|
[1]
|
Jia, G., Hill, M.A. and Sowers, J.R. (2018) Diabetic Cardiomyopathy: An Update of Mechanisms Contributing to This Clinical Entity. Circulation Research, 122, 624-638. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Saisho, Y. (2014) Glycemic Variability and Oxidative Stress: A Link between Diabetes and Cardiovascular Disease? International Journal of Molecular Sciences, 15, 18381-18406. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Barwari, T., Joshi, A. and Mayr, M. (2016) MicroRNAs in Cardiovascular Disease. Journal of the American College of Cardiology, 68, 2577-2584. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Romaine, S.P.R., Tomaszewski, M., Condorelli, G. and Samani, N.J. (2015) MicroRNAs in Cardiovascular Disease: An Introduction for Clinicians. Heart, 101, 921-928. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Bartel, D.P. (2004) MicroRNAs: Genomics, Biogenesis, Mechanism, Andfunction. Cell, 116, 281-297. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Zhang, W., Xu, W., Feng, Y. and Zhou, X. (2019) Non‐Coding RNA Involvement in the Pathogenesis of Diabetic Cardiomyopathy. Journal of Cellular and Molecular Medicine, 23, 5859-5867. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Tang, Z., Wang, P., Dong, C., Zhang, J., Wang, X. and Pei, H. (2022) Oxidative Stress Signaling Mediated Pathogenesis of Diabetic Cardiomyopathy. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 5913374. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Xu, N., Liu, S., Zhang, Y., Chen, Y., Zuo, Y., Tan, X., et al. (2023) Oxidative Stress Signaling in the Pathogenesis of Diabetic Cardiomyopathy and the Potential Therapeutic Role of Antioxidant Naringenin. Redox Report, 28, Article ID: 2246720. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Byrne, N.J., Rajasekaran, N.S., Abel, E.D. and Bugger, H. (2021) Therapeutic Potential of Targeting Oxidative Stress in Diabetic Cardiomyopathy. Free Radical Biology and Medicine, 169, 317-342. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Ryoo, I. and Kwak, M. (2018) Regulatory Crosstalk between the Oxidative Stress-Related Transcription Factor Nfe2l2/Nrf2 and Mitochondria. Toxicology and Applied Pharmacology, 359, 24-33. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Qiu, J., Liu, D., Li, P., Zhou, L., Zhou, L., Liu, X., et al. (2022) NADPH Oxidase Mediates Oxidative Stress and Ventricular Remodeling through SIRT3/FOXO3a Pathway in Diabetic Mice. Antioxidants, 11, Article 1745. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Bugger, H. and Abel, E.D. (2014) Molecular Mechanisms of Diabetic Cardiomyopathy. Diabetologia, 57, 660-671. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Moreli, J.B., Santos, J.H., Rocha, C.R., Damasceno, D.C., Morceli, G., Rudge, M.V., et al. (2014) DNA Damage and Its Cellular Response in Mother and Fetus Exposed to Hyperglycemic Environment. BioMed Research International, 2014, Article ID: 676758. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Yu, M., Sun, Y., Shan, X., Yang, F., Chu, G., Chen, Q., et al. (2022) Therapeutic Overexpression of miR-92a-2-5p Ameliorated Cardiomyocyte Oxidative Stress Injury in the Development of Diabetic Cardiomyopathy. Cellular & Molecular Biology Letters, 27, Article No. 85. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Xu, W., Kannan, S., Verma, C.S. and Nacro, K. (2021) Update on the Development of MNK Inhibitors as Therapeutic Agents. Journal of Medicinal Chemistry, 65, 983-1007. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Yu, M., Liu, Y., Zhang, B., Shi, Y., Cui, L. and Zhao, X. (2015) Inhibiting MicroRNA-144 Abates Oxidative Stress and Reduces Apoptosis in Hearts of Streptozotocin-Induced Diabetic Mice. Cardiovascular Pathology, 24, 375-381. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
da Costa, R.M., Rodrigues, D., Pereira, C.A., Silva, J.F., Alves, J.V., Lobato, N.S., et al. (2019) Nrf2 as a Potential Mediator of Cardiovascular Risk in Metabolic Diseases. Frontiers in Pharmacology, 10, Article 382. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Miao, Y., Wan, Q., Liu, X., Wang, Y., Luo, Y., Liu, D., et al. (2017) miR-503 Is Involved in the Protective Effect of Phase II Enzyme Inducer (CPDT) in Diabetic Cardiomyopathy via Nrf2/are Signaling Pathway. BioMed Research International, 2017, Article ID: 9167450. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Martini, M., De Santis, M.C., Braccini, L., Gulluni, F. and Hirsch, E. (2014) PI3K/AKT Signaling Pathway and Cancer: An Updated Review. Annals of Medicine, 46, 372-383. