|
[1]
|
Savin, I.A., Zenkova, M.A. and Sen’kova, A.V. (2022) Pulmonary Fibrosis as a Result of Acute Lung Inflammation: Molecular Mechanisms, Relevant in Vivo Models, Prognostic and Therapeutic Approaches. International Journal of Molecular Sciences, 23, Article 14959. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Henderson, N.C., Rieder, F. and Wynn, T.A. (2020) Fibrosis: From Mechanisms to Medicines. Nature, 587, 555-566. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Hao, M., Han, X., Yao, Z., Zhang, H., Zhao, M., Peng, M., et al. (2022) The Pathogenesis of Organ Fibrosis: Focus on Necroptosis. British Journal of Pharmacology, 180, 2862-2879. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Mei, Q., Liu, Z., Zuo, H., Yang, Z. and Qu, J. (2022) Idiopathic Pulmonary Fibrosis: An Update on Pathogenesis. Frontiers in Pharmacology, 12, Article ID: 797292. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Li, J., Zhai, X., Sun, X., Cao, S., Yuan, Q. and Wang, J. (2022) Metabolic Reprogramming of Pulmonary Fibrosis. Frontiers in Pharmacology, 13, Article ID: 1031890. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Peng, Y., Mei, S., Qi, X., Tang, R., Yang, W., Feng, J., et al. (2025) PGC-1α Mediates Migrasome Secretion Accelerating Macrophage-Myofibroblast Transition and Contributing to Sepsis-Associated Pulmonary Fibrosis. Experimental & Molecular Medicine, 57, 759-774. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Luppi, F., Kalluri, M., Faverio, P., Kreuter, M. and Ferrara, G. (2021) Idiopathic Pulmonary Fibrosis Beyond the Lung: Understanding Disease Mechanisms to Improve Diagnosis and Management. Respiratory Research, 22, Article No. 109. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Maher, T.M., Bendstrup, E., Dron, L., Langley, J., Smith, G., Khalid, J.M., et al. (2021) Global Incidence and Prevalence of Idiopathic Pulmonary Fibrosis. Respiratory Research, 22, Article No. 197. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Glass, D.S., Grossfeld, D., Renna, H.A., Agarwala, P., Spiegler, P., DeLeon, J., et al. (2022) Idiopathic Pulmonary Fibrosis: Current and Future Treatment. The Clinical Respiratory Journal, 16, 84-96. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Bonella, F., Spagnolo, P. and Ryerson, C. (2023) Current and Future Treatment Landscape for Idiopathic Pulmonary Fibrosis. Drugs, 83, 1581-1593. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
TeSlaa, T., Ralser, M., Fan, J. and Rabinowitz, J.D. (2023) The Pentose Phosphate Pathway in Health and Disease. Nature Metabolism, 5, 1275-1289. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Zhen, X., Zhang, M., Hao, S. and Sun, J. (2024) Glucose-6-Phosphate Dehydrogenase and Transketolase: Key Factors in Breast Cancer Progression and Therapy. Biomedicine & Pharmacotherapy, 176, Article 116935. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Loopmans, S., Rohlenova, K., van Brussel, T., Stockmans, I., Moermans, K., Peredo, N., et al. (2025) The Pentose Phosphate Pathway Controls Oxidative Protein Folding and Prevents Ferroptosis in Chondrocytes. Nature Metabolism, 7, 182-195. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Paul, S., Ghosh, S. and Kumar, S. (2022) Tumor Glycolysis, an Essential Sweet Tooth of Tumor Cells. Seminars in Cancer Biology, 86, 1216-1230. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Li, L., Wang, M., Ma, Q., Ye, J. and Sun, G. (2022) Role of Glycolysis in the Development of Atherosclerosis. American Journal of Physiology-Cell Physiology, 323, C617-C629. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Jiang, D., Guo, J., Liu, Y., Li, W. and Lu, D. (2024) Glycolysis: An Emerging Regulator of Osteoarthritis. Frontiers in Immunology, 14, Article ID: 1327852. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Tang, B.L. (2020) Glucose, Glycolysis, and Neurodegenerative Diseases. Journal of Cellular Physiology, 235, 7653-7662. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Gopu, V., Fan, L., Shetty, R.S., Nagaraja, M.R. and Shetty, S. (2020) Caveolin-1 Scaffolding Domain Peptide Regulates Glucose Metabolism in Lung Fibrosis. JCI Insight, 5, e137969. