腹横筋膜阻滞联合舒芬太尼背景剂量优化在腹腔镜全子宫切除术中的应用效果
The Effect of Transversus Abdominis Plane Block Combined with Optimized Sufentanil Background Dose in Laparoscopic Total Hysterectomy
DOI: 10.12677/acm.2026.161149, PDF, HTML, XML,    科研立项经费支持
作者: 李 杨, 胡敬利*, 史 斌:临沂市肿瘤医院麻醉手术科,山东 临沂;刘国强:临沂市人民医院麻醉手术部,山东 临沂
关键词: 低阿片化背景剂量术后镇痛舒芬太尼腹腔镜全子宫切除术Low Opioidization Background Dose Postoperative Analgesia Sufentanil Laparoscopic Total Hysterectomy
摘要: 目的:探讨不同背景剂量舒芬太尼联合腹横肌平面阻滞对腹腔镜全子宫切除术后镇痛效果及恢复质量的影响。方法:选取2023年10月至2025年4月拟行腹腔镜全子宫切除术的60例患者,根据随机数字表法将其分为两组,即无背景剂量组(O组)和背景剂量2 ml/h组(S组),每组30例。两组患者术毕入恢复室后,在监护下实施超声引导下双侧腹横肌平面阻滞(TAP),随后连接并开启镇痛泵。镇痛泵配方为舒芬太尼1.5 µg/kg加0.9%生理盐水配制为总量100 ml,O组为无背景剂量,单次给药4 ml,S组为背景剂量2 ml/h,单次给药2 ml。记录患者术后2 h、4 h、8 h、12 h、24 h静息及动态疼痛视觉模拟评分(VAS);记录患者术前1 d、术后第1天、第3天和第5天的15项恢复质量评分;记录患者术后48h内病人自控静脉镇痛(PCIA)药物总用量及补救镇痛次数,并随访患者术后不良反应发生情况。结果:两组患者术后各时点静息及动态疼痛视觉模拟评分的比较,差异无统计学意义(P > 0.05),O组术后第1天、第3天和第5天的15项恢复质量评分高于S组,差异有统计学意义(P < 0.05),O组48 h内镇痛药物总用量及恶心呕吐发生率低于S组,差异有统计学意义(P < 0.05)。结论:腹横肌平面阻滞联合舒芬太尼无背景剂量或背景剂量2 ml/h PCIA模式均能满足腹腔镜全子宫切除患者术后镇痛需求,但与背景剂量2 ml/h相比,有效TAP阻滞联合无背景剂量、单次4 ml镇痛模式术后镇痛药物总用量明显减少,且恶心、呕吐发生率更低,患者术后恢复质量提高。
Abstract: Objective: To investigate the effects of different background doses of sufentanil combined with transversus abdominis plane block on postoperative analgesia and quality of recovery in patients undergoing laparoscopic total hysterectomy. Methods: Sixty patients scheduled for laparoscopic total hysterectomy from October 2023 to April 2025 were selected and randomly divided into two groups using a random number table: the no-background-dose group (Group O) and the background dose of 2 ml/h group (Group S), with 30 patients in each group. After surgery, upon admission to the recovery room, all patients underwent ultrasound-guided bilateral transversus abdominis plane block (TAP) under monitoring, followed by connection and activation of the analgesic pump. The analgesic pump consisted of sufentanil 1.5 μg/kg diluted with 0.9% normal saline to a total volume of 100 ml. Group O received no background dose with a bolus dose of 4 ml, while Group S received a background dose of 2 ml/h with a bolus dose of 2 ml. The resting and dynamic pain Visual Analogue Scale (VAS) scores were recorded at 2h, 4h, 8h, 12h, and 24h after surgery. The 15-item Quality of Recovery score (QoR-15) was recorded on the day before surgery and on postoperative days 1, 3, and 5. The total consumption of patient-controlled intravenous analgesia (PCIA) drugs and the number of rescue analgesia events within 48 hours after surgery were recorded, and the incidence of postoperative adverse reactions was followed up. Results: There was no statistically significant difference in resting and dynamic VAS scores between the two groups at various time points after surgery (P > 0.05). The QoR-15 scores of Group O on postoperative days 1, 3, and 5 were higher than those of Group S, with a statistically significant difference (P < 0.05). The total analgesic drug consumption within 48 hours and the incidence of nausea and vomiting in Group O were lower than those in Group S, with a statistically significant difference (P < 0.05). Conclusion: Both the no-background-dose mode (bolus 4 ml) and the background dose of 2 ml/h mode of sufentanil PCIA combined with TAP block could meet the postoperative analgesic needs of patients undergoing laparoscopic total hysterectomy. However, compared with the background dose of 2 ml/h mode, The total dosage of postoperative analgesic drugs was significantly reduced in the effective TAP block combined with no background dose and single 4ml analgesic mode, lowered the incidence of nausea and vomiting, and improved the quality of postoperative recovery.
文章引用:李杨, 胡敬利, 史斌, 刘国强. 腹横筋膜阻滞联合舒芬太尼背景剂量优化在腹腔镜全子宫切除术中的应用效果[J]. 临床医学进展, 2026, 16(1): 1154-1163. https://doi.org/10.12677/acm.2026.161149

