微小RNA对糖尿病心肌病氧化应激的调控
Regulation of Oxidative Stress in Diabetic Cardiomyopathy by MicroRNAs
DOI: 10.12677/acm.2026.161142, PDF, HTML, XML,   
作者: 王思铭, 薛 缱, 孙启玉*:承德医学院附属医院检验科,河北 承德
关键词: 糖尿病心肌病微小RNA氧化应激Diabetic Cardiomyopathy MicroRNAs Oxidative Stress
摘要: 糖尿病在全球范围内是最常见的代谢性疾病,随着生活水平提高,患病率逐年增加,能引起诸多并发症,但其定义尚不明确,其中糖尿病心肌病(DCM)是一种严重威胁人类健康的疾病,是糖尿病一种常见的并发症,对心脏和外周血管均造成损伤,其特征是在排除其他心血管疾病,在糖尿病患者中发生心室功能障碍。目前提出几种糖尿病性心肌病的发病机制中,炎症诱导的氧化应激(OS)仍然是发生糖尿病心肌病的主要危险因素之一,它可引起活性氧(ROS)的增加。心肌细胞产生的ROS会对心脏产生不利影响,它不仅能进一步产生ROS,造成恶性循环,而且也会导致线粒体损伤、炎症、心肌肥大和纤维化,最终导致心功能障碍。微小RNA (microRNAs, miRNAs)是一种内源性非编码小RNAs,在DCM发病中起重要作用。本文目的是阐明microRNAs在DCM中参与炎症诱导氧化应激的潜在作用机制。
Abstract: Diabetes is the most prevalent metabolic disorder worldwide, with its incidence increasing year on year as living standards rise. This condition induces multiple systemic complications, though ambiguity persists in its conceptual definition. Of particular clinical significance is diabetic cardiomyopathy (DCM), a frequent cardiovascular complication characterized by myocardial and peripheral vasculature impairment. Distinctively, DCM manifests as primary ventricular dysfunction in diabetic populations following exclusion of conventional cardiovascular pathologies such as ischemic heart disease or hypertensive cardiomyopathy. Current research delineates several pathogenic mechanisms underlying DCM, with inflammation-driven oxidative stress (OS) emerging as a critical pathophysiological driver. OS triggers excessive reactive oxygen species (ROS) accumulation in cardiomyocytes, initiating a self-perpetuating cycle of redox imbalance. ROS overproduction induces mitochondrial dysfunction, exacerbates inflammatory cascades, promotes hypertrophic remodeling and interstitial fibrosis, ultimately culminating in impaired cardiac contractility and diastolic dysfunction. MicroRNAs (miRNAs), endogenously expressed small non-coding RNAs, have emerged as critical epigenetic regulators in DCM pathogenesis. The purpose of this study is to elucidate the potential mechanism by which microRNAs participate in inflammation-induced oxidative stress in DCM.
文章引用:王思铭, 薛缱, 孙启玉. 微小RNA对糖尿病心肌病氧化应激的调控[J]. 临床医学进展, 2026, 16(1): 1091-1097. https://doi.org/10.12677/acm.2026.161142

1. 介绍

糖尿病心肌病是指在排除冠状动脉疾病、高血压和糖尿病患者的严重瓣膜疾病等心脏危险因素的情况下,存在异常的心肌结构和性能[1]。糖尿病性心肌病的病理生理是多方面因素的,包括心肌细胞肥大、心肌间质和血管周围纤维化、炎症、细胞凋亡和氧化应激(OS) [2]。其多方面病理生理学反映了其发病和进展背后的细胞和分子机制的复杂相互作用,虽然已经提出上述几种病理生理机制,但氧化应激仍然是发生糖尿病心肌病的主要危险因素之一。

相关研究表明,微小RNA (microRNAs, miRNAs)在多种心血管疾病的病理过程中发挥重要调节作用[3] [4]。miRNAs属于一类非编码小RNAs,约22个核苷酸构成,这些小分子几乎存在于所有组织器官中,进化上高度保守,主要功能是在转录后水平上抑制靶基因的表达[3] [4]。迄今为止,在人体基因组中已发现超过1200种miRNAs,超过60%的编码蛋白质的基因受到miRNAs的调控[5]。近年来,越来越多的证据显示miRNA通过抑制靶基因的表达,在细胞增殖、分化和凋亡等生物学过程中发挥重要作用[6]。心肌组织中差异表达的miRNAs不仅在DCM中参与调控胰岛素抵抗、信号通路传导、氧化应激、炎症反应、心肌细胞凋亡等机制,而且已经具有成为治疗或诊断靶点的潜力[6]

