|
[1]
|
Liu, J., Ren, J., Zheng, W., Chi, L., Lee, I. and Xia, F. (2020) Web of Scholars: A Scholar Knowledge Graph. Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, online, 25-30 July 2020, 2153-2156. [Google Scholar] [CrossRef]
|
|
[2]
|
Wang, X., He, X., Cao, Y., Liu, M. and Chua, T. (2019) KGAT: Knowledge Graph Attention Network for Recommendation. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, 4-8 August 2019, 950-958. [Google Scholar] [CrossRef]
|
|
[3]
|
Bao, J., Duan, N., Yan, Z., Zhou, M. and Zhao, T. (2016) Constraint-Based Question Answering with Knowledge Graph. Proceedings of the 26th International Conference on Computational Linguistics, Osaka, 11-17 December 2016, 2503-2514.
|
|
[4]
|
Bollacker, K.D., Cook, R.P. and Tufts, P. (2007) Freebase: A Shared Database of Structured General Human Knowledge. Proceedings of the 22nd National Conference on Artificial Intelligence, Vancouver, 22-26 July 2007 1962-1963.
|
|
[5]
|
Vrandečić, D. (2012) Wikidata: A New Platform for Collaborative Data Collection. Proceedings of the 21st International Conference on World Wide Web, Lyon, 16-20 April 2012, 1063-1064. [Google Scholar] [CrossRef]
|
|
[6]
|
Zeng, X., Zeng, D., He, S., Liu, K. and Zhao, J. (2018) Extracting Relational Facts by an End-to-End Neural Model with Copy Mechanism. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Melbourne, 15-20 July 2018, 506-514. [Google Scholar] [CrossRef]
|
|
[7]
|
Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W. and Liu, P.J. (2020) Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. Journal of Machine Learning Research, 21, 1-67.
|
|
[8]
|
Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., et al. (2020) BART: Denoising Sequence-to-Sequence Pre-Training for Natural Language Generation, Translation, and Comprehension. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, 5-10 July 2020, 7871-7880. [Google Scholar] [CrossRef]
|
|
[9]
|
Yan, H., Dai, J., Ji, T., Qiu, X. and Zhang, Z. (2021) A Unified Generative Framework for Aspect-Based Sentiment Analysis. Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), Online, 1-6 August 2021, 2416-2429. [Google Scholar] [CrossRef]
|
|
[10]
|
Paolini, G., Athiwaratkun, B., Krone, J., Ma, J., Achille, A., Anubhai, R., dos Santos, C.N., Xiang, B. and Soatto, S. (2021) Structured Prediction as Translation between Augmented Natural Languages. Proceedings of the 9th International Conference on Learning Representations, 3-7 May 2021, 1-7.
|
|
[11]
|
Lu, Y., Liu, Q., Dai, D., Xiao, X., Lin, H., Han, X., et al. (2022) Unified Structure Generation for Universal Information Extraction. Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Dublin, 22-27 May 2022, 5755-5772. [Google Scholar] [CrossRef]
|
|
[12]
|
Wang, Q., Mao, Z., Wang, B. and Guo, L. (2017) Knowledge Graph Embedding: A Survey of Approaches and Applications. IEEE Transactions on Knowledge and Data Engineering, 29, 2724-2743. [Google Scholar] [CrossRef]
|
|
[13]
|
Ehrlinger, L. and Wöß, W. (2016) Towards a Definition of Knowledge Graphs. Proceedings of the SUCCESS Workshop at SEMANTiCS 2016, Leipzig, 12-15 September 2016, 1-4.