1. 引言

近些年,随着医学设备的更新研发,腹腔镜下行全子宫切除因其术后疼痛程度轻、恢复速度快等优点被患者认可和接受[1]。但有数据表明,超过80%的患者在腹腔镜术后还是会出现不同程度和不同形式的疼痛问题[2],如不加以干预,这种术后急性疼痛会逐渐转变为一种作用时间更长的慢性钝痛[3]。病人自控静脉镇痛(patient controlled intravenous analgesia, PCIA)是目前各类手术最常用的术后镇痛方式,因为它可使患者血液中的药物浓度在短时间内达到有效浓度且渐趋稳定[4]。传统的PCIA输注模式为阿片类药物以某一恒定背景剂量持续输注[5],因患者在术毕24h后疼痛程度随时间逐渐递减[6],这种输注模式有可能导致阿片类药物过量,与之相关的副作用发生率也随之增高。但对于如何设定PCIA背景剂量大小及输注模式,才能在满足患者镇痛需求的前提下,又能降低患者术后不良反应发生率,临床相关文献报道甚少。本研究基于加速康复外科理念下多模式镇痛的推行[7],采用腹横肌平面阻滞(Transversus abdominis plane block, TAP)复合不同背景剂量PCIA对行全子宫切除术患者进行术后镇痛,通过观察患者术后镇痛效果、不良反应发生情况及术后早期恢复质量等,探讨出舒芬太尼用于腹腔镜全子宫切除术后PCIA的最佳背景剂量。

2. 资料与方法

2.1. 临床资料

选取2023年10月至2025年4月临沂市肿瘤医院择期行腹腔镜全子宫切除术的60例患者作为研究对象,采用随机数字表法将其分为无背景剂量组(O组)和背景剂量2 ml/h组(S组),每组30例。两组患者年龄、体重指数、手术时间及ASA分级差异无统计学意义(P > 0.05),见表1。本研究已获得临沂市肿瘤医院医学伦理委员会批准(KY2364),患者及家属已签署麻醉知情同意书。纳入标准:① 美国麻醉医师协会分级(American society of Aneshesiologists, ASA) I~II级[8],② 体重指数17~25 kg/m2,③ 择期行腹腔镜全子宫切除手术,④ 手术时间不超过4 h,⑤ 有晕动史者,⑥ 年龄42~64岁;排除标准:① 阿片类药物过敏,② 长期镇静或镇痛药物服用史,③ 中重度肝肾功能不全,④ 严重心肺疾病及精神异常无法正常沟通的患者。此外,为了避免在量化术后疼痛时出现任何可能的混杂因素,有慢性盆腔疼痛史和/或怀疑有子宫内膜异位症或盆腔炎症的患者也排除在外[9]

Table 1. Comparison of baseline characteristics between the two groups of patients (x ± s)

1. 两组患者基本情况的比较(x ± s)

组别

年龄

体重指数

手术时间

ASA分级

(岁)

(kg/m2)

(min)

(例数)

O组

49.53 ± 3.00

20.67 ± 1.02

93.87 ± 4.97

15/15

S组

49.87 ± 4.09

20.18 ± 1.38

95.50 ± 4.74

13/17

t/χ2

0.36

1.59

1.30

0.26

P值

0.72

0.12

0.19

0.26

2.2. 麻醉方法

患者术前按照规定禁饮食。入室后开放外周静脉通道并连接监护仪(深圳迈瑞生物医疗电子股份有限公司BeneVision N15),两组患者均以舒芬太尼(宜昌人福药业有限责任公司31A010812) 0.6 ug/kg + 丙泊酚(Fresenius Kabi Austria Gmbh 16TK2112) 2 mg/kg + 罗库溴铵(广东星昊药业有限公司 139230802) 0.5 mg/kg进行麻醉诱导,以瑞芬太尼(宜昌人福药业有限责任公司30A05011) 0.1 μg∙kg1∙min1和2%七氟烷(鲁南贝特制药有限公司65230607)进行麻醉维持,术中根据患者呼末二氧化碳及时调整各呼吸参数,并根据患者基本生命体征波动情况调整麻醉用药,以维持血流动力学稳定。术毕拔除气管导管后,若患者自觉疼痛程度较重,静脉推注舒芬太尼5 ug,若疼痛仍未缓解,可间隔5~10 min后重复给药,直至患者疼痛视觉模拟评分(visual analogue scale, VAS)小于或者等于4分。随后送患者至麻醉恢复室,在监护下实施超声引导下双侧TAP [10]:患者取平卧位,常规消毒铺巾,选择髂嵴与肋缘连线中点为穿刺点,将超声探头(深圳迈瑞生物医疗电子股份有限公司UMT-500)放置于患者肋弓下缘区域,垂直腋中线缓慢移动探头,待逐层肌肉显示清楚,将穿刺针(苏州市立普医疗科技有限公司NC)刺入腹横肌和腹内斜肌之间的筋膜层面,回抽无血无气后注入0.375%罗哌卡因(石家庄四药有限公司23090551) 20 ml,超声图像可显示局麻药在腹横肌平面呈梭形扩散,对侧重复相同操作。神经阻滞完成后连接并开启镇痛泵(河南驼人医疗器械集团有限公司 ZS-150),镇痛泵配方:舒芬太尼1.5 ug/kg加0.9%生理盐水(山东齐都药业有限公司12C230828054)配制为总量100 ml,O组为无背景剂量,单次给药4 ml,S组为背景剂量2 ml/h,单次给药2 ml。若在使用镇痛泵期间患者仍感疼痛,可自行追加一次镇痛,若追加两次无效,可肌肉注射30 mg尼松(德全药品股份有限公司18w001)作为补救镇痛措施。