氧化应激是指体内ROS的生成速率超过抗氧化系统的清除能力,导致ROS积累并引发生物分子损伤的病理状态。其核心是氧化与抗氧化系统的失衡[7]。在正常生理状态下需要适量活性氧的参与,但在长期高血糖环境的影响中多种抗氧化酶的活性降低甚至失活,清除能力减弱从而引起ROS的蓄积,心脏中ROS的含量增高,蓄积在体内,导致产生氧化应激的含量增高,便会产生恶性循环,在DCM的发展中起到了重要作用。当ROS产生过多时可导致心肌组织的损伤,具体表现结果为乳酸脱氢酶(LDH)、肌酸激酶同工酶(CK-MB)、肌钙蛋白(cTn)等心肌损伤标志物的升高[8],因此研究如何降低氧化应激成为了预防DCM中的关键。

ROS的产生有线粒体、NAD(P)H氧化酶、内质网(ER)、过氧化物酶体、黄嘌呤氧化酶、一氧化氮合酶(NOS) [9]等多种来源。其中,线粒体在细胞生物能量学、生物合成和细胞凋亡中发挥重要作用[10],是能量产生的重要场所,它通过氧化磷酸化生成ATP时,线粒体电子传递链中部分电子会直接与氧气结合生成超氧阴离子( O 2 ),此过程是产生ROS最主要的来源。尽管ROS的来源众多,但最终都会导致心肌细胞氧化损伤和舒张功能障碍。在DCM的动物模型中,心肌细胞中ROS的水平会影响心脏的基本功能障碍。相关研究表明,通过高脂饮食(HFD)和注射链脲佐菌素(STZ)的方法对C57 BL/6小鼠建立2型糖尿病的模型,发现ROS的过度产生能够促进心室结构重塑,导致传导缺陷[11]。由于ROS水平增高会产生氧化应激并损伤细胞,因此在DCM的发展中发挥着重要作用。

2. miRNAs在糖尿病心肌病参与氧化应激的病理生理机制

近年来越来越多研究表明,氧化应激是糖尿病发病过程中的重要病理生理过程之一,糖尿病患者体内ROS增加,可引起各种糖尿病并发症,其中DCM是严重威胁人类健康的并发症之一。ROS的蓄积不仅会损伤细胞的核酸、蛋白质、脂质等基本生物分子,而且也会影响抗氧化酶的活性,因此需要寻找一个有效的方法来降低ROS的含量从而减少氧化应激的产生。多项研究表明多种差异表达的miRNAs参与了DCM的发病机制,如miR-92a-2-5p,miR-144,miR-503和miR-340-5p等因子均在心肌组织中表达,参与氧化应激过程损伤心肌组织。因此,研究miRNAs在DCM中参与氧化应激的病理生理机制引起了我们极大的兴趣,下面我们将从miRNAs作用于相关因子从而改善DCM氧化应激损伤方面来进行论述。

2.1. DCM中参与氧化应激的经典信号通路

DCM是糖尿病引发的特异性心肌病变,氧化应激失衡是其核心病理生理机制之一,而多条经典信号通路的异常调控在该过程中发挥关键作用。最新研究表明参与DCM氧化应激调控的核心信号通路主要包括丝裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)介导通路、核因子–红细胞相关因子2 (nuclear factor erythroid 2-related factor 2, Nrf2)介导抗氧化通路、磷脂酰肌醇3-激酶/蛋白激酶B (phosphatidylinositol 3-kinase/protein kinase B, PI3K/Akt)介导通路及Sirtuin (Sirt)家族介导通路,且这些通路均通过微小RNA (microRNAs, miRNAs)对下游关键靶点的精准调控参与DCM的发生发展。上述通路及其miRNA-靶点调控网络的阐明,为DCM的抗氧化应激治疗提供了重要的潜在干预靶点。