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Minchenko, A., Leshchinsky, I., Opentanova, I., Sang, N., Srinivas, V., Armstead, V., et al. (2002) Hypoxia-Inducible Factor-1-Mediated Expression of the 6-Phosphofructo-2-Kinase/Fructose-2,6-Bisphosphatase-3 (PFKFB3) Gene. Journal of Biological Chemistry, 277, 6183-6187. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Kotowski, K., Rosik, J., Machaj, F., Supplitt, S., Wiczew, D., Jabłońska, K., et al. (2021) Role of PFKFB3 and PFKFB4 in Cancer: Genetic Basis, Impact on Disease Development/progression, and Potential as Therapeutic Targets. Cancers, 13, Article 909. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Hu, X., Xu, Q., Wan, H., Hu, Y., Xing, S., Yang, H., et al. (2020) PI3K-AKT-mTOR/PFKFB3 Pathway Mediated Lung Fibroblast Aerobic Glycolysis and Collagen Synthesis in Lipopolysaccharide-Induced Pulmonary Fibrosis. Laboratory Investigation, 100, 801-811. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Nigdelioglu, R., Hamanaka, R.B., Meliton, A.Y., O’Leary, E., Witt, L.J., Cho, T., et al. (2016) Transforming Growth Factor (TGF)-Β Promotes De Novo Serine Synthesis for Collagen Production. Journal of Biological Chemistry, 291, 27239-27251. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
O’Leary, E.M., Tian, Y., Nigdelioglu, R., Witt, L.J., Cetin-Atalay, R., Meliton, A.Y., et al. (2020) TGF-β Promotes Metabolic Reprogramming in Lung Fibroblasts via Mtorc1-Dependent ATF4 Activation. American Journal of Respiratory Cell and Molecular Biology, 63, 601-612. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Xu, Q., Cheng, D., Li, G., Liu, Y., Li, P., Sun, W., et al. (2021) Circhipk3 Regulates Pulmonary Fibrosis by Facilitating Glycolysis in miR-30a-3p/FOXK2-Dependent Manner. International Journal of Biological Sciences, 17, 2294-2307. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Zhang, J., Chen, W., Du, J., Chu, L., Zhou, Z., Zhong, W., et al. (2023) RNF130 Protects against Pulmonary Fibrosis through Suppressing Aerobic Glycolysis by Mediating C-MYC Ubiquitination. International Immunopharmacology, 117, Article 109985. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Xu, Q., Mei, S., Nie, F., Zhang, Z., Feng, J., Zhang, J., et al. (2022) The Role of Macrophage-Fibroblast Interaction in Lipopolysaccharide-Induced Pulmonary Fibrosis: An Acceleration in Lung Fibroblast Aerobic Glycolysis. Laboratory Investigation, 102, 432-439. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Infantino, V., Santarsiero, A., Convertini, P., Todisco, S. and Iacobazzi, V. (2021) Cancer Cell Metabolism in Hypoxia: Role of HIF-1 as Key Regulator and Therapeutic Target. International Journal of Molecular Sciences, 22, Article 5703. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Cui, H., Xie, N., Banerjee, S., Ge, J., Jiang, D., Dey, T., et al. (2021) Lung Myofibroblasts Promote Macrophage Profibrotic Activity through Lactate-Induced Histone Lactylation. American Journal of Respiratory Cell and Molecular Biology, 64, 115-125. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Hu, Y., Yang, L., Huang, L., Zeng, C. and Ren, S. (2025) M6a Reader IGF2BP1 Facilitates Macrophage Glycolytic Metabolism and Fibrotic Phenotype by Stabilizing THBS1 mRNA to Promote Pulmonary Fibrosis. Cellular and Molecular Life Sciences, 82, Article No. 157. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Wang, L., Yuan, H., Li, W., Yan, P., Zhao, M., Li, Z., et al. (2024) ACSS3 Regulates the Metabolic Homeostasis of Epithelial Cells and Alleviates Pulmonary Fibrosis. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1870, Article 166960. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Wang, Z., Chen, L., Huang, Y., Luo, M., Wang, H., Jiang, Z., et al. (2021) Pharmaceutical Targeting of Succinate Dehydrogenase in Fibroblasts Controls Bleomycin-Induced Lung Fibrosis. Redox Biology, 46, Article 102082. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Luo, M., Chen, L., Zheng, J., Wang, Q., Huang, Y., Liao, F., et al. (2021) Mitigation of Radiation-Induced Pulmonary Fibrosis by Small-Molecule Dye Ir-780. Free Radical Biology and Medicine, 164, 417-428. