|
[1]
|
张继文, 贾红燕. 影像组学在乳腺癌诊疗中的研究进展[J]. 临床放射学杂志, 2023, 42(3): 519-523.
|
|
[2]
|
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
张雪, 董晓平, 管雅喆, 等. 女性乳腺癌流行病学趋势及危险因素研究进展[J]. 肿瘤防治研究, 2021, 48(1): 87-92.
|
|
[4]
|
Gradishar, W.J., Moran, M.S., Abraham, J., Abramson, V., Aft, R., Agnese, D., et al. (2024) Breast Cancer, Version 3.2024, NCCN Clinical Practice Guidelines in Oncology. Journal of the National Comprehensive Cancer Network, 22, 331-357. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Schlam, I., Tolaney, S.M. and Tarantino, P. (2023) How I Treat Her2-Low Advanced Breast Cancer. The Breast, 67, 116-123. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Chinese Expert Consensus on Next Generation Sequencing Diagnosis for Non-Small Cell Lung Cancer (2020 Edition). Chinese Journal of Lung Cancer, 23, 741-761.
|
|
[7]
|
Chen, X., Wang, X., Zhang, K., Fung, K., Thai, T.C., Moore, K., et al. (2022) Recent Advances and Clinical Applications of Deep Learning in Medical Image Analysis. Medical Image Analysis, 79, Article 102444. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Aerts, H.J.W.L., Velazquez, E.R., Leijenaar, R.T.H., Parmar, C., Grossmann, P., Carvalho, S., et al. (2014) Correction: Corrigendum: Decoding Tumour Phenotype by Noninvasive Imaging Using a Quantitative Radiomics Approach. Nature Communications, 5, Article No. 4006. [Google Scholar] [CrossRef]
|
|
[9]
|
Yang, G., Yang, J., Xu, H., Zhang, Q., Qi, Y. and Zhang, A. (2020) Relationship between Histogram Metrics of Pharmacokinetic Parameters of DCE-MRI and Histological Phenotype in Breast Cancer. Translational Cancer Research, 9, 30-41. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Wang, Q., Zheng, N., Yu, Q. and Shao, S. (2025) Multimodal Imaging and Advanced Quantitative Techniques for HER-2 Status Prediction in Breast Cancer. Discover Oncology, 16, Article No. 1820. [Google Scholar] [CrossRef]
|
|
[11]
|
Yin, L., Zhang, Y., Wei, X., Shaibu, Z., Xiang, L., Wu, T., et al. (2024) Preliminary Study on DCE-MRI Radiomics Analysis for Differentiation of HER2-Low and HER2-Zero Breast Cancer. Frontiers in Oncology, 14, Article 1385352. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Guo, H.D., Zhu, J.G., Pylypenko, D., Dou, W.Q., et al. (2025) Ultrafast Dynamic Contrast-Enhanced Breast MRI with Quantitative Perfusion Parameters in Differentiating Breast Cancer: A Study Focusing on Triple-Negative and HER2 Positive Breast Cancer. Frontiers in Oncology, 14, Article 1457918. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Frankhouser, D.E., Dietze, E., Mahabal, A. and Seewaldt, V.L. (2021) Vascularity and Dynamic Contrast-Enhanced Breast Magnetic Resonance Imaging. Frontiers in Radiology, 1, Article 735567. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Liu, F., Wang, M. and Li, H. (2018) Role of Perfusion Parameters on DCE-MRI and ADC Values on DWMRI for Invasive Ductal Carcinoma at 3.0 Tesla. World Journal of Surgical Oncology, 16, Article No. 239. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Leithner, D., Bernard-Davila, B., Martinez, D.F., Horvat, J.V., Jochelson, M.S., Marino, M.A., et al. (2020) Radiomic Signatures Derived from Diffusion-Weighted Imaging for the Assessment of Breast Cancer Receptor Status and Molecular Subtypes. Molecular Imaging and Biology, 22, 453-461. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Zhou, J., Yu, X., Wu, Q., Wu, Y., Fu, C., Wang, Y., et al. (2024) Radiomics Analysis of Intratumoral and Different Peritumoral Regions from Multiparametric MRI for Evaluating HER2 Status of Breast Cancer: A Comparative Study. Heliyon, 10, e28722. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Montemezzi, S., Cardano, G., Storer, S., Cardobi, N., Cavedon, C. and Camera, L. (2021) MRI-Guided Breast Biopsy Based on Diffusion-Weighted Imaging: A Feasibility Study. European Radiology, 31, 2645-2656. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Igarashi, T. (2024) Editorial Comment: What Is the Utility of T2 Signal Intensity in Patients with HER2-Positive Breast Cancer? American Journal of Roentgenology, 222, e30785. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Galati, F., Rizzo, V., Moffa, G., Caramanico, C., Kripa, E., Cerbelli, B., et al. (2022) Radiologic-Pathologic Correlation in Breast Cancer: Do MRI Biomarkers Correlate with Pathologic Features and Molecular Subtypes? European Radiology Experimental, 6, Article No. 39. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Jirarayapong, J., Portnow, L.H., Chikarmane, S.A., Lan, Z. and Gombos, E.C. (2024) High Peritumoral and Intratumoral T2 Signal Intensity in HER2-Positive Breast Cancers on Preneoadjuvant Breast MRI: Assessment of Associations with Histopathologic Characteristics. American Journal of Roentgenology, 222, 1-11. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
尚怡研, 王贇霞, 郭亚欣, 等. 多参数MRI影像组学术前预测乳腺癌HER-2低表达的临床研究[J]. 临床放射学杂志, 2024, 43(8): 1286-1291.