|
|
[14]
|
Wu, X., Wu, J., Fu, X., Li, J., Zhou, P. and Jiang, X. (2019) Automatic Knowledge Graph Construction: A Report on the 2019 ICDM/ICBK Contest. 2019 IEEE International Conference on Data Mining (ICDM), Beijing, 8-11 November 2019, 1540-1545. [Google Scholar] [CrossRef]
|
|
[15]
|
Luan, Y., He, L., Ostendorf, M. and Hajishirzi, H. (2018) Multi-Task Identification of Entities, Relations, and Coreference for Scientific Knowledge Graph Construction. Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, 31 October-4 November 2018, 3219-3232. [Google Scholar] [CrossRef]
|
|
[16]
|
Mesquita, F., Cannaviccio, M., Schmidek, J., Mirza, P. and Barbosa, D. (2019) Knowledgenet: A Benchmark Dataset for Knowledge Base Population. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong SAR (China), 3-7 November 2019, 749-758. [Google Scholar] [CrossRef]
|
|
[17]
|
Zhang, N., Xu, X., Tao, L., Yu, H., Ye, H., Qiao, S., et al. (2022) Deepke: A Deep Learning Based Knowledge Extraction Toolkit for Knowledge Base Population. Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, Abu Dhabi, 7-11 December 2022, 98-108. [Google Scholar] [CrossRef]
|
|
[18]
|
Chiu, J.P.C. and Nichols, E. (2016) Named Entity Recognition with Bidirectional LSTM-CNNs. Transactions of the Association for Computational Linguistics, 4, 357-370. [Google Scholar] [CrossRef]
|
|
[19]
|
Zeng, D., Liu, K., Chen, Y. and Zhao, J. (2015) Distant Supervision for Relation Extraction via Piecewise Convolutional Neural Networks. Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, 17-21 September 2015, 1753-1762. [Google Scholar] [CrossRef]
|
|
[20]
|
Shen, W., Wang, J. and Han, J. (2015) Entity Linking with a Knowledge Base: Issues, Techniques, and Solutions. IEEE Transactions on Knowledge and Data Engineering, 27, 443-460. [Google Scholar] [CrossRef]
|
|
[21]
|
Lin, Y., Liu, Z., Sun, M., Liu, Y. and Zhu, X. (2015) Learning Entity and Relation Embeddings for Knowledge Graph Completion. Proceedings of the AAAI Conference on Artificial Intelligence, 29, 2181-2187. [Google Scholar] [CrossRef]
|
|
[22]
|
Du, X. and Cardie, C. (2020) Event Extraction by Answering (Almost) Natural Questions. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), Online, 16-20 November 2020, 671-683. [Google Scholar] [CrossRef]
|
|
[23]
|
Zhong, L., Wu, J., Li, Q., Peng, H. and Wu, X. (2023) A Comprehensive Survey on Automatic Knowledge Graph Construction. ACM Computing Surveys, 56, 1-62. [Google Scholar] [CrossRef]
|
|
[24]
|
Zheng, S., Wang, F., Bao, H., Hao, Y., Zhou, P. and Xu, B. (2017) Joint Extraction of Entities and Relations Based on a Novel Tagging Scheme. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Vancouver, 30 July-4 August 2017, 1227-1236. [Google Scholar] [CrossRef]
|
|
[25]
|
Song, K.T., Tan, X., Qin, T., Lu, J.F. and Liu, T.Y. (2019) MASS: Masked Sequence to Sequence Pre-Training for Language Generation. Proceedings of the 36th International Conference on Machine Learning, Long Beach, 9-15 June 2019, 5926-5936.
