R., Shah, A., et al. (2023) A Survey on Large Language Models: Applications, Challenges, Limitations, and Practical Usage. Authorea Preprints.
|
|
[5]
|
Minaee, S., Mikolov, T., Nikzad, N., et al. (2024) Large Language Models: A Survey. arXiv:2402.06196.
|
|
[6]
|
Dahl, M., Magesh, V., Suzgun, M. and Ho, D.E. (2024) Large Legal Fictions: Profiling Legal Hallucinations in Large Language Models. Journal of Legal Analysis, 16, 64-93. [Google Scholar] [CrossRef]
|
|
[7]
|
Liu, Z., Huang, D., Huang, K., Li, Z. and Zhao, J. (2020) FinBERT: A Pre-Trained Financial Language Representation Model for Financial Text Mining. Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, 4513-4519. [Google Scholar] [CrossRef]
|
|
[8]
|
Kim, Y., Jeong, H., Chen, S., et al. (2025) Medical Hallucinations in Foundation Models and Their Impact on Healthcare. arXiv:2503.05777.
|
|
[9]
|
Wu, J., Yang, S., Zhan, R., Yuan, Y., Chao, L.S. and Wong, D.F. (2025) A Survey on LLM-Generated Text Detection: Necessity, Methods, and Future Directions. Computational Linguistics, 51, 275-338. [Google Scholar] [CrossRef]
|
|
[10]
|
Trummer, I. (2024) Large Language Models: Principles and Practice. 2024 IEEE 40th International Conference on Data Engineering (ICDE), Utrecht, 13-16 May 2024, 5354-5357. [Google Scholar] [CrossRef]
|
|
[11]
|
Wang, Z., Chu, Z., Doan, T.V., Ni, S., Yang, M. and Zhang, W. (2024) History, Development, and Principles of Large Language Models: An Introductory Survey. AI and Ethics, 5, 1955-1971. [Google Scholar] [CrossRef]
|
|
[12]
|
Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., et al. (2025) A Survey on Hallucination in Large Language Models: Principles, Taxonomy, Challenges, and Open Questions. ACM Transactions on Information Systems, 43, 1-55. [Google Scholar] [CrossRef]
|
|
[13]
|
Joshi, S. (2025) Mitigating LLM Hallucinations: A Comprehensive Review of Techniques and Architectures. [Google Scholar] [CrossRef]
|
|
[14]
|
Elchafei, P. and Abu-Elkheir, M. (2025) Span-Level Hallucination Detection for LLM-Generated Answers. arXiv:2504.18639.
|
|
[15]
|
Orgad, H., Toker, M., Gekhman, Z., et al. (2024) LLMs Know More than They Show: On the Intrinsic Representation of llm Hallucinations. arXiv:2410.02707.
|
|
[16]
|
Bang, Y., Ji, Z., Schelten, A., Hartshorn, A., Fowler, T., Zhang, C., et al. (2025) Hallulens: LLM Hallucination Benchmark. Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Vienna, 27 July-1 August 2025, 24128-24156. [Google Scholar] [CrossRef]
|
|
[17]
|
Ji, Z., Lee, N., Frieske, R., Yu, T., Su, D., Xu, Y., et al. (2023) Survey of Hallucination in Natural Language Generation. ACM Computing Surveys, 55, 1-38. [Google Scholar] [CrossRef]
|
|
[18]
|
Sun, W., Shi, Z., Gao, S., Ren, P., De Rijke, M. and Ren, Z. (2023) Contrastive Learning Reduces Hallucination in Conversations. Proceedings of the AAAI Conference on Artificial Intelligence, 37, 13618-13626. [Google Scholar] [CrossRef]
|
|
[19]
|
Li, J., Chen, J., Ren, R., et al. (2024) The Dawn After the Dark: An Empirical Study on Factuality Hallucination in Large Language Models. arXiv:2401.03205.
|
|
[20]
|
Chen, S., Zhang, F., Sone, K. and Roth, D. (2021) Improving Faithfulness in Abstractive Summarization with Contrast Candidate Generation and Selection. Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Online, 6-11 June 2021, 5935-5941. [Google Scholar] [CrossRef]
|
|
[21]
|
Gautam, A.R. (2025) Impact of High Data Quality on LLM Hallucinations. International Journal of Computer Applications, 187, 35-39.
|
|
[22]
|
Carlini, N., Tramer, F., Wallace, E., et al. (2021) Extracting Training Data from Large Language Models. 30th USENIX security symposium (USENIX Security 21), 11-13 August 2021, 2633-2650.