2.3. 观察指标及评价标准

观察指标包括患者一般资料、VAS评分、15项恢复质量评分表(15-item quality of recovery, QoR-15)、镇痛药物总用量、补救镇痛次数及不良反应发生情况。具体观察指标如下:① 两组患者术后2 h、4 h、8 h、12 h、24 h静息及动态VAS评分;② 采用15项恢复质量评分表(15-item quality of recovery, QoR-15)对两组患者术前1 d、术后第1 d、3 d和5 d的恢复质量进行评估,QoR-15分值高低与患者术后恢复质量呈正相关[11];③ 两组患者术后48 h内镇痛药物总用量及补救镇痛次数;④ 两组患者术后48 h恶心呕吐、呼吸抑制、头晕嗜睡及皮肤瘙痒等不良反应发生情况。

2.4. 统计学处理

采用SPSS 26.0软件进行统计分析。应用球形检验法对需要重复测量的数据进行相关性分析,若计算出P > 0.05,表明所需重复测量的数据间没有相关性,可采用单因素方差分析,反之,即各测量数据之间有相关性,则考虑采用重复测量的方差分析。计量资料符合正态分布以均数 ± 标准差表示,组间比较采用两独立样本t检验,非正态分布以四分位数间距表示,组间比较采用非参数秩和检验检验;计数资料以百分比表示,组间比较采用χ2检验或Fisher精切概率法。P < 0.05为差异有统计学意义。

3. 结果

3.1. 两组患者术后2 h、4 h、8 h、12 h、24 h静息及动态疼痛VAS评分的比较

两组患者术后2 h、4 h、8 h、12 h、24 h静息及动态疼痛VAS评分的比较,差异无统计学意义(P > 0.05),见表2

Table 2. Comparison of VAS scores between the two groups of patients at different time points after surgery [(x ± s), points]

2. 两组患者术后各时点VAS评分的比较[(x ± s),分]

组别

静息

动态

2 h

4 h

8 h

12 h

24 h

2 h

4 h

8 h

12 h

24 h

O组

2.6 ± 0.5

3.1 ± 0.3

2.4 ± 0.4

2.0 ± 0.3

1.1 ± 0.4

3.5 ± 0.6

3.7 ± 0.5

3.1 ± 0.5

2.6 ± 0.6

1.6 ± 0.6

S组

2.7 ± 0.4

3.2 ± 0.4

2.5 ± 0.5

1.9 ± 0.3

1.0 ± 0.5

3.3 ± 0.4

3.8 ± 0.4

3.3 ± 0.4

2.6 ± 0.4

1.7 ± 0.5

t值

0.803

1.287

1.027

0.807

1.409

1.398

0.576

1.523

0.245

0.973

P值

0.425

0.203

0.309

0.423

0.164

0.167

0.567

0.133

0.808

0.335

3.2. 两组患者术前1天、术后第1天、第3天和第五天Qor-15评分的比较

两组患者术前1天Qor-15评分的比较,差异无统计学意义(P > 0.05),O组术后第1天、第3天和第五天Qor-15评分高于S组,差异有统计学意义(P < 0.05),见表3

Table 3. Comparison of QoR-15 scores between the two groups of patients before surgery and at different time points after surgery [(x ± s), points]

3. 两组患者术前及术后各时点Qor-15评分的比较[(x ± s),分]

组别

术前1 d

术后第1天

术后第3天

术后第5天

O组

140.5 ± 2.6

82.3 ± 1.9*

95.1 ± 2.4*

112.0 ± 3.6*

S组

140.9 ± 2.4

80.4 ± 2.3

93.3 ± 1.5

109.3 ± 3.2

t值

0.507

3.479

3.267

2.955

P

0.614

0.001

0.002

0.005

*:与O组比,P < 0.05。

3.3. 两组患者术后48 h内PCIA用药总量及补救镇痛次数的比较

O组患者术后48 h内PCIA用药总量低于S组,差异有统计学意义(P < 0.05),两组患者术后补救镇痛次数的比较,差异无统计学意义(P > 0.05),见表4

Table 4. Comparison of total PCIA medication dosage and number of rescue analgesia times between the two groups of patients within 48 hours after surgery [M (Q1, Q3)]

4. 两组患者术后48hPCIA用药总量及补救镇痛次数的比较[M (Q1, Q3)]

组别

镇痛药物总用量

补救镇痛次数

(ml)

(次)

O组

65.50 (62.00~69.50)*

1.50 (1.00~2.00)