|
|
[22]
|
Zhang, L., Zhu, G., Wang, K., Zhang, T., Lu, L. and Zhao, X. (2025) Morphological Assessment of Breast Lesions with Type 2 Dynamic Curves Using DWI and T2WI Based on Breast Imaging Reporting and Data System Lexicon Descriptors. The Breast Journal, 2025, Article 9957678. [Google Scholar] [CrossRef]
|
|
[23]
|
Hosny, A., Aerts, H.J. and Mak, R.H. (2019) Handcrafted versus Deep Learning Radiomics for Prediction of Cancer Therapy Response. The Lancet Digital Health, 1, e106-e107. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Xu, Z., Yang, Q., Li, M., Gu, J., Du, C., Chen, Y., et al. (2022) Predicting HER2 Status in Breast Cancer on Ultrasound Images Using Deep Learning Method. Frontiers in Oncology, 12, Article 829041. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Ferrando-Díez, A., Felip, E., Pous, A., Bergamino Sirven, M. and Margelí, M. (2022) Targeted Therapeutic Options and Future Perspectives for HER2-Positive Breast Cancer. Cancers, 14, Article No. 3305. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Bitencourt, A.G.V., Gibbs, P., Rossi Saccarelli, C., Daimiel, I., Lo Gullo, R., Fox, M.J., et al. (2020) MRI-Based Machine Learning Radiomics Can Predict HER2 Expression Level and Pathologic Response after Neoadjuvant Therapy in HER2 Overexpressing Breast Cancer. EBioMedicine, 61, Article 103042. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Girot, C., Volk, A., Walczak, C., Lassau, N. and Pitre-Champagnat, S. (2021) New Method for Quantification of Intratumoral Heterogeneity: A Feasibility Study on Ktrans Maps from Preclinical DCE-MRI. Magnetic Resonance Materials in Physics, Biology and Medicine, 34, 845-857. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Xu, A., Chu, X., Zhang, S., Zheng, J., Shi, D., Lv, S., et al. (2022) Development and Validation of a Clinicoradiomic Nomogram to Assess the HER2 Status of Patients with Invasive Ductal Carcinoma. BMC Cancer, 22, Article No. 872. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
El-Adoui, M., Drisis, S. and Benjelloun, M. (2020) Multi-Input Deep Learning Architecture for Predicting Breast Tumor Response to Chemotherapy Using Quantitative MR Images. International Journal of Computer Assisted Radiology and Surgery, 15, 1491-1500. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Li, J., Zhou, Z., Dong, J., Fu, Y., Li, Y., Luan, Z., et al. (2021) Predicting Breast Cancer 5-Year Survival Using Machine Learning: A Systematic Review. PLOS ONE, 16, e0250370. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Wong, C., Yang, Q., Liang, Y., Wei, Z., Dai, Y., Xu, Z., et al. (2025) AI-Driven MRI Biomarker for Triple-Class HER2 Expression Classification in Breast Cancer: A Large-Scale Multicenter Study. Breast Cancer Research, 27, Article No. 166. [Google Scholar] [CrossRef]
|
|
[32]
|
Teng, X., Zhang, J., Zhang, X., Fan, X., Zhou, T., Huang, Y., et al. (2023) Noninvasive Imaging Signatures of HER2 and HR Using ADC in Invasive Breast Cancer: Repeatability, Reproducibility, and Association with Pathological Complete Response to Neoadjuvant Chemotherapy. Breast Cancer Research, 25, Article No. 77. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Hatamikia, S., George, G., Schwarzhans, F., Mahbod, A. and Woitek, R. (2024) Breast MRI Radiomics and Machine Learning-Based Predictions of Response to Neoadjuvant Chemotherapy—How Are They Affected by Variations in Tumor Delineation? Computational and Structural Biotechnology Journal, 23, 52-63. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Kovačević, L., Štajduhar, A., Stemberger, K., Korša, L., Marušić, Z. and Prutki, M. (2023) Breast Cancer Surrogate Subtype Classification Using Pretreatment Multi-Phase Dynamic Contrast-Enhanced Magnetic Resonance Imaging Radiomics: A Retrospective Single-Center Study. Journal of Personalized Medicine, 13, Article 1150. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Zwanenburg, A., Vallières, M., Abdalah, M.A., Aerts, H.J.W.L., Andrearczyk, V., Apte, A., et al. (2020) The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-Based Phenotyping. Radiology, 295, 328-338. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Chen, Y., Wang, Z., Yin, G., Sui, C., Liu, Z., Li, X., et al. (2022) Prediction of HER2 Expression in Breast Cancer by Combining PET/CT Radiomic Analysis and Machine Learning. Annals of Nuclear Medicine, 36, 172-182. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Chen, Y., Chen, S., Tang, W., Kong, Q., Zhong, Z., Yu, X., et al. (2025) Multiparametric MRI Radiomics with Machine Learning for Differentiating HER2-Zero,-Low, and-Positive Breast Cancer: Model Development, Testing, and Interpretability Analysis. American Journal of Roentgenology, 224, 1-17. [Google Scholar] [CrossRef] [PubMed]
|