2.1.1. MAPK介导相关信号通路

丝裂原活化蛋白激酶(MAPK)途径是经典的信号转导途径之一,调节着各个方面,在信号通路中发挥着重要作用。ROS的过度积累可激活MAPK途径,从而促进心肌细胞凋亡并对心脏结构和功能产生不利影响,导致DCM的发生,最终引起心力衰竭[12] [13]。丝氨酸/苏氨酸激酶2 (MKNK 2)是MAPK途径的底物,miR-92a-2-5p作用于MKNK 2被证实是新靶点[14]。研究发现,禁用MKNK 2可以防止饮食诱导的肥胖,其原因可能与ATP消耗增加,线粒体氧化代谢和其他能量利用过程有关[15]。Yu等人表明,过表达miR-92a-2-5p可抑制心肌细胞中MKNK 2的表达,从而降低p38-MAPK信号磷酸化,进而改善高糖诱导的心肌细胞氧化应激损伤[9]

2.1.2. Nrf2介导的抗氧化信号通路

核因子-红细胞相关因子2 (Nrf 2)是一种细胞对氧化应激反应的中心调节因子,其作用机制是通过激活抗氧化基因和调控II相解毒酶的表达来激活氧化应激防御系统,避免细胞受多种氧化损伤。一项研究表明microRNA可在链脲佐菌素(STZ)诱导的糖尿病小鼠中参与ROS形成和心肌细胞凋亡的调节[16]。在DCM模型中,由于氧化剂的过量产生而增强Nrf2的活化[17]。下调miR-144通过直接靶向Nrf 2抑制高糖诱导的心肌细胞ROS生成和凋亡。更重要的是,在STZ诱导的糖尿病小鼠中,当用miR-144治疗时,发现能降低心肌氧化应激和细胞凋亡,有效改善心脏功能[16]。不可忽略的一个问题是它无法解释miR-144在STZ诱导的模型中更深层的具体机制,但是它提示下调miR-144能够降低在DCM发生氧化应激的水平,证明了miR-144在DCM中的潜力。此外,Miao等人证明了DCM中II相酶诱导剂(CPDT)通过上调miR-503作用核因子–红细胞相关因子2/抗氧化反应元件(Nrf 2/ARE)信号传导途径减少DCM的发生发展[18]

2.1.3. PI3K介导相关信号通路

磷脂酰肌醇3-激酶(Phosphatidylinositol 3-Kinase, PI3K)是一种关键促生长信号,其参与了多种病理生理过程,蛋白激酶B (Protein Kinase B, PKB/Akt)是主要下游效应物之一,它们与其他效应分子构成了PI3K/Akt信号通路[19]。该信号通路是调控细胞增殖、存活、代谢、迁移和血管生成的核心通路之一,先前研究表明PI3K/Akt信号通路可以抑制炎症反应并且介导氧化应激的产生,因此可以抑制PI3K/Akt信号通路、发挥抗炎或抗氧化作用的相关因子都可能延缓DCM的进展[9] [20]。Yang等人通过注射PI3K/Akt信号通路激活剂建立糖尿病小鼠模型,利用ELISA和ROS荧光探针研究了miR-203对DM小鼠MDA和ROS水平的影响,结果表明过表达miR-203靶向PIK3CA抑制PI3K/Akt信号通路减少心肌氧化应激及糖尿病诱导的心肌纤维化[21]

2.1.4. Sirt介导的信号通路防止ROS损伤

Sirtuin家族中包含Sirt1-Sirt7,其中Sirtuin1 (Sirt1)是研究最多的,尤其是心血管疾病研究的潜在靶点,它是一种烟酰胺腺苷二核苷酸(NAD)依赖性脱乙酰酶[7]。Sirt 1不仅可以将来源于细胞核中的组蛋白和转录调节因子脱乙酰化,也可以将来源细胞质和线粒体中的特异性蛋白脱乙酰化[22]。Sirt 1作为一种保护因子,它可以在心血管疾病和其他疾病中起保护作用,在STZ诱导的糖尿病小鼠中,Sirt 1的表达下调,其下游分子Ac-SOD2降低以及脱乙酰化产物SOD2增加,从而增加SOD的产生,与此相反,上调Sirt 1的表达,可以逆转上述表现,从而达到增强抗氧化应激的能力[23]。上调miR-22可以直接与Sirt 1的3′非翻译重复序列(3′-UTR)结合,从而上调Sirt 1来减轻DCM中ROS的产生[7]。此外过表达miR-22也可通过上调Sirt 1来减弱氧化应激[24]。另外一项研究表明下调miR-34a能有效增高Sirt 1的表达水平来抑制HG诱导产生的ROS及心肌细胞的凋亡[25]