S组

69.00 (65.80~73.00)

2.00 (1.00~2.30)

Z值

2.38

0.97

P

0.02

0.34

*:与O组比,P < 0.05。

3.4. 两组患者术后48 h恶心呕吐、头晕嗜睡等不良反应发生率的比较

O组在术后48 h恶心呕吐发生率低于S组,差异有统计学意义(P < 0.05),两组其余不良反应发生率的比较,差异无统计学意义(P > 0.05),见表5

Table 5. Comparison of incidence of adverse reactions within 48 hours after surgery between the two groups of patients [n (%)]

5. 两组患者术后48 h不良反应发生率的比较[n (%)]

组别

恶心呕吐

头晕嗜睡

呼吸抑制

皮肤瘙痒

O组

5.00 (16.66)*

1.00 (3.33)

0.00

0.00

S组

17.00 (56.66)

2.00 (6.66)

2.00 (6.66)

1.00 (3.33)

χ2

10.34

0.35

0.51

1.02

P

0.01

0.55

0.49

0.31

*:与O组比,P < 0.05。

4. 讨论

尽管腹腔镜有手术切口小、术后恢复快等诸多微创优势,但患者在术后初期6会出现不同程度的急性锐痛 [12]。临床研究表明,对腹腔镜术后72 h内出现的急性疼痛及时干预,能显著降低患者发展为慢性疼痛的风险[13]。目前多模式镇痛已成为术后镇痛的核心策略,即联合应用作用于不同疼痛传导通路靶点的镇痛药物或镇痛方法,达到相加或协同的镇痛效果,减少阿片类药物的用量及相关不良反应,促进患者术后功能恢复[7]。PCIA虽被美国疼痛学会推荐用于术后镇痛,但其缺乏疗效优势,且持续恒定背景剂量输注可能增加不良反应发生风险[4],而当前关于PCIA背景剂量的优化模式与剂量选择尚缺乏充分循证依据,这也是本研究所要探讨的主要问题。基于上述背景,本研究选择超声引导下TAP联合PCIA方案,TAP作为一种区域镇痛技术,已被证实可有效降低妇科手术(如全子宫切除)术后疼痛评分及阿片类药物消耗[14]。实际上多模式低阿片类麻醉策略(如TAP + PCIA)的广泛适用性已得到验证——其在满足患者镇痛需求的前提下[15],可以通过减少阿片类药物的使用量来维持血流动力学稳定和减少心脑血管并发症,促进术后肠道功能恢复,缩短住院时间[16]

本研究通过对比无背景剂量(0 ml/h)与恒定背景剂量(2 ml/h)两种舒芬太尼输注模式联合TAP阻滞的镇痛效果,首次在腹腔镜全子宫切除术中验证了精准低阿片化策略的临床可行性。在本研究中两组患者术后各时点的静息及动态VAS评分差异无统计学意义,此结果归因于神经阻滞联合微量阿片类药物的双路径协同镇痛机制。TAP通过选择性阻滞腹壁躯体神经消除85%躯体痛[17],并抑制手术应激导致的皮质醇及炎性因子释放,从而减轻神经源性疼痛[18];而两组背景剂量输注模式均可以有效抑制二氧化碳气腹刺激腹膜及子宫韧带牵拉所引起的内脏痛[19]。术后两组患者48 h内补救镇痛次数差异无统计学意义进一步也佐证了两组镇痛效果的有效性。值得注意的是,尽管两组镇痛效果相当,但O组术后48小时舒芬太尼总消耗量的中位数显著低于S组(65.50 ml vs. 69.00 ml, P = 0.02)。从统计学上看,该差异具有显著性,但其绝对差值仅为3.5 ml,在总消耗量接近70 ml的背景下,这一节约幅度的临床意义仍值得商榷。该差异与两组输注模式的药代动力学特性相关。O组通过自控镇痛按钮实现爆发痛管理,由于舒芬太尼静脉给药达峰时间只需3~5 min,可迅速达到最低有效镇痛浓度,且在规定时间内重复给药无蓄积风险;S组虽能维持基础血药浓度,但未能匹配术后疼痛强度随时间递减的规律,因有文献报道,腹腔镜术后6 h疼痛评分较2 h下降67% [20],故容易导致药物过量,这与Liu等[21]在妇科手术中的发现一致:与恒定剂量相比,递减式羟考酮PCIA在等效镇痛前提下,用药量减少约24%。尽管本研究中两组药物消耗量差异幅度有限,但其反映的“按需镇痛”与术后疼痛动态变化相匹配的理念仍具有临床参考价值。TAP阻滞联合无背景剂量舒芬太尼自控镇痛,通过机制上的优化,在保证镇痛效果的同时展现了减少阿片用量的趋势,这为低阿片化镇痛策略提供了可行的技术路径,也与Nie等[22]倡导的“最低有效背景剂量”原则形成呼应。未来可在更大样本中进一步验证该模式是否能在维持镇痛效果的同时,实现具有明确临床意义的阿片节约,并观察其对不良反应减少、加速康复等结局的潜在影响。

