|
[1]
|
Tran, M. and Jha, B. (2021) Effect of Poroelastic Coupling and Fracture Dynamics on Solute Transport and Geomechanical Stability. Water Resources Research, 57, e2021WR029584. [Google Scholar] [CrossRef]
|
|
[2]
|
Zhao, X. and Jha, B. (2022) Diagnostic and Predictive Analysis of Production and Injection‐Induced Fault Activation. International Journal for Numerical and Analytical Methods in Geomechanics, 46, 392-415. [Google Scholar] [CrossRef]
|
|
[3]
|
Dana, S., Zhao, X. and Jha, B. (2022) A Two-Grid Simulation Framework for Fast Monitoring of Fault Stability and Ground Deformation in Multiphase Geomechanics. Journal of Computational Physics, 466, Article 111405. [Google Scholar] [CrossRef]
|
|
[4]
|
Kim, K., Ree, J., Kim, Y., Kim, S., Kang, S.Y. and Seo, W. (2018) Assessing Whether the 2017 Mw 5.4 Pohang Earthquake in South Korea Was an Induced Event. Science, 360, 1007-1009. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Bao, X. and Eaton, D.W. (2016) Fault Activation by Hydraulic Fracturing in Western Canada. Science, 354, 1406-1409. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Woo, J.‐U., Kim, M., Sheen, D.‐H., Kang, T., Rhie, J., Grigoli, F., et al. (2019) An In‐Depth Seismological Analysis Revealing a Causal Link between the 2017 Mw 5.5 Pohang Earthquake and EGS Project. Journal of Geophysical Research: Solid Earth, 124, 13060-13078. [Google Scholar] [CrossRef]
|
|
[7]
|
Grigoli, F., Cesca, S., Rinaldi, A.P., Manconi, A., López-Comino, J.A., Clinton, J.F., et al. (2018) The November 2017 Mw 5.5 Pohang Earthquake: A Possible Case of Induced Seismicity in South Korea. Science, 360, 1003-1006. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
雷兴林, 苏金蓉, 王志伟. 四川盆地南部持续增长的地震活动及其与工业注水活动的关联[J]. 中国科学: 地球科学, 2020, 50(11): 1505-1532+1-8.
|
|
[9]
|
Kolawole, F., Johnston, C.S., Morgan, C.B., Chang, J.C., Marfurt, K.J., Lockner, D.A., et al. (2019) The Susceptibility of Oklahoma’s Basement to Seismic Reactivation. Nature Geoscience, 12, 839-844. [Google Scholar] [CrossRef]
|
|
[10]
|
Ellsworth, W.L. (2013) Injection-Induced Earthquakes. Science, 341, Article 1225942. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Dempsey, D. and Riffault, J. (2019) Response of Induced Seismicity to Injection Rate Reduction: Models of Delay, Decay, Quiescence, Recovery, and Oklahoma. Water Resources Research, 55, 656-681. [Google Scholar] [CrossRef]
|
|
[12]
|
Langenbruch, C. and Zoback, M.D. (2016) How Will Induced Seismicity in Oklahoma Respond to Decreased Saltwater Injection Rates? Science Advances, 2, e1601542. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Barbour, A.J., Norbeck, J.H. and Rubinstein, J.L. (2017) The Effects of Varying Injection Rates in Osage County, Oklahoma, on the 2016 Mw 5.8 Pawnee Earthquake. Seismological Research Letters, 88, 1040-1053. [Google Scholar] [CrossRef]
|
|
[14]
|
Chang, K.W., Yoon, H. and Martinez, M.J. (2018) Seismicity Rate Surge on Faults after Shut‐In: Poroelastic Response to Fluid Injection. Bulletin of the Seismological Society of America, 108, 1889-1904. [Google Scholar] [CrossRef]
|
|
[15]
|
Rudnicki, J.W. and Zhan, Y. (2020) Effect of Pressure Rate on Rate and State Frictional Slip. Geophysical Research Letters, 47, e2020GL089426. [Google Scholar] [CrossRef]
|
|
[16]
|
Sun, Z., Che, M., Zhu, L., Zhang, S., Lu, J. and Jin, C. (2024) Implications for Fault Reactivation and Seismicity Induced by Hydraulic Fracturing. Petroleum Science, 21, 1081-1098. [Google Scholar] [CrossRef]
|
|
[17]
|
Passelègue, F.X., Brantut, N. and Mitchell, T.M. (2018) Fault Reactivation by Fluid Injection: Controls from Stress State and Injection Rate. Geophysical Research Letters, 45, 12,837-12,846. [Google Scholar] [CrossRef]
|
|
[18]
|
Cebry, S.B.L., Ke, C.‐Y. and McLaskey, G.C. (2022) The Role of Background Stress State in Fluid‐Induced Aseismic Slip and Dynamic Rupture on a 3‐m Laboratory Fault. Journal of Geophysical Research: Solid Earth, 127, e2022JB024371. [Google Scholar] [CrossRef]
|
|
[19]
|
Cornelio, C., Passelègue, F.X., Spagnuolo, E., Di Toro, G. and Violay, M. (2020) Effect of Fluid Viscosity on Fault Reactivation and Coseismic Weakening. Journal of Geophysical Research: Solid Earth, 125, e2019JB018883. [Google Scholar] [CrossRef]
|
|
[20]
|
Jiang, R., Duan, K., Ji, Y., Zhang, Q., Wang, L. and Zheng, Y. (2025) Impact of Injection Rate on Smooth and Rough Fracture Activation in Granite: Laboratory-Scale Acoustic Emission Analysis. Journal of Rock Mechanics and Geotechnical Engineering, 17, 2133-2145. [Google Scholar] [CrossRef]
|
|
[21]
|
Butt, A., Hedayat, A. and Moradian, O. (2023) Energy Budgeting of Laboratory Hydraulic Fracturing in Granite with Different Viscosity Injection Fluids. 57th U.S. Rock Mechanics/Geomechanics Symposium, Atlanta, 25-28 June 2023, ARMA-2023-0751. [Google Scholar] [CrossRef]
|
|
[22]
|
张致伟, 孙小龙. 四川长宁地区注水诱发地震的孔隙压力扩散特征[J]. 国际地震动态, 2018(8): 132-133.
|