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Dhalla, N.S., Shah, A.K. and Tappia, P.S. (2020) Role of Oxidative Stress in Metabolic and Subcellular Abnormalities in Diabetic Cardiomyopathy. International Journal of Molecular Sciences, 21, Article 2413. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Yang, X., Li, X., Lin, Q. and Xu, Q. (2019) Up-Regulation of MicroRNA-203 Inhibits Myocardial Fibrosis and Oxidative Stress in Mice with Diabetic Cardiomyopathy through the Inhibition of PI3K/Akt Signaling Pathway via PIK3CA. Gene, 715, Article ID: 143995. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Ren, B., Zhang, Y., Liu, S., Cheng, X., Yang, X., Cui, X., et al. (2020) Curcumin Alleviates Oxidative Stress and Inhibits Apoptosis in Diabetic Cardiomyopathy via Sirt1‐Foxo1 and PI3K‐Akt Signalling Pathways. Journal of Cellular and Molecular Medicine, 24, 12355-12367. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Li, K., Zhai, M., Jiang, L., Song, F., Zhang, B., Li, J., et al. (2019) Tetrahydrocurcumin Ameliorates Diabetic Cardiomyopathy by Attenuating High Glucose-Induced Oxidative Stress and Fibrosis via Activating the SIRT1 Pathway. Oxidative Medicine and Cellular Longevity, 2019, Article ID: 6746907. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Xu, C., Liu, C. and Zhang, D. (2020) MicroRNA-22 Inhibition Prevents Doxorubicin-Induced Cardiotoxicity via Upregulating Sirt1. Biochemical and Biophysical Research Communications, 521, 485-491. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Chen, R., Chen, H., Yang, Z., Zhu, L., Bei, Y., Chen, W., et al. (2023) Danlou Tablet Inhibits High-Glucose-Induced Cardiomyocyte Apoptosis via the miR-34a-SIRT1 Axis. Heliyon, 9, e14479. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Opferman, J.T. and Kothari, A. (2017) Anti-Apoptotic BCL-2 Family Members in Development. Cell Death & Differentiation, 25, 37-45. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Gross, A. and Katz, S.G. (2017) Non-Apoptotic Functions of BCL-2 Family Proteins. Cell Death & Differentiation, 24, 1348-1358. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Tantawy, S.I., Timofeeva, N., Sarkar, A. and Gandhi, V. (2023) Targeting MCL-1 Protein to Treat Cancer: Opportunities and Challenges. Frontiers in Oncology, 13, Article 1226289. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Wang, X., Bathina, M., Lynch, J., Koss, B., Calabrese, C., Frase, S., et al. (2013) Deletion of MCL-1 Causes Lethal Cardiac Failure and Mitochondrial Dysfunction. Genes & Development, 27, 1351-1364. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Thomas, R.L., Roberts, D.J., Kubli, D.A., Lee, Y., Quinsay, M.N., Owens, J.B., et al. (2013) Loss of MCL-1 Leads to Impaired Autophagy and Rapid Development of Heart Failure. Genes & Development, 27, 1365-1377. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Zhu, Y., Yang, X., Zhou, J., Chen, L., Zuo, P., Chen, L., et al. (2022) miR‐340‐5p Mediates Cardiomyocyte Oxidative Stress in Diabetes‐Induced Cardiac Dysfunction by Targeting Mcl‐1. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 3182931. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Shi, J. and Wei, L. (2013) Rho Kinases in Cardiovascular Physiology and Pathophysiology: The Effect of Fasudil. Journal of Cardiovascular Pharmacology, 62, 341-354. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Yin, Z., Zou, Y., Wang, D., Huang, X., Xiong, S., Cao, L., et al. (2022) Regulation of the Tec Family of Non-Receptor Tyrosine Kinases in Cardiovascular Disease. Cell Death Discovery, 8, Article No. 119. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Proietti, R., Giordani, A.S. and Lorenzo, C.A. (2023) ROCK (RhoA/Rho Kinase) Activation in Atrial Fibrillation: Molecular Pathways and Clinical Implications. Current Cardiology Reviews, 19, e171122210986. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Li, N., Zhu, Q., Li, G., Wang, T. and Zhou, H. (2023) Empagliflozin Ameliorates Diabetic Cardiomyopathy Probably via Activating AMPK/PGC-1α and Inhibiting the RhoA/ROCK Pathway. World Journal of Diabetes, 14, 1862-1876. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Wang, T., Li, N., Yuan, L., Zhao, M., Li, G., Chen, Y., et al. (2023) MALAT1/miR‐185‐5p Mediated High Glucose‐induced Oxidative Stress, Mitochondrial Injury and Cardiomyocyte Apoptosis via the RhoA/ROCK Pathway. Journal of Cellular and Molecular Medicine, 27, 2495-2506. [Google Scholar] [CrossRef] [PubMed]
|