本研究显示S组有2例患者出现呼吸抑制,分析原因大多是由于阿片类药物过量使用造成,这也是阿片类药物最严重的不良反应,所以在应用阿片类药物期间,我们对患者实行监护措施,一旦发现呼吸抑制,首先要做的是管理好患者气道,必要时给予拮抗药物纳洛酮。出现发现O组术后恶心呕吐(postoperative nausea and vomiting, PONV)发生率显著低于S组,这一差异具有重要临床价值。根据Apfel [23]风险模型,在严格排除阿片类药物使用史及晕动史等混杂因素后,女性与非吸烟状态构成本研究人群固有的PONV不可变高危因素,在此背景下,S组显著升高的PONV发生率直接归因于舒芬太尼累积用量增加——研究结果显示其48小时用药量高于O组,该结论与接受PCIA的妇科手术患者,阿片类药物每增量10 μg可使PONV比值比增加至1.18倍[24]的研究结果一致,并且最近有一荟萃分析报道,无阿片类药物麻醉被证明可以有效降低PONV的发生[25],这为本研究论点提供有力支持。作为强效μ受体激动剂,舒芬太尼通过刺激延髓化学感受器触发区增强多巴胺能神经传递、结合肠道μ受体延缓胃排空(胃窦收缩频率下降≥40%),以及提高前庭敏感性放大运动错觉等多途径诱发PONV [26] [27]。背景输注模式的差异进一步通过受体动态调节影响PONV的发生。S组恒定剂量输注导致μ受体持续过度激活,诱发β-arrestin通路介导的内化障碍并延长了G蛋白耦联时间[28],另外基于群体药代动力学模型估算,S组维持>2 ng/ml的血药浓度(超过催吐化学感受区激活阈值1.5 ng/ml)显著促进肠嗜铬细胞释放5-HT,形成“μ受体脱敏受阻→5-HT释放增加→迷走神经传入激活→呕吐中枢兴奋”的自我强化循环[29];而O组“按需给药”模式产生脉冲式受体刺激,诱导μ受体周期性内化,维持β-arrestin2介导的脱敏敏感性,允许受体周期性脱敏,使血药浓度谷值低于催吐阈值,从而阻断该通路。

本研究采用QoR-15评分对两组患者术前1天、术后第1天、第3天和第5天恢复质量进行量化评估。结果显示O组术后各时点QoR-15总分均显著高于S组,该差异源于三重级联效应机制。首先,O组舒芬太尼用量减少直接减轻了μ受体介导的胃肠动力抑制——通过阻断肠道阿片受体对Cajal间质细胞起搏电流的干扰,缩短肠鸣音恢复时间,加速胃肠功能恢复[30];其次,有研究表明PONV和疼痛是导致患者术后出现不愉快状态的最常见因素,随着PONV的降低,身体舒适度评分和QoR可能会在一定程度上得到改善[31],S组恒定输注不仅增加了PONV发生率,其诱发的反复干呕通过迷走–孤束核投射至杏仁核,激活边缘系统恐惧记忆回路[32],同时皮质醇应激反应通过边缘系统–下丘脑通路加剧负性情绪调节障碍,导致睡眠效率指数下降[33];最后,在镇痛强度等效前提下,O组通过规避上述神经内分泌紊乱实现了“副作用剥离效应”[34],即当药物相关不良反应减少时,患者对镇痛效果的主观评价呈现系统性正向偏移,表现为疼痛控制满意度提升及肺功能恢复至基线时间缩短,符合“症状负荷–感知偏移”神经认知模型[35]。需要说明的是,虽有研究提示女性会经历更多疼痛不适和疲劳,术后QoR评分显著低于男性[36],但因本研究仅纳入女性患者,该结论未获验证。综上,TAP阻滞联合无背景剂量PCIA策略在空间维度实现躯体/内脏伤害性传入双重阻断,在时间维度动态适配术后疼痛指数衰减曲线,最终将阿片类药物减量及相关不良反应作用降低转化为生理–心理–功能多维恢复质量的协同增益。

本研究存在以下局限:在人群普适性方面,纳入腹腔镜全子宫切除术女性患者构成单性别队列,限制了结论向男性或非妇科手术人群的外推效度,需通过跨性别、跨术式的多中心随机试验进一步验证该麻醉策略的临床泛化能力;在验证药代动力学层面,关键参数(如>2 ng/ml的血药浓度阈值)依赖理论模型估算,因个体代谢差异较大,缺乏实测验证;另外镇痛评价维度主要依赖患者自报告结局,缺乏定量感觉测试与神经影像学生物标志物等客观指标,难以完全排除主观偏倚;最后长期转归空白导致无法评估慢性术后疼痛风险,虽理论上优化急性痛控制可降低中枢敏化发生率[37],但缺乏前瞻性数据支持低阿片策略对疼痛慢性化的预防作用。