|
|
[26]
|
Zeng, X., He, S., Zeng, D., Liu, K., Liu, S. and Zhao, J. (2019) Learning the Extraction Order of Multiple Relational Facts in a Sentence with Reinforcement Learning. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, 3-7 November 2019, 367-377. [Google Scholar] [CrossRef]
|
|
[27]
|
Zeng, D., Zhang, H. and Liu, Q. (2020) Copymtl: Copy Mechanism for Joint Extraction of Entities and Relations with Multi-Task Learning. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 9507-9514. [Google Scholar] [CrossRef]
|
|
[28]
|
Huang, K., Tang, S. and Peng, N. (2021) Document-Level Entity-Based Extraction as Template Generation. Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, Online, 7-11 November 2021, 5257-5269. [Google Scholar] [CrossRef]
|
|
[29]
|
Lu, Y., Lin, H., Xu, J., Han, X., Tang, J., Li, A., et al. (2021) Text2event: Controllable Sequence-To-Structure Generation for End-to-End Event Extraction. Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), Online, 1-6 August 2021, 2795-2806. [Google Scholar] [CrossRef]
|
|
[30]
|
Lou, D., Liao, Z., Deng, S., Zhang, N. and Chen, H. (2021) Mlbinet: A Cross-Sentence Collective Event Detection Network. Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), Online, 1-6 August 2021, 4829-4839. [Google Scholar] [CrossRef]
|
|
[31]
|
Zhang, N., Ye, H., Deng, S., Tan, C., Chen, M., Huang, S., et al. (2021) Contrastive Information Extraction with Generative Transformer. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 29, 3077-3088. [Google Scholar] [CrossRef]
|
|
[32]
|
Ye, H., Zhang, N., Deng, S., Chen, M., Tan, C., Huang, F., et al. (2021) Contrastive Triple Extraction with Generative Transformer. Proceedings of the AAAI Conference on Artificial Intelligence, 35, 14257-14265. [Google Scholar] [CrossRef]
|
|
[33]
|
Cabot, P.L.H., and Navigli, R. (2021) REBEL: Relation Extraction by End-to-End Language Generation. Findings of the Association for Computational Linguistics: EMNLP 2021, 7-11 November 2021, 2370-2381.
|
|
[34]
|
Straková, J., Straka, M. and Hajic, J. (2019) Neural Architectures for Nested NER through Linearization. Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, 28 July-2 August 2019, 5326-5331. [Google Scholar] [CrossRef]
|
|
[35]
|
Zhang, S., Shen, Y., Tan, Z., Wu, Y. and Lu, W. (2022) De-Bias for Generative Extraction in Unified NER Task. Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Dublin, 22-27 May 2022, 808-818. [Google Scholar] [CrossRef]
|
|
[36]
|
De Cao, N., Izacard, G., Riedel, S. and Petroni, F. (2021) Autoregressive Entity Retrieval. Proceedings of the 9th International Conference on Learning Representations, 3-7 May 2021, 1-17.
|
|
[37]
|
Wang, C., Liu, X., Chen, Z., Hong, H., Tang, J. and Song, D. (2022) Deepstruct: Pretraining of Language Models for Structure Prediction. Findings of the Association for Computational Linguistics: ACL 2022, Dublin, 22-27 May 2022 803-823. [Google Scholar] [CrossRef]
|
|
[38]
|
Athiwaratkun, B., Nogueira dos Santos, C., Krone, J. and Xiang, B. (2020) Augmented Natural Language for Generative Sequence Labeling. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), Online, 16-20 November 2020, 375-385. [Google Scholar] [CrossRef]
|
|
[39]
|
Lippolis, A.S., Ceriani, M., Zuppiroli, S. and Nuzzolese, A.G. (2025) Ontogenia: Ontology Generation with Metacognitive Prompting in Large Language Models. In: Meroño Peñuela, A., et al., Eds., Lecture Notes in Computer Science, Springer Nature, 259-265. [Google Scholar] [CrossRef]
|
|
[40]
|
Edge, D., Trinh, H., Cheng, N., Bradley, J., Chao, A., Mody, A., Truitt, S. and Larson, J. (2024) From Local to Global: A Graph RAG Approach to Query-Focused Summarization. arXiv:2404.16130.
|
|
[41]
|
Tiwari, Y., Lone, O.A. and Pal, M. (2025) OntoRAG: Enhancing Question-Answering through Automated Ontology Derivation from Unstructured Knowledge Bases. arXiv:2506.00664.
|
|
[42]
|
Zhang, B. and Soh, H. (2024) Extract, Define, Canonicalize: An LLM-Based Framework for Knowledge Graph Construction. Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, Miami, 12-16 November 2024, 9820-9836. [Google Scholar] [CrossRef]
|
|
[43]
|
Bai, J.X., Fan, W., Hu, Q., Zong, Q., Li, C.Y., Tsang, H.T., Luo, H.Y., Yim, Y.W., Huang, H.Y., Zhou, X., et al. (2025) AutoSchemaKG: Autonomous Knowledge Graph Construction through Dynamic Schema Induction from Web-Scale Corpora. arXiv:2505.23628.
