|
[1]
|
Testa, U., Pelosi, E. and Castelli, G. (2020) Endothelial Progenitors in the Tumor Microenvironment. In: Birbrair, A., Ed., Tumor Microenvironment, Springer International Publishing, 85-115. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Dumitru, C.S. and Raica, M. (2024) A Splice Form of VEGF, a Potential Anti-Angiogenetic Form of Head and Neck Squamous Cell Cancer Inhibition. International Journal of Molecular Sciences, 25, Article No. 8855. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Incio, J., Ligibel, J.A., McManus, D.T., Suboj, P., Jung, K., Kawaguchi, K., et al. (2018) Obesity Promotes Resistance to Anti-VEGF Therapy in Breast Cancer by Up-Regulating IL-6 and Potentially FGF-2. Science Translational Medicine, 10, eaag0945. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Horn, L.A., Chariou, P.L., Gameiro, S.R., Qin, H., Iida, M., Fousek, K., et al. (2022) Remodeling the Tumor Microenvironment via Blockade of LAIR-1 and TGF-β Signaling Enables PD-L1-Mediated Tumor Eradication. Journal of Clinical Investigation, 132, e155148. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Tucker, R.P. and Degen, M. (2022) Revisiting the Tenascins: Exploitable as Cancer Targets? Frontiers in Oncology, 12, Article ID: 908247. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Sapudom, J., Riedl, P., Schricker, M., Kroy, K. and Pompe, T. (2024) Physical Network Regimes of 3D Fibrillar Collagen Networks Trigger Invasive Phenotypes of Breast Cancer Cells. Biomaterials Advances, 163, Article ID: 213961. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Jiang, Z., Fu, Y. and Shen, H. (2024) Development of Intratumoral Drug Delivery Based Strategies for Antitumor Therapy. Drug Design, Development and Therapy, 18, 2189-2202. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Weiss, T., Puca, E., Silginer, M., Hemmerle, T., Pazahr, S., Bink, A., et al. (2020) Immunocytokines Are a Promising Immunotherapeutic Approach against Glioblastoma. Science Translational Medicine, 12, eabb2311. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
He, S., Hao, L., Chen, Y., Gong, B. and Xu, X. (2025) Chinese Herbal Jianpi Jiedu Formula Suppressed Colorectal Cancer Growth in Vitro and in Vivo via Modulating Hypoxia-Inducible Factor 1 Alpha-Mediated Fibroblasts Activation. Journal of Ethnopharmacology, 337, Article ID: 118753. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Zhao, L., Pang, Y., Zhou, Y., Chen, J., Fu, H., Guo, W., et al. (2024) Antitumor Efficacy and Potential Mechanism of Fap-Targeted Radioligand Therapy Combined with Immune Checkpoint Blockade. Signal Transduction and Targeted Therapy, 9, Article No. 142. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Geng, F., Dong, L., Bao, X., Guo, Q., Guo, J., Zhou, Y., et al. (2022) Cafs/Tumor Cells Co-Targeting DNA Vaccine in Combination with Low-Dose Gemcitabine for the Treatment of Panc02 Murine Pancreatic Cancer. Molecular Therapy—Oncolytics, 26, 304-313. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Pecoraro, C., Carbone, D., Sciano, F., et al. (2024) Exploring the Therapeutic Potential of a Novel Series of Imidazothiadiazoles Targeting Focal Adhesion Kinase (FAK) for Pancreatic Cancer Treatment: Synthesis, Mechanistic Insights and Promising Antitumor and Safety Profile. Journal of Drug Targeting, 32, 1278-1294.