本研究存在以下局限性:第一,样本量有限且人群结构单一。本研究纳入的样本量较小,可能降低统计检验效力,也使效应估计值的精确性受限。同时,所有受试者均为接受腹腔镜全子宫切除术的女性,构成单性别、单术式的队列,因此结论的外推性受到明显限制,无法直接推广至男性或非妇科手术人群。第二,研究方法存在潜在偏倚。研究未采用盲法设计,手术团队、麻醉医师及结局评估者均知晓患者的分组情况,这可能在干预实施、疼痛评估及数据收集过程中引入主观偏倚,从而影响结论的客观性。第三,关键参数与结局测量存在局限。在药代动力学层面,所依据的关键血药浓度阈值(如>2 ng/ml)源于模型估算,未能通过个体实测进行验证,而个体代谢差异可能显著影响该阈值的实际适用性。在镇痛评价方面,主要依赖患者自报告结局,缺乏定量感觉测试或神经影像学等客观生物标志物的佐证,因而难以完全排除主观偏倚对结果的影响。第四,缺乏长期结局数据。研究未对患者进行长期随访,因此无法评估不同麻醉策略对慢性术后疼痛发生风险的影响。尽管理论认为优化急性疼痛管理可降低中枢敏化风险[37],但本研究缺乏前瞻性数据支持低阿片策略在预防疼痛慢性化方面的具体作用。因此,为进一步验证并拓展本研究结论,未来有必要开展大规模、多中心、随机双盲的临床试验,纳入不同性别、各类手术人群,采用客观与主观相结合的多元评价指标,并进行长期随访,以系统评估该麻醉策略的普遍适用性、长期安全性及疼痛转归。

综上所述,腹横肌平面阻滞联合舒芬太尼无背景剂量或背景剂量2 ml/h病人自控静脉镇痛模式均能满足腹腔镜全子宫切除患者术后镇痛需求,但与背景剂量2 ml/h相比,有效TAP阻滞联合无背景剂量、单次4 ml镇痛模式术后镇痛药物总用量明显减少,且恶心呕吐发生率更低,患者术后恢复质量提高。