2.2. DCM中介导信号通路相关分子作为下游效应物发挥着重要作用

BcL-2家族主要与凋亡功能相关,由促凋亡蛋白和抗凋亡蛋白构成,共同参与细胞的存活和死亡,但BcL-2家族也在线粒体生理学调节等非凋亡功能中发挥作用[26] [27]。其中髓样细胞白血病1 (Mcl-1)是BcL-2家族的重要成员之一,是一种抗凋亡蛋白,它不仅在多种癌症中高度表达,而且也在心肌中发挥着重要作用,是治疗的潜在靶点[28] [29]。Mcl-1在维持线粒体稳态和保护心肌组织中必不可少,一项研究表明,在心肌细胞特异性敲除Mcl-1的小鼠,待其成年后发现心脏消融Mcl-1能导致快速扩张型心肌病和死亡[30]。另外一项研究表明,上调miR-340-5 p通过靶向Mcl-1加重线粒体功能障碍和氧化应激,反之,通过TUD载体抑制miR-340-5p能够抑制ROS的产生,这为我们提供了一个作为治疗干预靶点的新思路[31]

Rho激酶(ROCK)蛋白家族包括 RhoA/ROCK,RhoA是一种小GTP结合蛋白,控制着多种信号转导途径,ROCK的本质则是丝氨酸/苏氨酸激酶,它作为RhoA的下游效应物发挥着作用[32] [33]。RhoA/ROCK通路在心血管系统疾病中有多种参与,它不仅参与调节内皮迁移、血小板活化、血栓形成及平滑肌收缩,而且还参与氧化应激及凋亡[34]。研究表明,在HG模型中,选择性抑制RhoA/ROCK通路可降低心肌细胞的氧化应激和凋亡,并减轻线粒体功能障碍[35]。Wang等人研究表明,在HG诱导的小鼠心肌细胞中,下调miR-185-5p激活RhoA/ROCK通路,促进心肌细胞发生氧化应激、线粒体损伤和凋亡[36]

2.3. 通路间交互网络与临床意义

上述相关信号通路并非孤立存在,而是通过多维度交互作用形成复杂的调控网络,共同参与DCM的氧化应激失衡过程。例如,MAPK通路与Nrf2通路存在交互激活关系,PI3K/Akt通路可通过GSK-3β调控Nrf2的活性,而Sirt1与Bcl-2家族均通过线粒体功能调控参与氧化应激防御,这些通路的交叉对话可能是DCM病理机制复杂性的重要原因。值得注意的是,所有通路均通过miRNA-靶点的精准调控发挥作用,miR-92a-2-5p/MKNK2、miR-144/Nrf2、miR-203/PIK3CA、miR-22/Sirt1、miR-340-5p/Mcl-1及miR-185-5p/RhoA等核心调控轴,为DCM的靶向治疗提供了明确方向。综上,DCM氧化应激调控的经典信号通路及其miRNA-靶点网络的阐明,不仅深化了对疾病病理机制的理解,更为临床干预提供了重要的潜在靶点与治疗思路。未来研究需进一步聚焦通路间的交互机制、新型调控分子的挖掘及靶向药物的转化应用,为DCM的防治提供更坚实的理论与实践基础。