|
|
[13]
|
Peng, H., Yang, M., Feng, K., Lv, Q. and Zhang, Y. (2024) Semaphorin 3C (Sema3C) Reshapes Stromal Microenvironment to Promote Hepatocellular Carcinoma Progression. Signal Transduction and Targeted Therapy, 9, Article No. 169. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Fujiwara, T., Yakoub, M.A., Chandler, A., Christ, A.B., Yang, G., Ouerfelli, O., et al. (2021) CSF1/CSF1R Signaling Inhibitor Pexidartinib (PLX3397) Reprograms Tumor-Associated Macrophages and Stimulates T-Cell Infiltration in the Sarcoma Microenvironment. Molecular Cancer Therapeutics, 20, 1388-1399. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Yang, Z., Li, H., Wang, W., Zhang, J., Jia, S., Wang, J., et al. (2019) CCL2/CCR2 Axis Promotes the Progression of Salivary Adenoid Cystic Carcinoma via Recruiting and Reprogramming the Tumor-Associated Macrophages. Frontiers in Oncology, 9, Article No. 231. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Modak, R.V., de Oliveira Rebola, K.G., McClatchy, J., Mohammadhosseini, M., Damnernsawad, A., Kurtz, S.E., et al. (2024) Targeting CCL2/CCR2 Signaling Overcomes MEK Inhibitor Resistance in Acute Myeloid Leukemia. Clinical Cancer Research, 30, 2245-2259. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Chang, R., Gulley, J.L. and Fong, L. (2023) Vaccinating against Cancer: Getting to Prime Time. Journal for ImmunoTherapy of Cancer, 11, e006628. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Si, F., Liu, X., Tao, Y., Zhang, Y., Ma, F., Hsueh, E.C., et al. (2024) Blocking Senescence and Tolerogenic Function of Dendritic Cells Induced by γδ Treg Cells Enhances Tumor-Specific Immunity for Cancer Immunotherapy. Journal for ImmunoTherapy of Cancer, 12, e008219. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Jacobson, C.A., Chavez, J.C., Sehgal, A.R., William, B.M., Munoz, J., Salles, G., et al. (2022) Axicabtagene Ciloleucel in Relapsed or Refractory Indolent Non-Hodgkin Lymphoma (ZUMA-5): A Single-Arm, Multicentre, Phase 2 Trial. The Lancet Oncology, 23, 91-103. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Nishimoto, K.P., Barca, T., Azameera, A., Makkouk, A., Romero, J.M., Bai, L., et al. (2022) Allogeneic CD20‐Targeted γδ T Cells Exhibit Innate and Adaptive Antitumor Activities in Preclinical B‐Cell Lymphoma Models. Clinical & Translational Immunology, 11, e1373. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Pan, J., Niu, Q., Deng, B., Liu, S., Wu, T., Gao, Z., et al. (2019) CD22 CAR T-Cell Therapy in Refractory or Relapsed B Acute Lymphoblastic Leukemia. Leukemia, 33, 2854-2866. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Brandenburg, A., Heine, A. and Brossart, P. (2024) Next-Generation Cancer Vaccines and Emerging Immunotherapy Combinations. Trends in Cancer, 10, 749-769. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Hurton, L.V., Singh, H., Najjar, A.M., Switzer, K.C., Mi, T., Maiti, S., et al. (2016) Tethered IL-15 Augments Antitumor Activity and Promotes a Stem-Cell Memory Subset in Tumor-Specific T Cells. Proceedings of the National Academy of Sciences, 113, E7788-E97. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Leidner, R., Sanjuan Silva, N., Huang, H., Sprott, D., Zheng, C., Shih, Y., et al. (2022) Neoantigen T-Cell Receptor Gene Therapy in Pancreatic Cancer. New England Journal of Medicine, 386, 2112-2119. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Zengarini, C., Guglielmo, A., Mussi, M., Motta, G., Agostinelli, C., Sabattini, E., et al. (2024) A Narrative Review of the State of the Art of CCR4-Based Therapies in Cutaneous T-Cell Lymphomas: Focus on Mogamulizumab and Future Treatments. Antibodies, 13, Article No. 32. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Nagira, Y., Nagira, M., Nagai, R., Nogami, W., Hirata, M., Ueyama, A., et al. (2023) S-531011, a Novel Anti-Human CCR8 Antibody, Induces Potent Antitumor Responses through Depletion of Tumor-Infiltrating CCR8-Expressing Regulatory T Cells. Molecular Cancer Therapeutics, 22, 1063-1072. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Zhao, L., Wang, G., Qi, H., Yu, L., Yin, H., Sun, R., et al. (2024) LINC00330/CCL2 Axis-Mediated ESCC TAM Reprogramming Affects Tumor Progression. Cellular & Molecular Biology Letters, 29, Article No. 77. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Noel, M., O’Reilly, E.M., Wolpin, B.M., Ryan, D.P., Bullock, A.J., Britten, C.D., et al. (2019) Phase 1b Study of a Small Molecule Antagonist of Human Chemokine (C-C Motif) Receptor 2 (PF-04136309) in Combination with Nab-Paclitaxel/Gemcitabine in First-Line Treatment of Metastatic Pancreatic Ductal Adenocarcinoma. Investigational New Drugs, 38, 800-811. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Yin, H., Zhou, X., Huang, Y., King, G.J., Collins, B.M., Gao, Y., et al. (2021) Rational Design of Potent Peptide Inhibitors of the PD-1:PD-L1 Interaction for Cancer Immunotherapy. Journal of the American Chemical Society, 143, 18536-18547. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Gurung, S., Khan, F., Gunassekaran, G.R., Yoo, J.D., Poongkavithai Vadevoo, S.M., Permpoon, U., et al. (2020) Phage Display-Identified Pd-L1-Binding Peptides Reinvigorate T-Cell Activity and Inhibit Tumor Progression. Biomaterials, 247, Article ID: 119984. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Akinleye, A. and Rasool, Z. (2019) Immune Checkpoint Inhibitors of PD-L1 as Cancer Therapeutics. Journal of Hematology & Oncology, 12, Article No. 92. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Colombo, N., Biagioli, E., Harano, K., Galli, F., Hudson, E., Antill, Y., et al. (2024) Atezolizumab and Chemotherapy for Advanced or Recurrent Endometrial Cancer (Attend): A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. The Lancet Oncology, 25, 1135-1146. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
West, H., McCleod, M., Hussein, M., Morabito, A., Rittmeyer, A., Conter, H.J., et al. (2019) Atezolizumab in Combination with Carboplatin Plus Nab-Paclitaxel Chemotherapy Compared with Chemotherapy Alone as First-Line Treatment for Metastatic Non-Squamous Non-Small-Cell Lung Cancer (IMpower130): A Multicentre, Randomised, Open-Label, Phase 3 Trial. The Lancet Oncology, 20, 924-937. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Schmid, P., Rugo, H.S., Adams, S., Schneeweiss, A., Barrios, C.H., Iwata, H., et al. (2020) Atezolizumab plus Nab-Paclitaxel as First-Line Treatment for Unresectable, Locally Advanced or Metastatic Triple-Negative Breast Cancer (IMpassion130): Updated Efficacy Results from a Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. The Lancet Oncology, 21, 44-59. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Galsky, M.D., Arija, J.Á.A., Bamias, A., Davis, I.D., De Santis, M., Kikuchi, E., et al. (2020) Atezolizumab with or without Chemotherapy in Metastatic Urothelial Cancer (IMvigor130): A Multicentre, Randomised, Placebo-Controlled Phase 3 Trial. The Lancet, 395, 1547-1557. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Brave, M.H., Maguire, W.F., Weinstock, C., et al. (2024) FDA Approval Summary: Enfortumab Vedotin plus Pembrolizumab for Locally Advanced or Metastatic Urothelial Carcinoma. Clinical Cancer Research, 30, 4815-4821.
|
|
[37]
|
Hodi, F.S., O’Day, S.J., McDermott, D.F., Weber, R.W., Sosman, J.A., Haanen, J.B., et al. (2010) Improved Survival with Ipilimumab in Patients with Metastatic Melanoma. New England Journal of Medicine, 363, 711-723. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Wong, J.S.L., Kwok, G.G.W., Tang, V., Li, B.C.W., Leung, R., Chiu, J., et al. (2021) Ipilimumab and Nivolumab/Pembrolizumab in Advanced Hepatocellular Carcinoma Refractory to Prior Immune Checkpoint Inhibitors. Journal for ImmunoTherapy of Cancer, 9, e001945. [Google Scholar] [CrossRef] [PubMed]
|