|
|
[44]
|
Lu, Y.X. and Wang, J.Z. (2025) KARMA: Leveraging Multi-Agent LLMs for Automated Knowledge Graph Enrichment. arXiv:2502.06472.
|
|
[45]
|
Khorshidi, S., Nikfarjam, A., Shankar, S., Sang, Y., Govind, Y., Jang, H., Kasgari, A., McClimans, A., Soliman, M., Konda, V., et al. (2025) ODKE+: Ontology-Guided Open-Domain Knowledge Extraction with LLMs. arXiv:2509.04696.
|
|
[46]
|
Feng, X.H., Wu, X.X. and Meng, H. (2024) Ontology-Grounded Automatic Knowledge Graph Construction by LLMs under Wikidata Schema. arXiv:2412.20942.
|
|
[47]
|
Ye, H., Gui, H., Xu, X., Chen, X., Chen, H. and Zhang, N. (2023) Schema-Adaptable Knowledge Graph Construction. Findings of the Association for Computational Linguistics: EMNLP 2023, Singapore, 6-10 December 2023, 6408-6431. [Google Scholar] [CrossRef]
|
|
[48]
|
Nie, J.X., Hou, X., Song, W.F., Wang, X., Zhang, X.Y., Jin, X.L., Zhang, S.Z. and Shi, J.Q. (2024) Knowledge Graph Efficient Construction: Embedding Chain-of-Thought into LLMs. Proceedings of the VLDB Endowment, Guangzhou, 25-29 August 2024, 3041-3054.
|
|
[49]
|
Xue, L., Zhang, D., Dong, Y. and Tang, J. (2024) Autore: Document-Level Relation Extraction with Large Language Models. Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations), Bangkok, 11-16 August 2024, 211-220. [Google Scholar] [CrossRef]
|
|
[50]
|
Wei, X., Cui, X.Y., Cheng, N., Wang, X.B., Zhang, X., Huang, S., Xie, P.J., Xu, J.N., Chen, Y.F., Zhang, M.S., et al. (2024) ChatIE: Zero-Shot Information Extraction via Chatting with ChatGPT.arXiv:2302.10205.
|
|
[51]
|
Mo, B., Yu, K., Kazdan, J., Mpala, P., Yu, L., Cundy, C., Kanatsoulis, C. and Koyejo, S. (2025) KGGen: Extracting Knowledge Graphs from Plain Text with Language Models. arXiv:2502.09956.
|
|
[52]
|
Kommineni, V.K., Ko ̈nig-Ries, B. and Samuel, S. (2024) Towards the Automation of Knowledge Graph Construction Using Large Language Models. CEUR Workshop Proceedings, Amsterdam, 17-19 September 2024, 1-15
|
|
[53]
|
Sun, J.Q., Qian, S.Y., Han, Z.C., Li, W., Qian, Z.L., Yang, D.Y., Cao, J. and Xue, G.T. (2025) LKD-KGC: Do-Main-Specific KG Construction via LLM-Driven Knowledge Dependency Parsing. arXiv:2505.24163.
|
|
[54]
|
Chen, X., Lu, T. and Wang, Z.C. (2024) LLM-Align: Utilizing Large Language Models for Entity Alignment in Knowledge Graphs. arXiv:2412.04690.
|
|
[55]
|
Ding, Y.F., Poudel, A., Zeng, Q.K., Weninger, T., Veeramani, B. and Bhattacharya, S. (2025) EntGPT: Entity Linking with Generative Large Language Models. arXiv:2402.06738.
|
|
[56]
|
Pons, G., Bilalli, B. and Queralt, A. (2024) Knowledge Graphs for Enhancing Large Language Models in Entity Disambiguation. In: Demartini, G., et al., Eds., Lecture Notes in Computer Science, Springer Nature, 162-179. [Google Scholar] [CrossRef]
|
|
[57]
|
Wang, T.S., Chen, X.Y., Lin, H.Y., Chen, X.A., Han, X.P., Wang, H., Zeng, Z.Y. and Sun, L. (2024) Match, Compare, or Select? An Investigation of Large Language Models for Entity Matching. arXiv:2405.16884.