3. 讨论

大量研究证实了miRNAs通过氧化应激和线粒体损伤等反应途径在DCM的发生发展中起着重要作用。这些内源性非编码小RNA分子参与转录后的调节,它们调节基因表达的能力对DCM的不同方面有着广泛的影响,其作用于多种OS相关因子参与DCM的发病机制。在HG诱导的心肌细胞模型及STZ诱导的小鼠模型中,通过上调或下调miRNAs的表达水平,分别抑制MAPK介导促炎信号、Nrf 2和Sirt 1介导的抗氧化信号、PI3K和RhoA介导的促生长信号和激活Mcl-1介导的抗凋亡信号从而抑制心肌细胞发生氧化应激及线粒体损伤。DCM的发病机制是复杂及多因素的,目前针对OS在DCM中发病机制尚不清晰,大多数研究都是针对开发降血糖药物,也无相关特异性标志物检测DCM中OS的水平。因此在DCM中,miRNAs的治疗潜力越来越明显,表明它作为一个治疗干预靶点的可行性,因此,随着分子生物学的不断进展,miRNAs有望在未来被早期纳入常规临床诊断与治疗实践中。

NOTES

*通讯作者。

参考文献

[1] Jia, G., Hill, M.A. and Sowers, J.R. (2018) Diabetic Cardiomyopathy: An Update of Mechanisms Contributing to This Clinical Entity. Circulation Research, 122, 624-638. [Google Scholar] [CrossRef] [PubMed]
[2] Saisho, Y. (2014) Glycemic Variability and Oxidative Stress: A Link between Diabetes and Cardiovascular Disease? International Journal of Molecular Sciences, 15, 18381-18406. [Google Scholar] [CrossRef] [PubMed]
[3] Barwari, T., Joshi, A. and Mayr, M. (2016) MicroRNAs in Cardiovascular Disease. Journal of the American College of Cardiology, 68, 2577-2584. [Google Scholar] [CrossRef] [PubMed]
[4] Romaine, S.P.R., Tomaszewski, M., Condorelli, G. and Samani, N.J. (2015) MicroRNAs in Cardiovascular Disease: An Introduction for Clinicians. Heart, 101, 921-928. [Google Scholar] [CrossRef] [PubMed]
[5] Bartel, D.P. (2004) MicroRNAs: Genomics, Biogenesis, Mechanism, Andfunction. Cell, 116, 281-297. [Google Scholar] [CrossRef] [PubMed]
[6] Zhang, W., Xu, W., Feng, Y. and Zhou, X. (2019) Non‐Coding RNA Involvement in the Pathogenesis of Diabetic Cardiomyopathy. Journal of Cellular and Molecular Medicine, 23, 5859-5867. [Google Scholar] [CrossRef] [PubMed]
[7] Tang, Z., Wang, P., Dong, C., Zhang, J., Wang, X. and Pei, H. (2022) Oxidative Stress Signaling Mediated Pathogenesis of Diabetic Cardiomyopathy. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 5913374. [Google Scholar] [CrossRef] [PubMed]
[8] Xu, N., Liu, S., Zhang, Y., Chen, Y., Zuo, Y., Tan, X., et al. (2023) Oxidative Stress Signaling in the Pathogenesis of Diabetic Cardiomyopathy and the Potential Therapeutic Role of Antioxidant Naringenin. Redox Report, 28, Article ID: 2246720. [Google Scholar] [CrossRef] [PubMed]
[9] Byrne, N.J., Rajasekaran, N.S., Abel, E.D. and Bugger, H. (2021) Therapeutic Potential of Targeting Oxidative Stress in Diabetic Cardiomyopathy. Free Radical Biology and Medicine, 169, 317-342. [Google Scholar] [CrossRef] [PubMed]
[10] Ryoo, I. and Kwak, M. (2018) Regulatory Crosstalk between the Oxidative Stress-Related Transcription Factor Nfe2l2/Nrf2 and Mitochondria. Toxicology and Applied Pharmacology, 359, 24-33. [Google Scholar] [CrossRef] [PubMed]
[11] Qiu, J., Liu, D., Li, P., Zhou, L., Zhou, L., Liu, X., et al. (2022) NADPH Oxidase Mediates Oxidative Stress and Ventricular Remodeling through SIRT3/FOXO3a Pathway in Diabetic Mice. Antioxidants, 11, Article 1745. [Google Scholar] [CrossRef] [PubMed]
[12] Bugger, H. and Abel, E.D. (2014) Molecular Mechanisms of Diabetic Cardiomyopathy. Diabetologia, 57, 660-671. [Google Scholar] [CrossRef] [PubMed]