利益冲突声明

本文所有作者均声明不存在利益冲突。

基金项目

山东省临沂市重点研发计划(项目编号:2024YX0056)。

NOTES

*通讯作者。

参考文献

[1] Xue, Y., Li, S., Guo, S., Kuang, Y., Ke, M., Liu, X., et al. (2023) Evaluation of the Advantages of Robotic versus Laparoscopic Surgery in Elderly Patients with Colorectal Cancer. BMC Geriatrics, 23, Article No. 105. [Google Scholar] [CrossRef] [PubMed]
[2] Yagur, Y., Engel, O., Burstein, R., Bsharat, J., Weitzner, O., Daykan, Y., et al. (2024) Pain after Laparoscopic Endometriosis-Specific Vs. Hysterectomy Surgeries: A Retrospective Cohort Analysis. PLOS ONE, 19, e0301074. [Google Scholar] [CrossRef] [PubMed]
[3] Capuano, P., Hileman, B.A., Martucci, G., Raffa, G.M., Toscano, A., Burgio, G., et al. (2023) Erector Spinae Plane Block versus Paravertebral Block for Postoperative Pain Management in Thoracic Surgery: A Systematic Review and Meta-Analysis. Minerva Anestesiologica, 89, 1042-1050. [Google Scholar] [CrossRef] [PubMed]
[4] Zhang, Y., Liu, M. and Chen, G. (2024) Comparison of Analgesic Effects and Adverse Events of Hydromorphone PCIA versus Sufentanil PCIA: A Retrospective Analysis. Journal of PeriAnesthesia Nursing, 39, 902-906. [Google Scholar] [CrossRef] [PubMed]
[5] Jun, M.R., Lee, M.O., Shim, H.S., Park, J.W., Kim, J.Y., Shim, S., et al. (2023) Intravenous Patient-Controlled Analgesia Regimen in Postoperative Pain Management Following Elective Cesarean Section: A Single-Center Retrospective Evaluation. Medicine, 102, e33474. [Google Scholar] [CrossRef] [PubMed]
[6] Talebzadeh, H., Eslamian, M., Sheikhbahaei, E., Esparham, A., Zefreh, H., Sarblook, P., et al. (2024) Pain Management after Thoracotomy with Dexamethasone and Bupivacaine through a Peripleural Cather: A Randomized Controlled Trial. BMC Anesthesiology, 24, Article No. 240. [Google Scholar] [CrossRef] [PubMed]
[7] Joshi, G.P. (2023) Rational Multimodal Analgesia for Perioperative Pain Management. Current Pain and Headache Reports, 27, 227-237. [Google Scholar] [CrossRef] [PubMed]
[8] 刘清仁, 余健, 王淼, 等. 羟考酮在腹腔镜全子宫切除术后镇痛中的应用[J]. 临床麻醉学杂志, 2019, 35(1): 38-41.
[9] Tercan, C., Gunes, A.C., Bastu, E., Blockeel, C. and Aktoz, F. (2024) The Comparison of 2D and 3D Systems in Total Laparoscopic Hysterectomy: A Systematic Review and Meta-analysis. Archives of Gynecology and Obstetrics, 310, 1811-1821. [Google Scholar] [CrossRef] [PubMed]
[10] Priyadarshini, K., Behera, B.K., Tripathy, B.B. and Misra, S. (2022) Ultrasound-Guided Transverse Abdominis Plane Block, Ilioinguinal/Iliohypogastric Nerve Block, and Quadratus Lumborum Block for Elective Open Inguinal Hernia Repair in Children: A Randomized Controlled Trial. Regional Anesthesia & Pain Medicine, 47, 217-221. [Google Scholar] [CrossRef] [PubMed]
[11] Hung, K., Kao, C., Ho, C., Hsing, C., Chang, Y., Wang, L., et al. (2024) The Impact of Perioperative Ketamine or Esketamine on the Subjective Quality of Recovery after Surgery: A Meta-Analysis of Randomised Controlled Trials. British Journal of Anaesthesia, 132, 1293-1303. [Google Scholar] [CrossRef] [PubMed]
[12] Wu, F., Liu, J., Zheng, L., Chen, C., Basnet, D., Zhang, J., et al. (2024) Preoperative Pain Sensitivity and Its Correlation with Postoperative Acute and Chronic Pain: A Systematic Review and Meta-Analysis. British Journal of Anaesthesia, 133, 591-604. [Google Scholar] [CrossRef] [PubMed]
[13] Lopes, A., Seligman Menezes, M. and Antonio Moreira de Barros, G. (2021) Chronic Postoperative Pain: Ubiquitous and Scarcely Appraised: Narrative Review. Brazilian Journal of Anesthesiology (English Edition), 71, 649-655. [Google Scholar] [CrossRef] [PubMed]
[14] Zeng, J., Hong, A., Gu, Z., Jian, J. and Liang, X. (2024) Efficacy of Transversus Abdominis Plane Block on Postoperative Nausea and Vomiting: A Meta-Analysis of Randomized Controlled Trial. BMC Anesthesiology, 24, Article No. 87. [Google Scholar] [CrossRef] [PubMed]
[15] 胡敬利, 李杨, 史斌, 等. 艾司氯胺酮低阿片化麻醉对胸腔镜手术后患者早期恢复质量的影响[J]. 腹腔镜外科杂志, 2025, 30(3): 220-225, 233.
[16] Copik, M.M., Sadowska, D., Smereka, J., Czyzewski, D., Misiołek, H.D. and Białka, S. (2024) Assessment of Feasibility of Opioid-Free Anesthesia Combined with Preoperative Thoracic Paravertebral Block and Postoperative Intravenous Patient-Controlled Analgesia Oxycodone with Non-Opioid Analgesics in the Perioperative Anesthetic Management for Video-Assisted Thoracic Surgery. Anaesthesiology Intensive Therapy, 56, 98-107. [Google Scholar] [CrossRef] [PubMed]
[17] Bhushan, S., Liu, X., Jiang, F., Wang, X., Mao, L. and Xiao, Z. (2024) A Progress of Research on the Application of Fascial Plane Blocks in Surgeries and Their Future Direction: A Review Article. International Journal of Surgery, 110, 3633-3640. [Google Scholar] [CrossRef] [PubMed]
[18] Yang, C., Yamaki, S., Jung, T., Kim, B., Huyhn, R. and McKemy, D.D. (2023) Endogenous Inflammatory Mediators Produced by Injury Activate TRPV1 and TRPA1 Nociceptors to Induce Sexually Dimorphic Cold Pain That Is Dependent on TRPM8 and GFRα3. The Journal of Neuroscience, 43, 2803-2814. [Google Scholar] [CrossRef] [PubMed]
[19] Heres, C.K., Rindos, N.B., Fulcher, I.R., Allen, S.E., King, N.R., Miles, S.M., et al. (2022) Opioid Use after Laparoscopic Surgery for Endometriosis and Pelvic Pain. Journal of Minimally Invasive Gynecology, 29, 1344-1351. [Google Scholar] [CrossRef] [PubMed]