|
|
[58]
|
Yang, R., Yang, B.M., Ouyang, S.X., She, T.W., Feng, A.S., Jiang, Y., Lecue, F., Lu, J.H. and Li, I. (2024) Graphusion: Leveraging Large Language Models for Scientific Knowledge Graph Fusion and Construction in NLP Education. arXiv:2407.10794.
|
|
[59]
|
Galassi, A. (2021) Deep Networks and Knowledge: from Rule Learning to Neural-Symbolic Argument Mining. Ph.D. Thesis, University of Bologna.
|
|
[60]
|
Negro, P. and Pons, C. (2022) Artificial Intelligence Techniques Based on the Integration of Symbolic Logic and Deep Neural Networks: A Systematic Review of the Literature. Inteligencia Artificial, 25, 13-41. [Google Scholar] [CrossRef]
|
|
[61]
|
Tavanaei, A., Ghodrati, M., Kheradpisheh, S.R., Masquelier, T. and Maida, A. (2019) Deep Learning in Spiking Neural Networks. Neural Networks, 111, 47-63. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Xu, C.W. and McAuley, J.J. (2023) A Survey on Dynamic Neural Networks for Natural Language Processing. Findings of the Association for Computational Linguistics: EACL 2023, Dubrovnik, 2-6 May 2023, 2370-2381.
|
|
[63]
|
Chen, X., Li, L., Deng, S.M., Tan, C.Q., Xu, C.L., Huang, F., Si, L., Chen, H.J. and Zhang, N.Y. (2022) LightNER: A Lightweight Tuning Paradigm for Low-Resource NER via Pluggable Prompting. Proceedings of the 29th International Conference on Computational Linguistics, Gyeongju, 12-17 October 2022, 2374-2387.
|
|
[64]
|
Dhariwal, P. and Nichol, A.Q. (2021) Diffusion Models Beat Gans on Image Synthesis. Annual Conference on Neural Information Processing Systems 2021, 6-14 December 2021, 8780-8794.
|
|
[65]
|
Liu, J.M., Meng, S.Y., Gao, Y.T., Mao, S., Cai, P.L., Yan, G.H., Chen, Y.R., Bian, Z.L., Wang, D. and Shi, B.T. (2025) Aligning Vision to Language: Annotation-Free Multimodal Knowledge Graph Construction for Enhanced LLMs Rea-soning. arXiv:2503.12972.
|
|
[66]
|
Kim, Y.J., Kang, E.J., Kim, J. and Huang, H.H. (2024) Causal Reasoning in Large Language Models: A Knowledge Graph Approach. arXiv:2410.11588.
|
|
[67]
|
Wu, W.J., Jing, Y.C., Wang, Y.J., Hu, W.B. and Tao, D.C. (2025) Graph-Augmented Reasoning: Evolving Step-by-Step Knowledge Graph Retrieval for LLMsReasoning. arXiv:2503.01642.
|
|
[68]
|
Xu, W.J., Liang, Z.J., Mei, K., Gao, H., Tan, J.T. and Zhang, Y.F. (2025) A-MEM: Agentic Memory for LLMsAgents. arXiv:2502.12110.
|
|
[69]
|
Rasmussen, P., Paliychuk, P., Beauvais, T., Ryan, J. and Chalef, D. (2025) Zep: A Temporal Knowledge Graph Archi-tecture for Agent Memory. arXiv:2501.13956.
|
|
[70]
|
Bing, Q., Zhu, Q. and Dou, Z. (2023) Cognition-Aware Knowledge Graph Reasoning for Explainable Recommendation. Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, Singapore, 27 February 2023-3 March 2023, 402-410. [Google Scholar] [CrossRef]
|
|
[71]
|
Sarabadani, A., Taherinia, H., Ghadiri, N., Shahmarvandi, E.K. and Mousa, R. (2025) PKG-LLM: A Framework for Predicting GAD and MDD Using Knowledge Graphs and Large Language Models in Cognitive Neuroscience. https://www.preprints.org/manuscript/202502.0982
|