[13] Moreli, J.B., Santos, J.H., Rocha, C.R., Damasceno, D.C., Morceli, G., Rudge, M.V., et al. (2014) DNA Damage and Its Cellular Response in Mother and Fetus Exposed to Hyperglycemic Environment. BioMed Research International, 2014, Article ID: 676758. [Google Scholar] [CrossRef] [PubMed]
[14] Yu, M., Sun, Y., Shan, X., Yang, F., Chu, G., Chen, Q., et al. (2022) Therapeutic Overexpression of miR-92a-2-5p Ameliorated Cardiomyocyte Oxidative Stress Injury in the Development of Diabetic Cardiomyopathy. Cellular & Molecular Biology Letters, 27, Article No. 85. [Google Scholar] [CrossRef] [PubMed]
[15] Xu, W., Kannan, S., Verma, C.S. and Nacro, K. (2021) Update on the Development of MNK Inhibitors as Therapeutic Agents. Journal of Medicinal Chemistry, 65, 983-1007. [Google Scholar] [CrossRef] [PubMed]
[16] Yu, M., Liu, Y., Zhang, B., Shi, Y., Cui, L. and Zhao, X. (2015) Inhibiting MicroRNA-144 Abates Oxidative Stress and Reduces Apoptosis in Hearts of Streptozotocin-Induced Diabetic Mice. Cardiovascular Pathology, 24, 375-381. [Google Scholar] [CrossRef] [PubMed]
[17] da Costa, R.M., Rodrigues, D., Pereira, C.A., Silva, J.F., Alves, J.V., Lobato, N.S., et al. (2019) Nrf2 as a Potential Mediator of Cardiovascular Risk in Metabolic Diseases. Frontiers in Pharmacology, 10, Article 382. [Google Scholar] [CrossRef] [PubMed]
[18] Miao, Y., Wan, Q., Liu, X., Wang, Y., Luo, Y., Liu, D., et al. (2017) miR-503 Is Involved in the Protective Effect of Phase II Enzyme Inducer (CPDT) in Diabetic Cardiomyopathy via Nrf2/are Signaling Pathway. BioMed Research International, 2017, Article ID: 9167450. [Google Scholar] [CrossRef] [PubMed]
[19] Martini, M., De Santis, M.C., Braccini, L., Gulluni, F. and Hirsch, E. (2014) PI3K/AKT Signaling Pathway and Cancer: An Updated Review. Annals of Medicine, 46, 372-383. [Google Scholar] [CrossRef] [PubMed]
[20] Dhalla, N.S., Shah, A.K. and Tappia, P.S. (2020) Role of Oxidative Stress in Metabolic and Subcellular Abnormalities in Diabetic Cardiomyopathy. International Journal of Molecular Sciences, 21, Article 2413. [Google Scholar] [CrossRef] [PubMed]
[21] Yang, X., Li, X., Lin, Q. and Xu, Q. (2019) Up-Regulation of MicroRNA-203 Inhibits Myocardial Fibrosis and Oxidative Stress in Mice with Diabetic Cardiomyopathy through the Inhibition of PI3K/Akt Signaling Pathway via PIK3CA. Gene, 715, Article ID: 143995. [Google Scholar] [CrossRef] [PubMed]
[22] Ren, B., Zhang, Y., Liu, S., Cheng, X., Yang, X., Cui, X., et al. (2020) Curcumin Alleviates Oxidative Stress and Inhibits Apoptosis in Diabetic Cardiomyopathy via Sirt1‐Foxo1 and PI3K‐Akt Signalling Pathways. Journal of Cellular and Molecular Medicine, 24, 12355-12367. [Google Scholar] [CrossRef] [PubMed]
[23] Li, K., Zhai, M., Jiang, L., Song, F., Zhang, B., Li, J., et al. (2019) Tetrahydrocurcumin Ameliorates Diabetic Cardiomyopathy by Attenuating High Glucose-Induced Oxidative Stress and Fibrosis via Activating the SIRT1 Pathway. Oxidative Medicine and Cellular Longevity, 2019, Article ID: 6746907. [Google Scholar] [CrossRef] [PubMed]