[20] Nakazawa, M., Fukushima, T., Shoji, K., Momosaki, R. and Mio, Y. (2024) Preoperative versus Postoperative Ultrasound-Guided Rectus Sheath Block for Acute Postoperative Pain Relief after Laparoscopy: A Retrospective Cohort Study. Medicine, 103, e37597. [Google Scholar] [CrossRef] [PubMed]
[21] Liu, J., Chen, S., Chen, J., Liu, H., Li, W., Chi, H., et al. (2025) Effects of Perioperative Oxycodone as the Sole Opioid on Immunity within a Multi-Modal Analgesia Framework in Patients Undergoing Cervical Cancer Surgery: A Randomised Controlled Trial. Indian Journal of Anaesthesia, 69, 191-199. [Google Scholar] [CrossRef] [PubMed]
[22] Nie, Z., Cui, X., Zhang, R., Li, Z., Lu, B., Li, S., et al. (2022) Effectiveness of Patient-Controlled Intravenous Analgesia (PCIA) with Sufentanil Background Infusion for Post-Cesarean Analgesia: A Randomized Controlled Trial. Journal of Pain Research, 15, 1355-1364. [Google Scholar] [CrossRef] [PubMed]
[23] Avinash, S.H. and Krishna, H.M. (2023) The Impact of the Apfel Scoring System for Prophylaxis of Post-Operative Nausea and Vomiting: A Randomized Controlled Trial. Journal of Anaesthesiology Clinical Pharmacology, 39, 463-467. [Google Scholar] [CrossRef] [PubMed]
[24] Yang, H., Gu, X., Xu, M., Yang, G., Rao, Y., Gao, L., et al. (2022) Preventing Nausea and Vomiting after Gynecological Laparoscopic Surgery by Patient-Controlled Intravenous Analgesia with a Naloxone Admixture: A Randomized Controlled Trial. Medicine, 101, e29584. [Google Scholar] [CrossRef] [PubMed]
[25] Feng, C., Xu, Y., Chen, S., Song, N., Meng, X., Liu, H., et al. (2024) Opioid-Free Anaesthesia Reduces Postoperative Nausea and Vomiting after Thoracoscopic Lung Resection: A Randomised Controlled Trial. British Journal of Anaesthesia, 132, 267-276. [Google Scholar] [CrossRef] [PubMed]
[26] Kienbaum, P., Schaefer, M.S., Weibel, S., et al. (2022) Update on PONV—What Is New in Prophylaxis and Treatment of Postoperative Nausea and Vomiting? Summary of Recent Consensus Recommendations and Cochrane Reviews on Prophylaxis and Treatment of Postoperative Nausea and Vomiting. Anaesthesist, 71, 123-128.
[27] Zhang, Z. and Wang, X. (2025) The Neural Mechanism and Pathways Underlying Postoperative Nausea and Vomiting: A Comprehensive Review. European Journal of Medical Research, 30, Article No. 362. [Google Scholar] [CrossRef] [PubMed]
[28] Xia, J., Li, X., Zhu, H., Zhou, X., Chen, J., Li, Q., et al. (2024) The Μ-Opioid Receptor-Mediated Gi/o Protein and β-Arrestin2 Signaling Pathways Both Contribute to Morphine-Induced Side Effects. European Journal of Pharmacology, 966, Article ID: 176333. [Google Scholar] [CrossRef] [PubMed]
[29] Xie, Z., Zhang, X., Zhao, M., Huo, L., Huang, M., Li, D., et al. (2022) The Gut-To-Brain Axis for Toxin-Induced Defensive Responses. Cell, 185, 4298-4316.e21. [Google Scholar] [CrossRef] [PubMed]
[30] Lee, J., Ko, S.J., Choi, N.R., Choi, W., Seo, M., Koo, S.H., et al. (2024) Zuojin Pill Enhances Gastrointestinal Motility by Modulating the Pacemaker Potentials in Interstitial Cells of Cajal through Multiple Signaling Pathways. International Journal of Medical Sciences, 21, 2883-2896. [Google Scholar] [CrossRef] [PubMed]
[31] Weng, S., Wu, Y., Kang, T. and Tseng, C.A. (2025) A Prospective Cohort Observational Study to Validate a Simplified Postoperative Nausea and Vomiting Severity Scale and Its Effects on Sleep and Vitality. BMC Anesthesiology, 25, Article No. 236. [Google Scholar] [CrossRef] [PubMed]
[32] Zhu, Y., Xie, S., Peng, A., Yu, X., Li, C., Fu, J., et al. (2024) Distinct Circuits from the Central Lateral Amygdala to the Ventral Part of the Bed Nucleus of Stria Terminalis Regulate Different Fear Memory. Biological Psychiatry, 95, 732-744. [Google Scholar] [CrossRef] [PubMed]
[33] Shi, X., Nie, X. and Wu, J. (2021) The Cortisol Awakening Response and the Late Positive Potentials Evoked by Unpleasant Emotional Pictures in Healthy Adults. Stress, 25, 40-47. [Google Scholar] [CrossRef] [PubMed]
[34] Zhuang, Y., Wang, Y., He, B., He, X., Zhou, X.E., Guo, S., et al. (2022) Molecular Recognition of Morphine and Fentanyl by the Human Μ-Opioid Receptor. Cell, 185, 4361-4375.e19. [Google Scholar] [CrossRef] [PubMed]
[35] Rubal‐Otero, L., Gil‐Ugidos, A., Villar, A.J.G. and Carrillo‐de‐la‐Peña, M.T. (2024) Temporal Summation of Second Pain Is Affected by Cognitive Load. Journal of Neuroscience Research, 102, e25363. [Google Scholar] [CrossRef] [PubMed]
[36] Steinbeck, V., Bischof, A.Y., Schöner, L., Langenberger, B., Kuklinski, D., Geissler, A., et al. (2024) Gender Health Gap Pre-and Post-Joint Arthroplasty: Identifying Affected Patient-Reported Health Domains. International Journal for Equity in Health, 23, Article No. 44. [Google Scholar] [CrossRef] [PubMed]
[37] Liu, X., Yang, W., Zhu, C., Sun, S., Yang, B., Wu, S., et al. (2023) TLR2 Mediates Microglial Activation and Contributes to Central Sensitization in a Recurrent Nitroglycerin-Induced Chronic Migraine Model. Molecular Neurobiology, 61, 3697-3714. [Google Scholar] [CrossRef] [PubMed]