|
|
[23]
|
Sheng, E., Chang, K., Natarajan, P. and Peng, N. (2021) Societal Biases in Language Generation: Progress and Challenges. Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), Online, 1-6 August 2021, 4275-4293. [Google Scholar] [CrossRef]
|
|
[24]
|
Ho, H., Ly, D. and Nguyen, L.V. (2024) Mitigating Hallucinations in Large Language Models for Educational Application. 2024 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia), Danang, 3-6 November 2024, 1-4. [Google Scholar] [CrossRef]
|
|
[25]
|
Zhu, C., Chen, N., Gao, Y., Zhang, Y., Tiwari, P. and Wang, B. (2025) Is Your LLM Outdated? A Deep Look at Temporal Generalization. Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), Albuquerque, 29 April-4 May 2025, 7433-7457. [Google Scholar] [CrossRef]
|
|
[26]
|
Karpowicz, M.P. (2025) On the Fundamental Impossibility of Hallucination Control in Large Language Models. arXiv:2506.06382.
|
|
[27]
|
Pozzi, A., Incremona, A., Tessera, D. and Toti, D. (2025) Mitigating Exposure Bias in Large Language Model Distillation: An Imitation Learning Approach. Neural Computing and Applications, 37, 12013-12029. [Google Scholar] [CrossRef]
|
|
[28]
|
Kirk, R., Mediratta, I., Nalmpantis, C., et al. (2023) Understanding the Effects of RLHF on LLM Generalisation and Diversity. arXiv:2310.06452.
|
|
[29]
|
Waldo, J. and Boussard, S. (2024) GPTs and Hallucination: Why Do Large Language Models Hallucinate? Queue, 22, 19-33. [Google Scholar] [CrossRef]
|
|
[30]
|
Xu, X., Kong, K., Liu, N., et al. (2023) An LLM Can Fool Itself: A Prompt-Based Adversarial Attack. arXiv:2310.13345.
|
|
[31]
|
Rawte, V., Priya, P., Tonmoy, S.M., et al. (2023) Exploring the Relationship between LLM Hallucinations and Prompt Linguistic Nuances: Readability, Formality, and Concreteness. arXiv:2309.11064.
|
|
[32]
|
Parthasarathy, V.B., Zafar, A., Khan, A., et al. (2024) The Ultimate Guide to Fine-Tuning LLMs from Basics to Breakthroughs: An Exhaustive Review of Technologies, Research, Best Practices, Applied Research Challenges and Opportunities. arXiv:2408.13296.
|
|
[33]
|
P, M. and Velvizhy, P. (2025) A Comprehensive Review of Supervised Fine-Tuning for Large Language Models in Creative Applications and Content Moderation. 2025 International Conference on Inventive Computation Technologies (ICICT), Kirtipur, 23-25 April 2025, 1294-1299. [Google Scholar] [CrossRef]
|
|
[34]
|
Xu, L., Xie, H., Qin, S.Z.J., et al. (2023) Parameter-Efficient Fine-Tuning Methods for Pretrained Language Models: A Critical Review and Assessment. CoRR.
|
|
[35]
|
Wang, L., Chen, S., Jiang, L., Pan, S., Cai, R., Yang, S., et al. (2025) Parameter-Efficient Fine-Tuning in Large Language Models: A Survey of Methodologies. Artificial Intelligence Review, 58, Article No. 227. [Google Scholar] [CrossRef]
|
|
[36]
|
Luo, Z., Xu, C., Zhao, P., et al. (2023) Wizardcoder: Empowering Code Large Language Models with Evolinstruct. arXiv:2306.08568.
|
|
[37]
|
Zhou, Z., Shi, J.X., Song, P.X., et al. (2024) LawGPT: A Chinese Legal Knowledge-Enhanced Large Language Model. CoRR.
|
|
[38]
|
Li, Y., Li, Z., Zhang, K., Dan, R., Jiang, S. and Zhang, Y. (2023) Chatdoctor: A Medical Chat Model Fine-Tuned on a Large Language Model Meta-AI (Llama) Using Medical Domain Knowledge. Cureus, 15, e40895. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Ouyang, L., Wu, J., Jiang, X., et al. (2022) Training Language Models to Follow Instructions with Human Feedback. Advances in Neural Information Processing Systems, 35, 27730-27744.