[24] Xu, C., Liu, C. and Zhang, D. (2020) MicroRNA-22 Inhibition Prevents Doxorubicin-Induced Cardiotoxicity via Upregulating Sirt1. Biochemical and Biophysical Research Communications, 521, 485-491. [Google Scholar] [CrossRef] [PubMed]
[25] Chen, R., Chen, H., Yang, Z., Zhu, L., Bei, Y., Chen, W., et al. (2023) Danlou Tablet Inhibits High-Glucose-Induced Cardiomyocyte Apoptosis via the miR-34a-SIRT1 Axis. Heliyon, 9, e14479. [Google Scholar] [CrossRef] [PubMed]
[26] Opferman, J.T. and Kothari, A. (2017) Anti-Apoptotic BCL-2 Family Members in Development. Cell Death & Differentiation, 25, 37-45. [Google Scholar] [CrossRef] [PubMed]
[27] Gross, A. and Katz, S.G. (2017) Non-Apoptotic Functions of BCL-2 Family Proteins. Cell Death & Differentiation, 24, 1348-1358. [Google Scholar] [CrossRef] [PubMed]
[28] Tantawy, S.I., Timofeeva, N., Sarkar, A. and Gandhi, V. (2023) Targeting MCL-1 Protein to Treat Cancer: Opportunities and Challenges. Frontiers in Oncology, 13, Article 1226289. [Google Scholar] [CrossRef] [PubMed]
[29] Wang, X., Bathina, M., Lynch, J., Koss, B., Calabrese, C., Frase, S., et al. (2013) Deletion of MCL-1 Causes Lethal Cardiac Failure and Mitochondrial Dysfunction. Genes & Development, 27, 1351-1364. [Google Scholar] [CrossRef] [PubMed]
[30] Thomas, R.L., Roberts, D.J., Kubli, D.A., Lee, Y., Quinsay, M.N., Owens, J.B., et al. (2013) Loss of MCL-1 Leads to Impaired Autophagy and Rapid Development of Heart Failure. Genes & Development, 27, 1365-1377. [Google Scholar] [CrossRef] [PubMed]
[31] Zhu, Y., Yang, X., Zhou, J., Chen, L., Zuo, P., Chen, L., et al. (2022) miR‐340‐5p Mediates Cardiomyocyte Oxidative Stress in Diabetes‐Induced Cardiac Dysfunction by Targeting Mcl‐1. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 3182931. [Google Scholar] [CrossRef] [PubMed]
[32] Shi, J. and Wei, L. (2013) Rho Kinases in Cardiovascular Physiology and Pathophysiology: The Effect of Fasudil. Journal of Cardiovascular Pharmacology, 62, 341-354. [Google Scholar] [CrossRef] [PubMed]
[33] Yin, Z., Zou, Y., Wang, D., Huang, X., Xiong, S., Cao, L., et al. (2022) Regulation of the Tec Family of Non-Receptor Tyrosine Kinases in Cardiovascular Disease. Cell Death Discovery, 8, Article No. 119. [Google Scholar] [CrossRef] [PubMed]
[34] Proietti, R., Giordani, A.S. and Lorenzo, C.A. (2023) ROCK (RhoA/Rho Kinase) Activation in Atrial Fibrillation: Molecular Pathways and Clinical Implications. Current Cardiology Reviews, 19, e171122210986. [Google Scholar] [CrossRef] [PubMed]
[35] Li, N., Zhu, Q., Li, G., Wang, T. and Zhou, H. (2023) Empagliflozin Ameliorates Diabetic Cardiomyopathy Probably via Activating AMPK/PGC-1α and Inhibiting the RhoA/ROCK Pathway. World Journal of Diabetes, 14, 1862-1876. [Google Scholar] [CrossRef] [PubMed]
[36] Wang, T., Li, N., Yuan, L., Zhao, M., Li, G., Chen, Y., et al. (2023) MALAT1/miR‐185‐5p Mediated High Glucose‐induced Oxidative Stress, Mitochondrial Injury and Cardiomyocyte Apoptosis via the RhoA/ROCK Pathway. Journal of Cellular and Molecular Medicine, 27, 2495-2506. [Google Scholar] [CrossRef] [PubMed]