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Xie, C., Wan, X., Quan, H., Zheng, M., Fu, L., Li, Y., et al. (2018) Preclinical Characterization of Anlotinib, a Highly Potent and Selective Vascular Endothelial Growth Factor Receptor‐2 Inhibitor. Cancer Science, 109, 1207-1219. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Ruan, H., Lv, Z., Liu, S., Zhang, L., Huang, K., Gao, S., et al. (2020) Anlotinib Attenuated Bleomycin-Induced Pulmonary Fibrosis via the TGF-Β1 Signalling Pathway. Journal of Pharmacy and Pharmacology, 72, 44-55. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Chen, W., Zhang, J., Zhong, W., Liu, Y., Lu, Y., Zeng, Z., et al. (2021) Anlotinib Inhibits Pfkfb3-Driven Glycolysis in Myofibroblasts to Reverse Pulmonary Fibrosis. Frontiers in Pharmacology, 12, Article ID: 744826. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Sun, X., Xiang, H., Liu, Z., Xiao, H., Li, X., Gong, W., et al. (2024) Jingfang Granules Alleviates Bleomycin-Induced Acute Lung Injury through Regulating PI3K/AKT/mTOR Signaling Pathway. Journal of Ethnopharmacology, 318, Article 116946. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Liu, C., Zhen, D., Du, H., Gong, G., Wu, Y., Ma, Q., et al. (2022) Synergistic Anti-Inflammatory Effects of Peimine, Peiminine, and Forsythoside a Combination on LPS-Induced Acute Lung Injury by Inhibition of the IL-17-NF-κB/MAPK Pathway Activation. Journal of Ethnopharmacology, 295, Article 115343. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Li, K., Liu, X., Lu, R., Zhao, P., Tian, Y. and Li, J. (2025) Bleomycin Pollution and Lung Health: The Therapeutic Potential of Peimine in Bleomycin-Induced Pulmonary Fibrosis by Inhibiting Glycolysis. Ecotoxicology and Environmental Safety, 289, Article 117451. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Zeng, T., Zhou, Y., Zheng, J., Zhuo, X., Zhu, L. and Wan, L. (2024) Rosmarinic Acid Alleviates Septic Acute Respiratory Distress Syndrome in Mice by Suppressing the Bronchial Epithelial Ras-Mediated Ferroptosis. International Immunopharmacology, 135, Article 112304. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Liu, H., Deng, R., Zhu, C., Han, H., Zong, G., Ren, L., et al. (2023) Rosmarinic Acid in Combination with Ginsenoside Rg1 Suppresses Colon Cancer Metastasis via Co-Inhition of COX-2 and PD1/PD-L1 Signaling Axis. Acta Pharmacologica Sinica, 45, 193-208. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Zeng, J., Xie, Z., Chen, L., Peng, X., Luan, F., Hu, J., et al. (2024) Rosmarinic Acid Alleviate Cort-Induced Depressive-Like Behavior by Promoting Neurogenesis and Regulating BDNF/TRKB/PI3K Signaling Axis. Biomedicine & Pharmacotherapy, 170, Article 115994. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Zhang, T., Mi, J., Qin, X., Ouyang, Z., Wang, Y., Li, Z., et al. (2024) Rosmarinic Acid Alleviates Radiation-Induced Pulmonary Fibrosis by Downregulating the tRNA N7-Methylguanosine Modification-Regulated Fibroblast-to-Myofibroblast Transition through the Exosome Pathway. Journal of Inflammation Research, 17, 5567-5586. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Nie, Z., Wu, J., Xie, J. and Yin, W. (2024) Sinomenine Ameliorates Bleomycin-Induced Pulmonary Fibrosis by Inhibiting the Differentiation of Fibroblast into Myofibroblast. Heliyon, 10, e33314. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Shao, D., Liu, X., Wu, J., Zhang, A., Bai, Y., Zhao, P., et al. (2022) Identification of the Active Compounds and Functional Mechanisms of Jinshui Huanxian Formula in Pulmonary Fibrosis by Integrating Serum Pharmacochemistry with Network Pharmacology. Phytomedicine, 102, Article 154177. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Zheng, J., Du, Y., Shao, W., Li, J., Zhao, P. and Zhang, Q. (2025) Effective-Compounds of Jinshui Huanxian Formula Acts as an SRC Inhibitor to Inhibit HK2-Mediated H3K18 Lactation and Improve Pulmonary Fibrosis. Phytomedicine, 140, Article 156628. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
He, X.Y., Liang, J.T., Xiao, J.Y., et al. (2024) Dahuang Zhechong Pill Improves Pulmonary Fibrosis through miR-29b-2-5p/HK2 Mediated Glycolysis Pathway. Chinese Journal of Integrative Medicine, 31, 600-612.