|
|
[40]
|
Christiano, P.F., Leike, J., Brown, T., et al. (2017) Deep Reinforcement Learning from Human Preferences. Advances in Neural Information Processing Systems, 30, 4299-4307.
|
|
[41]
|
Kaufmann, T., Weng, P., Bengs, V., et al. (2024) A Survey of Reinforcement Learning from Human Feedback. arXiv:2312.14925.
|
|
[42]
|
Wang, Z., Bi, B., Pentyala, S.K., et al. (2024) A Comprehensive Survey of LLM Alignment Techniques: RLHF, RLAIF, PPO, DPO and More. arXiv:2407.16216.
|
|
[43]
|
Srivastava, S.S. and Aggarwal, V. (2025) A Technical Survey of Reinforcement Learning Techniques for Large Language Models. arXiv:2507.04136.
|
|
[44]
|
Iacovides, G., Zhou, W. and Mandic, D. (2025) Findpo: Financial Sentiment Analysis for Algorithmic Trading through Preference Optimization of LLMs. Proceedings of the 6th ACM International Conference on AI in Finance, Singapore, 15-18 November 2025, 647-655. [Google Scholar] [CrossRef]
|
|
[45]
|
Dai, J., Pan, X., Sun, R., et al. (2024) Safe RLHF: Safe Reinforcement Learning from Human Feedback. The Twelfth International Conference on Learning Representations, Vienna, 7-11 May 2024, 47991-48018.
|
|
[46]
|
Yang, S., Zhao, H., Zhu, S., Zhou, G., Xu, H., Jia, Y., et al. (2024) Zhongjing: Enhancing the Chinese Medical Capabilities of Large Language Model through Expert Feedback and Real-World Multi-Turn Dialogue. Proceedings of the AAAI Conference on Artificial Intelligence, 38, 19368-19376. [Google Scholar] [CrossRef]
|
|
[47]
|
Feldman, P., Foulds, J.R. and Pan, S. (2023) Trapping LLM Hallucinations Using Tagged Context Prompts. arXiv:2306.06085.
|
|
[48]
|
Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H. and Neubig, G. (2023) Pre-Train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing. ACM Computing Surveys, 55, 1-35. [Google Scholar] [CrossRef]
|
|
[49]
|
Schulhoff, S., Ilie, M., Balepur, N., et al. (2024) The Prompt Report: A Systematic Survey of Prompt Engineering Techniques. arXiv:2406.06608.
|
|
[50]
|
Wei, J., Wang, X., Schuurmans, D., et al. (2022) Chain-of-Thought Prompting Elicits Reasoning in Large Language Models. Advances in Neural Information Processing Systems, 35, 24824-24837.
|
|
[51]
|
Touvron, H., Martin, L., Stone, K., et al. (2023) Llama 2: Open Foundation and Fine-Tuned Chat Models. arXiv:2307.09288.
|
|
[52]
|
Lewis, P., Perez, E., Piktus, A., et al. (2020) Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. Advances in Neural Information Processing Systems, 33, 9459-9474.
|
|
[53]
|
Yu, H., Gan, A., Zhang, K., Tong, S., Liu, Q. and Liu, Z. (2024) Evaluation of Retrieval-Augmented Generation: A Survey. In: Zhu, W., et al., Eds., Communications in Computer and Information Science, Springer Nature, 102-120. [Google Scholar] [CrossRef]
|
|
[54]
|
Hu, Y. and Lu, Y. (2024) Rag and Rau: A Survey on Retrieval-Augmented Language Model in Natural Language Processing. arXiv:2404.19543.
|
|
[55]
|
Fan, W., Ding, Y., Ning, L., Wang, S., Li, H., Yin, D., et al. (2024) A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models. Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Barcelona, 25-29 August 2024, 6491-6501. [Google Scholar] [CrossRef]
|
|
[56]
|
Zhao, P., Zhang, H., Yu, Q., et al. (2024) Retrieval-Augmented Generation for AI-Generated Content: A Survey. arXiv:2402.19473.
|
|
[57]
|
Edge, D., Trinh, H., Cheng, N., et al. (2024) From Local to Global: A Graph Rag Approach to Query-Focused Summarization. arXiv:2404.16130.
|
|
[58]
|
Guo, Z., Xia, L., Yu, Y., Ao, T. and Huang, C. (2025) Lightrag: Simple and Fast Retrieval-Augmented Generation. Findings of the Association for Computational Linguistics: EMNLP 2025, Suzhou, 4-9 November 2025, 10746-10761. [Google Scholar] [CrossRef]
|