|
|
[47]
|
Liu, C., Zhang, Q., Zhou, H., Jin, L., Liu, C., Yang, M., et al. (2024) GLP-1R Activation Attenuates the Progression of Pulmonary Fibrosis via Disrupting NLRP3 Inflammasome/PFKFB3-Driven Glycolysis Interaction and Histone Lactylation. Journal of Translational Medicine, 22, Article No. 954. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Tang, C., Xu, J., Ye, H. and Wang, X. (2021) Metformin Prevents PFKFB3-Related Aerobic Glycolysis from Enhancing Collagen Synthesis in Lung Fibroblasts by Regulating AMPK/mTOR Pathway. Experimental and Therapeutic Medicine, 21, Article No. 581. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Zhong, H., Tang, R., Feng, J., Peng, Y., Xu, Q., Zhou, Y., et al. (2023) Metformin Mitigates Sepsis-Associated Pulmonary Fibrosis by Promoting AMPK Activation and Inhibiting HIF-1α-Induced Aerobic Glycolysis. Shock, 61, 283-293. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Marzilli, M., Vinereanu, D., Lopaschuk, G., Chen, Y., Dalal, J.J., Danchin, N., et al. (2019) Trimetazidine in Cardiovascular Medicine. International Journal of Cardiology, 293, 39-44. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Khanra, S., Reddy, P., Giménez-Palomo, A., Park, C.H.J., Panizzutti, B., McCallum, M., et al. (2023) Metabolic Regulation to Treat Bipolar Depression: Mechanisms and Targeting by Trimetazidine. Molecular Psychiatry, 28, 3231-3242. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Abdelrahman, R.S. and Shawky, N.M. (2022) Trimetazidine, a Metabolic Modulator, Attenuates Silica‐Induced Pulmonary Fibrosis and Decreases Lactate Levels and LDH Activity in Rats. Journal of Biochemical and Molecular Toxicology, 36, e23071. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Wang, L., Xu, K., Wang, N., Ding, L., Zhao, W., Wan, R., et al. (2022) Fenbendazole Attenuates Bleomycin-Induced Pulmonary Fibrosis in Mice via Suppression of Fibroblast-to-Myofibroblast Differentiation. International Journal of Molecular Sciences, 23, Article 14088. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Zeng, C., Yue, H., Wang, C., Ju, X., Wang, T., Fu, X., et al. (2024) Albendazole Ameliorates Aerobic Glycolysis in Myofibroblasts to Reverse Pulmonary Fibrosis. Journal of Translational Medicine, 22, Article No. 910. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Orditura, M., De Vita, F., Roscigno, A., Infusino, S., Auriemma, A., Iodice, P., et al. (1999) Amifostine: A Selective Cytoprotective Agent of Normal Tissues from Chemo-Radiotherapy Induced Toxicity (Review). Oncology Reports, 6, 1357-1362. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Rodgers, J.T., Lerin, C., Haas, W., Gygi, S.P., Spiegelman, B.M. and Puigserver, P. (2005) Nutrient Control of Glucose Homeostasis through a Complex of PGC-1α and SIRT1. Nature, 434, 113-118. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Guo, F., Xu, F., Li, S., Zhang, Y., Lv, D., Zheng, L., et al. (2024) Amifostine Ameliorates Bleomycin-Induced Murine Pulmonary Fibrosis via NAD+/SIRT1/AMPK Pathway-Mediated Effects on Mitochondrial Function and Cellular Metabolism. European Journal of Medical Research, 29, Article No. 68. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Ishida, Y., Kuninaka, Y., Mukaida, N. and Kondo, T. (2023) Immune Mechanisms of Pulmonary Fibrosis with Bleomycin. International Journal of Molecular Sciences, 24, Article 3149. [Google Scholar] [CrossRef] [PubMed]
|